51单片机与0832波形发生器锯齿波、三角波、正弦波

合集下载

51-单片机和DAC0832输出方波、矩形波和正弦波由液晶1602显示的C语言程序

51-单片机和DAC0832输出方波、矩形波和正弦波由液晶1602显示的C语言程序

显示频率,幅度可调,可产生四种波形,正弦波,方波,锯齿波,三角波,希望你能喜欢,给你发了一张效果图,喜欢的话别忘了采纳我的回答啊#include<reg52.h>#define uchar unsigned char#define uint unsigned int#define DAdata P0 //DA数据端口sbit DA_S1= P2^0; // 控制DAC0832的8位输入寄存器,仅当都为0时,可以输出数据(处于直通状态),否则,输出将被锁存sbit DA_S2= P2^1; // 控制DAC0832的8位DAC寄存器,仅当都为0时,可以输出数据(处于直通状态),否则,输出将被锁存sbit key= P3^2;uchar wavecount; //'抽点'计数uchar THtemp,TLtemp;//传递频率的中间变量uchar judge=1; //在方波输出函数中用于简单判别作用uchar waveform; //当其为0、1、2时,分别代表三种波uchar code freq_unit[3]={10,50,200}; //三种波的频率单位uchar idata wavefreq[3]={1,1,1}; //给每种波定义一个数组单元,用于存放单位频率的个数uchar code lcd_hang1[]={"Sine Wave " "Triangle Wave " "Square Wave " "Select Wave: " "press No.1 key! "};uchar idata lcd_hang2[16]={"f= Hz "};uchar code waveTH[]={0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xec,0xf6,0xf9,0xfb,0xfc,0xfc,0xfd,0xfd,0xfd,0xfe};uchar code waveTL[]={0x06,0x8a,0x10,0x4e,0x78,0x93,0xa8,0xb3,0xbe,0xc6, //正弦波频率调整中间值0xac,0xde,0x48,0x7a,0x99,0xaf,0xbb,0xc8,0xd0,0xde, //三角波频率调整中间值0x88,0x50,0x90,0x32,0x34,0xbe,0x4a,0xa3,0xe5,0x2c};/**************************************************************************************** *********/uchar code triangle_tab[]={ //每隔数字8,采取一次0x00,0x08,0x10,0x18,0x20,0x28,0x30,0x38,0x40,0x48,0x50,0x58,0x 60,0x68,0x70,0x78,0x80,0x88,0x90,0x98,0xa0,0xa8,0xb0,0xb8,0xc0,0xc8,0xd0,0xd8,0x e0,0xe8,0xf0,0xf8,0xff,0xf8,0xf0,0xe8,0xe0,0xd8,0xd0,0xc8,0xc0,0xb8,0xb0,0xa8,0xa0,0x9 8,0x90,0x88,0x80,0x78,0x70,0x68,0x60,0x58,0x50,0x48,0x40,0x38,0x30,0x28,0x20,0x 18,0x10,0x08,0x00};uchar code sine_tab[256]={//输出电压从0到最大值(正弦波1/4部分)0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2,0xa 5,0xa8,0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd ,0xdf,0xe1,0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd, 0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,//输出电压从最大值到0(正弦波1/4部分)0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7 ,0xf6,0xf5,0xf4,0xf2,0xf1,0xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda,0xd8,0x d6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9 c,0x99 ,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,//输出电压从0到最小值(正弦波1/4部分)0x80,0x7c,0x79,0x76,0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5 a,0x57,0x55,0x51,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0x27,0x25,0x 22,0x20,0x1e,0x1c,0x1a,0x18,0x16 ,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x 03,0x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,//输出电压从最小值到0(正弦波1/4部分)0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02 ,0x02,0x03,0x04,0x05,0x 06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15 ,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x 29,0x2b,0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x 63,0x66 ,0x69,0x6c,0x6f,0x72,0x76,0x79,0x7c,0x80};void delay(uchar z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}void triangle_out() //三角波输出{DAdata=triangle_tab[wavecount++];if(wavecount>64) wavecount=0;DA_S1=0; //打开8位输入寄存器DA_S1=1; //关闭8位输入寄存器void sine_out() //正弦波输出{DAdata=sine_tab[wavecount++];DA_S1=0; //打开8位输入寄存器DA_S1=1; //关闭8位输入寄存器}void square_out() //方波输出{judge=~judge;if(judge==1) DAdata=0xff;else DAdata=0x00;DA_S1=0; //打开8位输入寄存器DA_S1=1; //关闭8位输入寄存器}/************1602液晶的相关函数*************/#define lcd_ports P1sbit rs=P2^2;sbit rw=P2^3;sbit lcden=P2^4;void write_com(uchar com){rs=0; //置零,表示写指令lcden=0;lcd_ports=com;delay(5);lcden=1;delay(5);lcden=0;}void write_date(uchar date){rs=1; //置1,表示写数据(在指令所指的地方写数据)lcden=0;lcd_ports=date;delay(5);lcden=1;delay(5);lcden=0;void disp_lcd(uchar addr,uchar *temp1){uchar num;write_com(addr);delay(1); //延时一会儿???for(num=0;num<16;num++){write_date(temp1[num]);//或者这样写write_date(*(temp1+num));delay(1);}}void init_lcd(){//uchar num;lcden=0; //可有可无???rw=0; //初始化一定要设置为零,表示写数据write_com(0x38); //使液晶显示点阵,为下面做准备write_com(0x0c); //初始设置write_com(0x06); //初始设置write_com(0x01); //清零write_com(0x80); //使指针指向第一行第一格disp_lcd(0x80,&lcd_hang1[3*16]); //在第一行显示disp_lcd(0xc0,&lcd_hang1[4*16]); //在第二行显示}/********************1602液晶函数声明结束*********************/ void main(){uchar i=0;DA_S2=0; //使DAC寄存器处于直通状态DAdata=0;DA_S1=1; //关闭8位输入寄存器init_lcd();waveform=0;TMOD=0x01; //设置定时器0为16位工作方式IT0=1; //设置外部中断0为下降沿触发ET0=1; //开定时器中断EX0=1;EA=1;while(1){//DAout(0xff); //可输出TTL波形//DAout(0x80);//T_temp=32;}}void timer0() interrupt 1{TH0=THtemp;TL0=TLtemp;if(waveform==0) sine_out();else if(waveform==1) triangle_out();else if(waveform==2) square_out();}void key_int0() interrupt 0{uchar keytemp;uint total_freq; //总频率EA=0; TR0=0; //关总中断与定时器delay(5); //延时够吗???if(key==0) //确实有按键按下而引发中断{keytemp=P3&0xf0; //获取P3口高四位的值switch(keytemp){case 0xe0: //选择波形waveform++;if(waveform>2) waveform=0;break;case 0xd0: //频率按规定单位依次增加wavefreq[waveform]++;if(wavefreq[waveform]>10) wavefreq[waveform]=1; // /*这边要用“>10”,因为它比“=11”可靠break;case 0xb0: //频率按规定单位依次衰减wavefreq[waveform]--;if(wavefreq[waveform]<1) wavefreq[waveform]=10; //这边要用“<1”,因为它比“=0”可靠性更高break;case 0x70: //TTL输出DA_S2=1; //使DAC寄存器关闭break;}THtemp=waveTH[waveform*10+(wavefreq[waveform]-1)]; //方括号中选取第几个数后,并把该值赋给T_tempTLtemp=waveTL[waveform*10+(wavefreq[waveform]-1)];total_freq= wavefreq[waveform] * freq_unit[waveform]; //求输出频率(个数*单位)lcd_hang2[5]=total_freq%10+0x30; //在液晶中显示个位,(0x30 在液晶显示中表示数字0)total_freq/=10; lcd_hang2[4]=total_freq%10+0x30; //在液晶中显示时十位total_freq/=10; lcd_hang2[3]=total_freq%10+0x30; //在液晶中显示时百位total_freq/=10; lcd_hang2[2]=total_freq%10+0x30; //在液晶中显示时千位disp_lcd(0x80,&lcd_hang1[waveform*16]); //在第一行显示disp_lcd(0xc0,lcd_hang2); //在第二行显示}wavecount=0; //'抽点'计数清零while(!key);EA=1; TR0=1; //开启总中断与定时器}。

基于51单片机的 正弦信号发生器的设计

基于51单片机的 正弦信号发生器的设计

第一章系统设计经过考虑,我们确定方案如下:利用AT89S52单片机采用程序设计方法产生锯齿波、正弦波、矩形波三种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,通过键盘来控制三种波形的类型选择、频率变化,最终输出显示其各自的类型以及数值。

1.1 设计要求1)、利用单片机采用软件设计方法产生三种波型2)、三种波形可通过键盘选择3)、波形频率可调4)、需显示波形的种类及其平率1.2方案设计与论1.2.1 信号发生电路方案论证方案一:通过单片机控制D/A,此方案电路简单、成本低。

方案二:使用传统的锁相频率合成方法。

通过芯片IC145152,压控振荡器搭接的锁相环电路输出稳定性极好的正弦波,再利用过零比较器转换成方波,积分电路转换成三角波。

此方案,电路复杂,干扰因素多,不易实现。

方案三:利用MAX038芯片组成的电路输出波形。

MAX038是精密高频波形产生电路,能够产生准确的三角波、方波和正弦波三种周期性波形。

但此方案成本高,程序复杂度高。

以上三种方案综合考虑,选择方案一。

1.3总体系统设计该系统采用单片机作为数据处理及控制核心,由单片机完成人机界面、系统控制、信号的采集分析以及信号的处理和变换,采用按键输入,利用液晶显示电路输出数字显示的方案。

将设计任务分解为按键电路、液晶显示电路等块。

图(1)为系统的总体框图图(1)总体方块图1.4硬件实现及单元电路设计1.4.1单片机最小系统的设计89C51是片内有ROM/EPROM的单片机,因此,这种芯片构成的最小系统简单﹑可靠。

用80C51单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,如图(2) 89C51单片机最小系统所示。

由于集成度的限制,最小应用系统只能用作一些小型的控制单元。

其应用特点:(1) 有可供用户使用的大量I/O口线。

(2) 内部存储器容量有限。

(3) 应用系统开发具有特殊性。

51单片机制作的波形发生器

51单片机制作的波形发生器

51单片机制作的波形发生器相信很多朋友都可能接触到一个波型发生器的制作,可能刚刚入门,做的东西也不会说是很复杂。

可能就一个矩形波,或者是三角波。

但是网上的很多资料是忽悠人的,就此,我也提供一个比较完整的波型发生器 C51 原代:该系统的软件比较典型:包括键盘的应用,显示的应用和 DA 转换器的应用。

本设计中,输出的波形有三种:正弦波,方波,三角波。

方波的输出最为简单,只要按照设定的周期值将输出的电压改变即可。

三角波的输出也比较简单,单片机的输出只要完成数字量递增和递减交替进行即可。

、正弦波的输出最麻烦,如果在软件中计算出输出的各点电压值,将会浪费很多的 CPU 时间,以至于无法满足频率的要求。

通常最简单的方法是通过手动的方法计算出输出各点的电压值,然后在编写程序时以数组的方式给出。

当需要时,只要按照顺序进行输出即可。

这种方法比运算法速度快且曲线的形状修改灵活。

在本设计中将 360 度分为 256 个点,则每两个点之间的间隔为1.4 度,然后计算出每个点电压对应的数字量即可。

只要反复输出这组数据到 DAC0832, 就可以在系统输出端得到想要的正弦波。

具体程序如下:#include ;#define uchar unsigned char#define uint unsigned int#define DAdata P0uchar code Sinetab[256]={0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xab,0xad,0xaf,0xb1,0xb2,0xb4,0xb6,0xb7,0xb9,0xba,0xbc,0xbd,0xbf,0xc0,0xc1,0xc3,0xc4,0xc5,0xc6,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xce,0xcf,0xd0,0xd1,0xd1,0xd2,0xd2,0xd3,0xd3,0xd3,0xd2,0xd2,0xd1,0xd1,0xd0,0xcf,0xce,0xce,0xcd,0xcc,0xcb,0xca,0xc9,0xc8,0xc6,0xc5,0xc4,0xc3,0xc1,0xc0,0xbf,0xbd,0xbc,0xba,0xb9,0xb7,0xb6,0xb4,0xb2,0xb1,0xaf,0xad,0xab,0xaa,0xa8,0xa6,0xa4,0xa2,0xa0,0x9e,0x9c,0x9a,0x98,0x96,0x94,0x92,0x90,0x8e,0x8c,0x8a,0x88,0x86,0x84,0x82, 0x80,0x7d,0x7b,0x79,0x77,0x75,0x73,0x71, 0x6f,0x6d,0x6b,0x69,0x67,0x65,0x63,0x61, 0x5f,0x5d,0x5b,0x59,0x57,0x55,0x54,0x52, 0x50,0x4e,0x4d,0x4b,0x49,0x48,0x46,0x45, 0x43,0x42,0x40,0x3f,0x3e,0x3c,0x3b,0x3a, 0x39,0x37,0x36,0x35,0x34,0x33,0x32,0x31, 0x31,0x30,0x2f,0x2e,0x2e,0x2d,0x2d,0x2c, 0x2c,0x2b,0x2b,0x2b,0x2b,0x2a,0x2a,0x2a, 0x2a,0x2a,0x2a,0x2a,0x2b,0x2b,0x2b,0x2b, 0x2c,0x2c,0x2d,0x2d,0x2e,0x2e,0x2f,0x30, 0x31,0x31,0x32,0x33,0x34,0x35,0x36,0x37, 0x39,0x3a,0x3b,0x3c,0x3e,0x3f,0x40,0x42, 0x43,0x45,0x46,0x48,0x49,0x4b,0x4d,0x4e, 0x50,0x52,0x54,0x55,0x57,0x59,0x5b,0x5d, 0x5f,0x61,0x63,0x65,0x67,0x69,0x6b,0x6d, 0x6f,0x71,0x73,0x75,0x77,0x79,0x7b,0x7d, };uchar code Triangletab[58]={0x1a,0x21,0x28,0x2f,0x36,0x3d,0x44,0x4b, 0x52,0x59,0x60,0x67,0x6e,0x75,0x7c,0x83,0x8a,0x91,0x98,0x9f,0xa6,0xad,0xb4,0xbb,0xc2,0xc9,0xd0,0xd7,0xde,0xe5,0xde,0xd7,0xd0,0xc9,0xc2,0xbb,0xb4,0xad,0xa6,0x9f,0x98,0x91,0x8a,0x83,0x7c,0x75,0x6e,0x67,0x60,0x59,0x52,0x4b,0x44,0x3d,0x36,0x2f,0x28,0x21,};uchar code Squaretab[2]={0x56,0xaa};uchar code disp1[]={&quot;Sine Wave &quot;&quot;Triangle Wale &quot;&quot;Square Wave &quot;};uchar idata disp2[16]={&quot;Frequency:Hz&quot;};uchar code Coef[3]={10,100,200};uchar idata WaveFre[3]={1,1,1};uchar code WaveTH[]={0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, };uchar code WaveTL[]={0xf2,0x78,0xfb,0x3c,0x63,0x7d,0x8f,0x9d,0xa8,0xb1, 0x17,0x0b,0xb2,0x05,0x37,0x58,0x70,0x82,0x90,0x9b, 0x4d,0xa7,0xc4,0xd3,0xdc,0xe2,0xe6,0xea,0xec,0xee };uchar Wavecount,THtemp,TLtemp;uchar Waveform;sbit rs=P2^5;sbit rw=P2^6;sbit e=P2^7;sbit DA=P2^0;sbit KEY=P3^2;void delay(uchar i){uchar j;for(;i>;0;i--)for(j=20;j>;0;j--);}void busy(){uchar temp;temp=0x00;rs=0;rw=1;while((temp&0x80)==0x80) {P0=0xff;e=1;temp=P0;e=0;}}void WR_Com(uchar temp) {busy();rs=0;rw=0;P0=temp;e=1;e=0;}void WR_Data(uchar num){busy();rs=1;rw=0;P0=num;e=1;e=0;}void disp_lcd(uchar addr,uchar *temp1) {uchar i;WR_Com(addr);delay(100);for(i=0;i;0;i--){P0=0x30;rs=0;rw=0;e=1;e=0;delay(100);P0=0x38;rs=0;rw=0;e=1;e=0;delay(100);}void lcd_Reset(){WR_Com(0x01);delay(100);WR_Com(0x06);delay(100);WR_Com(0x0c);delay(100);}void SineOUT(uchar Wavecount) {DAdata=Sinetab[Wavecount++]; Wavecount=0;DA=0;}void TriangleOUT(uchar Wavecount) {DAdata=Triangletab[Wavecount++]; if(Wavecount>;57)Wavecount=0;DA=0;DA=1;}void SquareOUT(uchar Wavecount) {DAdata=Squaretab[Wavecount++];if(Wavecount>;1)Wavecount=0;DA=0;DA=1;}void timer() interrupt 1{TH0=THtemp;TL0=THtemp;if(Waveform==0)SineOUT(Wavecount); else if(Waveform==1)TriangleOUT(Wavecount); else if(Waveform==2)SquareOUT(Wavecount); }void key_int() interrupt 0 {uchar keytemp,keytemp1;uint WaveCoef;EA=0;TR0=0;keytemp1=0;delay(10);while(!KEY);keytemp=~P2&0x1e; keytemp>;>;=1;while(keytemp!=8){keytemp=~P2&0x1e;keytemp>;>;=1;if(keytemp!=keytemp1){keytemp1=keytemp;switch(keytemp){case 1:if(++Waveform==3)Waveform=0;break;case 2:if(++WaveFre[Waveform]==11)WaveFre[Waveform]=1;break;case 4:if(--WaveFre[Waveform]==0)WaveFre[Waveform]=10;break;}THtemp=WaveTH[Waveform*16+(WaveFre[Waveform]-1)]; TLtemp=WaveTL[Waveform*16+(WaveFre[Waveform]-1)];WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30;WaveCoef/=10;disp2[12]=WaveCoef%10+0x30;WaveCoef/=10;disp2[11]=WaveCoef%10+0x30;WaveCoef/=10;disp2[10]=WaveCoef%10+0x30;WaveCoef/=10;disp_lcd(0x80,&disp1[Waveform*16]);disp_lcd(0xc0,disp2);}}TH0=THtemp;TL0=THtemp;Wavecount=0;TR0=1;}void main(){uint WaveCoef;uchar i;lcd_ini();lcd_Reset();WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30;WaveCoef/=10;disp2[12]=WaveCoef%10+0x30;WaveCoef/=10;disp2[11]=WaveCoef%10+0x30;WaveCoef/=10;disp2[10]=WaveCoef%10+0x30;WaveCoef/=10;disp_lcd(0x80,&disp1[Waveform*16]);disp_lcd(0xc0,disp2);i=0;DAdata=0x00;DA=0;TMOD=0x01;IT0=1;ET0=1;EX0=1;EA=1;while(1);}。

[整理]单片机DA转换锯齿波和三角波

[整理]单片机DA转换锯齿波和三角波

一、实验内容连接单片机系统模块与DAC0832转换器模块,输出一个周期性的正弦波。

用示波器观察输出波形。

二、实验目的及要求1、了解DAC0832转换器的工作原理。

2、掌握51单片机与DAC0832转换器接口电路的设计及编程。

3、在示波器上观察不同情况下的滤波效果。

三、实验原理计算机处理的信息为数字量,被控制对象往往是采用一些连续变化的模拟量进行控制。

因此计算机输出和被控对象之间必须设置数字/模拟转换,把数字量转换成模拟量,才能把计算机与被控制对象连接起来。

1、DAC0832结构和原理该电路由51单片机及DAC0832电路两部分组成。

其中DAC0832芯片为电流输出方式的转换芯片。

所以它的输出必须接有实现从电流到电压的转换的运放电路。

DAC0832是8 位双缓冲D/A转换器。

片内带有数据锁存器,可与微处理器直接接口。

电流输出,建立时间1uS,单电源+5V~+15V,V REF输入端电压-10V<=V REF<=+1V,分辨率8位,功耗20mW。

DIP封装如图15-1所示。

图15-1 DAC0832 DIP封装图管脚定义如表15-1所示。

2.操作原理:内部逻辑图如图15-2所示。

图15-2 内部逻辑图操作方法:当XFER为低电平,WR2输入负脉冲时,则在LE2产生正脉冲;LE2为高电平时,DAC寄存器的输入与输出寄存器状态一致,LE2的负跳变,输入寄存器内容存入DAC寄存器。

根据对DAC0832的输入锁存器和DAC寄存器的不同的控制方法,DAC0832 有如下三种工作方式:(1)单缓冲方式此方式适用于只有一路模拟量输出或几路模拟量非同步输出的情形。

方法是控制输入寄存器同时接收数据,或者只用输入寄存器而把DAC寄存器接成直通方式。

(2)双缓冲方式此方式适用于多个DAC0832同时输出的情形。

方法是先分别使这些DAC0832的输入寄存器接收数据,再控制这些DAC0832同时传送数据到DAC寄存器以实现多个D/A转换同步输出。

基于51系列单片机的多功能波形发生器及特定波形幅值调节

基于51系列单片机的多功能波形发生器及特定波形幅值调节

基于51系列单片机的多功能波形发生器及特定波形幅值调节概述:随着科技的不断进步,波形发生器在各种测量、调试和实验中发挥着重要的作用。

本文将介绍一种基于51系列单片机的多功能波形发生器,并且可以对特定波形的幅值进行调节。

设计原理:本波形发生器采用51系列单片机作为核心控制器,并通过DAC芯片将数字信号转换为模拟信号输出。

通过LCD显示模块显示当前所选的波形类型和幅值,并通过按键来切换和调节相应的参数。

主要功能:1.多波形输出:本波形发生器可以输出多种波形,如正弦波、方波、三角波、锯齿波等。

用户可以通过按键选择所需的波形类型。

2.幅值调节:本波形发生器还可以根据用户的需求,对特定波形的幅值进行调节。

3.频率调节:用户可以通过按键来调节波形的频率,以满足不同的实验需求。

4.输出控制:用户可以通过按键选择启用或停用输出信号。

硬件设计:1.单片机控制电路:使用51系列单片机作为核心控制器,通过控制IO口的状态来实现波形选择和参数调节。

2.DAC芯片:将单片机输出的数字信号转换为模拟信号,实现波形的输出。

3.LCD显示模块:用于显示当前所选的波形类型和幅值。

4.按键模块:用于选择波形类型、调节幅值和频率等参数。

5.输出控制电路:通过控制开关,使得输出信号可以被启用或停用。

软件设计:1.系统初始化:包括设置IO口的状态、初始化LCD显示模块、初始化按键模块等。

2.波形选择:通过按键选择所需的波形类型,并将相应的参数传递给DAC芯片。

3.幅值调节:根据用户的需求,通过按键调节特定波形的幅值,并通过DAC芯片实现相应的调节。

4.频率调节:通过按键调节波形的频率,并通过定时器来实现相应的调节。

5.输出控制:根据用户选择的开关状态,控制输出信号的启用或停用。

总结:基于51系列单片机的多功能波形发生器及特定波形幅值调节是一种灵活、实用的设计方案。

它可以满足各种不同波形的输出需求,并且可以根据用户的需求对波形的幅值进行调节。

51单片机控制0832波形输出

51单片机控制0832波形输出

DB 69H,6CH,6FH,72H,76H,79 H,7CH,80H
;程控正弦信号输出 MOV R5,#00H MOV R1,#40H
DA1:MOV A,R5 MOV DPTR,#TABH MOVC A,@A+DPTR MOV DPTR,#0DFFFH MOVX @DPTR,A INC R5 MOV A,@R1 MOV DPTR,#TAB MOVC A,@A+DPTR MOV DPTR,#0DFFFH MOVX @DPTR,A INC @R1 AJMP DA1
51单片机控制0832波形输出51单片
;反相锯齿波 MOV DPTR,#0DFFFH
DA1:MOV R6,#80H DA2:MOV A,R6
MOVX @DPTR,A DJNZ R6,DA2 AJMP DA1
;正向锯齿波 MOV DPTR,#0DFFFH
DA1:MOV R6,#80H DA2:MOV A,R6
TAB: DB 80H, 83H, 86H, 89H, 8DH,90H,93H,96H DB 99H,9CH,9FH,0A2H,0A5H,0A8H,0ABH,0AEH DB 0B1H,0B4H,0B7H,0BAH,0BCH,0BFH,0C2H,0C5H DB 0C7H,0CAH,0CCH,0CFH,0D1H,0D4H,0D6H,0D8H DB 0DAH,0DDH,0DFH,0E1H,0E3H,0E5H,0E7H,0E9H DB 0EAH,0ECH,0EEH,0EFH,0F1H,0F2H,0F4H,0F5H DB 0F6H,0F7H,0F8H,0F9H,0FAH,0FBH,0FCH,0FDH DB 0FDH,0FCH,0FBH,0FAH,0F9H,0F8H,0F7H,0F6H DB 0F5H,0F4H,0F2H,0F1H,0EFH,0EEH,0ECH,0EAH DB 0E9H,0E7H,0E5H,0E3H,0E1H,0DEH,0DDH,0DAH DB 0D8H,0D6H,0D4H,0D1H,0CFH,0CCH,0CAH,0C7H DB 0C5H,0C2H,0BFH,0BCH,0BAH,0B7H,0B4H,0B1H DB 0AEH,0ABH,0A8H,0A5H,0A2H,9FH,9CH,9H,83H,80H DB 80H,7CH,79H,76H,72H,6FH,6CH,69H DB 66H,63H,60H,5DH,5AH,57H,55H,51H DB 4EH,4CH,48H,45H,43H,40H,3DH,3AH DB 38H,35H,33H,30H,2EH,2BH,29H,27H DB 25H,22H,20H,1EH,1CH,1AH,18H,16H DB 15H,13H,11H,10H,0EH,0DH,0BH,0AH DB 09H,08H,07H,06H,05H,04H,03H,02H DB 02H,01H,00H,00H,00H,00H,00H,00H DB 00H,00H,00H,00H,00H,00H,01H,02H DB 02H,03H,04H,05H,06H,07H,08H,09H DB 0AH,0BH,0DH,0EH,10H,11H,13H,15H DB 16H,18H,1AH,1CH,1EH,20H,22H,25H DB 27H,29H,2BH,2EH,30H,33H,35H,38H DB 3AH,3DH,40H,43H,45H,48H,4CH,4EH DB 51H,55H,57H,5AH,5DH,60H,63H,66H DB 69H,6CH,6FH,72H,76H,79H,7CH,80H

基于51单片机和DAC0832的多路波形发生器(汇编语言编写)

以多种波形发生器为对象,选择单片机、独立按键及D/A转换器,设计相应的电路构成多种波形发生器。

功能要求:1.有4个功能键,分别用来选择输出:三角波、锯齿波、梯形拨、方波。

2.按下某个功能键,进入中断,在中断程序中查询、确定是哪个功能键,并输出对应的波形。

3.显示器2位,显示功能号01、02、03、04,代表输出三角波、锯齿波、梯形拨、方波。

设计任务:1、完成单片机最小系统电路设计。

2、完成按键电路设计。

3、完成D/A转换及接口电路的设计。

4、完成显示电路的设计。

电路图如下:(proteus 仿真通过)其一仿真图:源程序如下:ORG 0000HSTART: LJMP MAINORG 0003H ;外部中断入口LJMP INSER ;转到中断服务程序ORG 0030HMAIN: MOV DPTR,#7FFFH ;DAC0832地址SETB EX0 ;允许中断SETB IT0 ;负边沿触发方式SETB EA ;开中断HERE: JB 20H.0,ST ;锯齿波处理JB 20H.1,TRI ;三角波处理JB 20H.2,SQ ;方波处理JB 20H.3,TXB ;梯形波处理SJMP HERE ;等待中断INSER: JNB P1.0, LL1 ;中断服务程序,查询按键SJMP L1LL1: MOV 20H,#00HSETB 20H.0 ;设置锯齿波标志SJMP RTL1: JNB P1.2, LL2SJMP L2LL2: MOV 20H,#00HSETB 20H.1 ;设三角梯波标志SJMP RTL2: JNB P1.4, LL3SJMP L3LL3: MOV 20H,#00HSETB 20H.2 ;设置方波标志SJMP RTL3: JNB P1.6, LL4SJMP RTLL4: MOV 20H,#00HSETB 20H.3 ;设置梯形波标志RT: RETI ;中断返回ST: CLR P1.1 ;锯齿波CLR P1.3SETB P1.5CLR P1.7MOV A,#00HLOOPP: MOVX @DPTR,A ;启动D/A转换INC AJB 20H.0,LOOPP ;连续输出波形LJMP HERETRI: CLR P1.1 ;三角波CLR P1.3CLR P1.5SETB P1.7MOV A,#00HUP: MOVX @DPTR,A ;启动D/A转换INC A ;上升沿CJNE A,#0FFH,UPDOWN: MOVX @DPTR,A ;启动D/A转换DEC A ;下降沿CJNE A,#00H,DOWNJB 20H.1, UP ;连续输出波形LJMP HERESQ: CLR P1.1 ;方波SETB P1.3CLR P1.5CLR P1.7MOV A,#00HMOVX @DPTR,A ;DAC输出低电平ACALL DELAY ;延时1MOV A,#0FFHMOVX @DPTR,A ;DAC输出高电平ACALL DELAY ;延时2JB 20H.2, SQ ;连续输出波形LJMP HERETXB: CLR P1.1 ;梯形波CLR P1.3SETB P1.5SETB P1.7MOV A,#00HMOVX @DPTR,AACALL DELAYLOOP: MOVX @DPTR,AINC ACJNE A,#0FFH,LOOPACALL DELAYMOVX @DPTR,ALOOP1: DEC AMOVX @DPTR,ACJNE A,#00H,LOOP1MOVX @DPTR,AACALL DELAYJB 20H.3,LOOPDELAY: MOV R4,#0FH ;延时子程序LOOP11: MOV R5,#10HLOOP22: NOPNOPNOPDJNZ R5,LOOP22DJNZ R4,LOOP11RETEND。

基于51单片机和DAC0832的信号源(proteus电路图加程序)

班级学号自动测试实验报告学院机电工程学院专业测控技术与仪器导师姓名吕晓洲学生姓名学号摘要本文介绍了以8051和DAC0832为核心的信号源,可以通过按键选择正弦波、方波、三角波、锯齿波和梯形波,也可以通过按键选择798.6Hz、266.2Hz、88.7Hz、29.6Hz、9.85Hz、3.3Hz、1.1Hz共九档频率。

波形和频率通过软件改变,幅值通过硬件放大的放大器改变。

本信号源具有结构简单、功能丰富、使用方便另外价格实惠等特点。

【关键词】单片机,8051,DAC0832,信号源,频率,波形一.实验要求以及方案选择1.实验要求:设计一个信号源,能产生正弦波、三角波、锯齿波、方波等简单的波形,能够方便改变波形和频率。

2.方案选择:方案一:完全由硬件电路制作,使用传统的锁相频率合成方法。

通过芯片IC145152,压控振荡器搭接的锁相环电路输出稳定性极好的正弦波,再利用过零比较器转换成方波,积分电路转换成三角波。

此方案,电路复杂,干扰因素多,不易实现。

方案二:直接利用波形产生芯片,例如,利用MAX038芯片组成的电路输出波形。

MAX038是精密高频波形产生电路,能够产生准确的锯齿波、三角波、方波和正弦波四种周期性波形。

但此方案成本高,程序复杂度高。

方案三:通过单片机控制DAC,输出五种波形。

此方案输出的波形分辨率不够高,频率有限。

但此方案电路简单、成本低,波形和频率容易选择。

二.实验元件及原理介绍1.80C51单片机80C51单片机属于MCS-51系列单片机,由Intel公司开发,其结构是8048的延伸,改进了8048的缺点,增加了如乘(MUL)、除(DIV)、减(SUBB)、比较(CMP)、16位数据指针、布尔代数运算等指令,以及串行通信能力和5个中断源。

采用40引脚双列直插式DIP(Dual In Line Package),内有128个RAM单元及4K的ROM。

它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机、而且其价格便宜。

基于51单片机的 正弦信号发生器的设计

西安文理学院课程设计报告第一章系统设计单片机采用程序设计方法产生锯齿经过考虑,我们确定方案如下:利用AT89S52将数字信号转换成模拟信转换器DAC0832波、正弦波、矩形波三种波形,再通过D/A号,滤波放大,最终由示波器显示出来,通过键盘来控制三种波形的类型选择、频率变化,最终输出显示其各自的类型以及数值。

1.1 设计要求1)、利用单片机采用软件设计方法产生三种波型 2)、三种波形可通过键盘选择)、波形频率可调3)、需显示波形的种类及其平率41.2方案设计与论信号发生电路方案论证1.2.1,此方案电路简单、成本低。

:通过单片机控制D/A方案一,压控振荡器搭接的IC145152 :使用传统的锁相频率合成方法。

通过芯片方案二锁相环电路输出稳定性极好的正弦波,再利用过零比较器转换成方波,积分电路转换成三角波。

此方案,电路复杂,干扰因素多,不易实现。

是精密高频波形产生电MAX038MAX038芯片组成的电路输出波形。

用方案三:利路,能够产生准确的三角波、方波和正弦波三种周期性波形。

但此方案成本高,程序复杂度高。

以上三种方案综合考虑,选择方案一。

总体系统设计1.3该系统采用单片机作为数据处理及控制核心,由单片机完成人机界面、系统控制、信号的采集分析以及信号的处理和变换,采用按键输入,利用液晶显示电路输出数字显页1 第西安文理学院课程设计报告)为系统的总体框图1示的方案。

将设计任务分解为按键电路、液晶显示电路等块。

图(1)总体方块图图(1.4硬件实现及单元电路设计单片机最小系统的设计1.4.1的单片机,因此,这种芯片构成的最小系统简单﹑可ROM/EPROM89C51是片内有单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即靠。

用80C51单片机最小系统所示。

由于集成度的限制,最小应用系统只能用) 89C51可,如图(2 作一些小型的控制单元。

其应用特点:口线。

(1) 有可供用户使用的大量I/O(2) 内部存储器容量有限。

ADC0832模拟波形发生器实验报告

控制基础实验——模拟波形发生器成绩________课程名称:__ ___________学院(系):专业:班级:学号:学生姓名:分工任务:一、实验题目1、设计一个波形发生器,使能输出锯齿波、三角波、正弦波等。

2、在proteus仿真软件中连接单片机系统硬件图,在keil c51软件中编写并调试应用程序,使能在proteus中运行并达到预期效果。

二、实验目的1、学会DAC0832芯片的基本知识,并掌握使用方法。

2、掌握单片机最小系统的基本知识,能设计并完成一些简单应用。

3、掌握Proteus及Keil软件在51系列单片机中的使用及调试。

4、会根据实际功能,正确选择单片机功能接线,编制正确程序。

对实验结果能做出分析和解释,能写出符合规格的实验报告。

三、实验工具软件:Proteus单片机仿真软件、keil51,PC机。

四、实验内容掌握DAC0832芯片的使用方法,在Proteus仿真软件中连接好电路图,在Keil中编写程序,使得能够输出较规范的锯齿波、三角波、正弦波。

五、实验原理1、单片机工作原理:单片机是指一个集成在一块芯片上的完整计算机系统。

通过编程控制单片机的I/O端口、中断、定时器、寄存器等部件可以完成很多应用。

2、DAC0832的工作原理:DAC0832是8分辨率的D/A转换集成芯片,由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。

3、DAC0832引脚功能说明:DI0~DI7:数据输入线,TLL电平。

ILE:数据锁存允许控制信号输入线,高电平有效。

CS:片选信号输入线,低电平有效。

WR1:为输入寄存器的写选通信号。

XFER:数据传送控制信号输入线,低电平有效。

WR2:为DAC寄存器写选通输入线。

Iout1:电流输出线。

当输入全为1时Iout1最大。

Iout2: 电流输出线。

其值与Iout1之和为一常数。

Rfb:反馈信号输入线,芯片内部有反馈电阻.Vcc:电源输入线(+5v~+15v)Vref:基准电压输入线(-10v~+10v)AGND:模拟地,摸拟信号和基准电源的参考地.DGND:数字地,两种地线在基准电源处共地比较好.4、输出形式式:单极性(本实验需要)、双极性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
delay(); //延时
}
for(i=255;i>0;i--)//形成三角波,i减小至最小值0
{
DAC0832=i; // D/A转换减量输出
delay(); //延时
}
}
}
//正弦波
#include <reg51.h>
#include <absacc.h> //绝对地址访问头文件
#define DAC0832 XBYTE[0x7fff] //DAC0832的地址为0x7fff
0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,
0x0A,0x0B,0x0D,0x0E,0x10,0x11,0x13,0x15,0x16,0x18,0x1A,0x1C,0x1E,0x20,0x22,0x25,
0x27,0x29,0x2B,0x2E,0x30,0x33,0x35,0x38,0x3A,0x3D,0x40,0x43,0x45,0x48,0x4C,0x4E,
0x51,0x55,0x57,0x5A,0x5D,0x60,0x63,0x66,0x69,0x6C,0x6F,0x72,0x76,0x79,0x7C,0x80};
0x80,0x7C,0x79,0x76,0x72,0x6F,0x6C,0x69,0x66,0x63,0x60,0x5D,0x5A,0x57,0x55,0x51,
0x4E,0x4C,0x48,0x45,0x43,0x40,0x3D,0x3A,0x38,0x35,0x33,0x30,0x2E,0x2B,0x29,0x27,
delay(); //延时
}
}
}
//三角波
#include <reg51.h>
#include <absacc.h> //绝对地址访问头文件
#define DAC0832 XBYTE[0x7fff] //DAC0832的地址为0x7fff
void delay() //定时器定时1ms
{
TH1=0xfc; TL1=0x18; //定时器初值设定
void delay() //定时器定时1ms
{
TH1=0xfc; TL1=0x18; //定时器初值设定
TR1=1;//启动定时器
while(!TF1);//查询是否溢出
TF1=0;//将溢出标志位清零
}
void main()
{unsigned char i;
TMOD=0x10;//设置定时器工作方式
0x25,0x22,0x20,0x1E,0x1C,0x1A,0x18,0x16,0x15,0x13,0x11,0x10,0x0E,0x0D,0x0B,0x0A,
0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,
0xDA,0xDD,0xDF,0xE1,0xE3,0xE5,0xE7,0xE9,0xEA,0xEC,0xEE,0xEF,0xF1,0xF2,0xF4,0xF5,
0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFD,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
TR1=1;//启动定时器
while(!TF1);//查询是否溢出
TF1=0;//将溢出标志位清零
}
void main()
{unsigned char i;
TMOD=0x10;//设置定时器工作方式
while(1)
{for(i=0;i<=255;i++)//形成锯齿波,最大值为255
{
DAC0832=i; // D/A转换输出
unsigned char code sin[]={ //正弦波一周期内采样256次,把幅值按比例放大
0x80,0x83,0x86,0x89,0x8D,0x90,0x93,0x96,0x99,0x9C,0x9F,0xA2,0xA5,0xA8,0xAB,0xAE,
0xB1,0xB4,0xB7,0xBA,0xBC,0xBF,0xC2,0xC5,0xC7,0xCA,0xCC,0xCF,0xD1,0xD4,0xD6,0xD8,
TR1=1;//启动定时器
while(!TF1);//查询是否溢出
TF1=0;//将溢出标志位清零
}
void main()
{unsigned char i;
TMOD=0x10;//设置定时器工作方式
while(1)
{for(i=0;i<255;i++)//形成三角波,i增加到最大值为255
{
DAC0832=i; // D/A转换增量输出
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFD,0xFD,0xFC,0xFB,0xFA,0xF9,0xF8,0xF7,0xF6,
0xF5,0xF4,0xF2,0xF1,0xEF,0xEE,0xEC,0xEA,0xE9,0xE7,0xE5,0xE3,0xE1,0xDF,0xDD,0xDA,
//锯齿波
#include <reg51.h>
#include <absacc.h> //绝对地址访问头文件
#define DAC0832 XBYTE[0x7fff] //DAC0832的地址为0x7fff
void delay18; //定时器初值设定
TH0=6; TL0=6;//设置初值
TR0=1;//启动T0
while(1)
{
if(TF0==1)//查询是否溢出
{TF0=0;//溢出标志清零
P2_0=!P2_0;}//P2.0取反,输出方波
}
}
0xD8,0xD6,0xD4,0xD1,0xCF,0xCC,0xCA,0xC7,0xC5,0xC2,0xBF,0xBC,0xBA,0xB7,0xB4,0xB1,
0xAE,0xAB,0xA8,0xA5,0xA2,0x9F,0x9C,0x99,0x96,0x93,0x90,0x8D,0x89,0x86,0x83,0x80,
while(1)
{for(i=0;i<255;i++)//形成正弦波,i增加到最大值为255
{
DAC0832=sin[i]; // D/A转换增量输出
delay(); //延时
}
}
}
//方波
#include <reg51.h>
sbit P2_0=P2^0; //定义位变量
void main()
{
TMOD=0x02;//设置T0,工作方式2
相关文档
最新文档