不等式的性质及应用

不等式的性质及应用
不等式的性质及应用

一. 教学内容:

3.1 不等关系与不等式

3.2 均值不等式

二. 教学目的

1. 理解不等号的意义和不等式概念,会用不等式和不等式组表示各种不等关系。理解实数大小与实数运算的关系,会用比差法比较两个实数的大小关系。

2. 能根据实数的基本性质得出不等式的基本性质,并会证明。会运用不等式的基本性质进行推理和变形。

3. 探究成立的条件和证明方法,等号成立的条件和几何解释,会用这个基本不等式解决简单问题。

4. 通过实例学会运用基本不等式求最值的方法。理解用不等式

求最值的条件,并能求实际问题的最大值或最小值。

三. 教学重点、难点

重点:(1)用比差法比较两个实数的大小关系;

(2)不等式的性质及其应用;

(3)理解不等式和的意义,应用这些不等式解决简单问题;

(4)运用基本不等式求最值。

难点:不等式的性质及其应用;运用基本不等式求最值。

四. 知识分析

(一)不等关系与不等式

1. 用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些不等号的式子叫做不等式。

2. 数轴上的任意两点中,右边点对应的实数比左边点对应的实数大。

3. 对于任意两个实数a和b,在三种关系中有且只有一种关系成立。

4. 这组关系告诉我们比较两个实数的大小,可以通过判断它们的差的符号来确定。

5. 若a、b∈R+,则这组关系告诉我们比较两个正实数的大小,可以通过

判断它们的商与“1”的大小关系来确定。

(二)不等式的性质

不等式的性质是证明不等式和解不等式的基础,证明这些性质必须是严格的,不能盲目地乱用。保证每一步推理都有理论根据,否则可能导致推理错误。

1. 等式两边同乘以同一个数仍为等式,但不等式两边同乘以同一个数a(或代数式),结果有三种:

(1)当a>0时,得同向不等式。

(2)当a=0时,得等式。

(3)当a<0时,得异向不等式。

2. 不等式性质,有同向不等式相加,得同向不等式,并无相减。若

或.这个结论常用,不妨记为:“大数减小数大于小数减大数。”

3. 不等式性质,有均为正数的同向不等式相乘,得同向不等式,并无相除。若

,这个结论也常用。不妨记为:“大正数除以小正数大于小正数除以大正数。”

4. 不等式性质有.不能忽略a、b均为正数这个条件,即由是不一定成立的。

5. 由成立。但不一定成立。反过来也不一定成立。事实上。

(三)均值不等式

1. 对于任意实数a,b都有,当且仅当a =b时等号成立。

2. 对于任意正实数a,b都有,当且仅当a =b时等号成立。

3. 对于任意正实数a, b都有,当且仅当a =b时等号成立。

4. 不等式的几何解释:如图,AB是⊙O的直径,C是AB上任意一点,DE

是过C点垂直于AB的弦。若AC=a, BC =b则AB=a+b,⊙O的半径,Rt△ACD∽Rt△BCD,,。

考虑到CD≤r,当且仅当C点与O点重合时,CD=r=,即

5. 设x,y是正实数

(1)若x+y =s(和s为定值),则当x =y时,积xy有最大值为;

(2)若xy =p(积p为定值),则当x =y时,和x +y有最小值为2;6. 利用基本不等式求积的最大值或和的最小值时,需满足:

(1)x,y必须是正数;

(2)求积的最大值时,和必须为定值;求和的最小值时,积必须为定值;

(3)重要不等式中的等号必须成立,且等号成立的条件是x =y。

即:①利用基本不等式求最值必须满足一正、二定、三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值。

②两次使用重要不等式求最值时,必须使两次等号成立的条件同时成立,否则不可。

3. 使用重要不等式求最值时,若等号不成立,应改用单调性法,如,

可令:t =,此时在上是增函数;故

【典型例题】

例1. 已知,试比较的大小

解析:

∴当时,

当a≠b时,

点评:比较法是证明不等式中最基本最重要的方法,其步骤为:作差(或n次方作差)——变形——确定符号——得出结论。其中,作差是依据,变形是手段,确定差的符号是目的,至于证题的思路体现了数学中的转化思想。这里,关键的步骤是对差式的变形,常用的变形方法有:配方法、因式分解法及通分等,从而将差变形为常数,或变形为常数与几个平方和的形式,或变形为几个因式积的形式。总之,变形到能确定出差的符号即可。对于不等式两边都是正数的情形,尤其是指数型的问题,也常常用作商法比较,步骤为:作商——变形——与1比较——得出结论。

例2. 已知,试将下列各数按从大到小的顺序排列。

解析:∵

∴由二次函数性质得

综上可得

点评:在已知多个条件判断实数大小时要注意各个条件相互结合起来,一步一步探求问

题的结论,如本题可根据a的范围,取特殊值时,这时

,猜想C>A>B>D,然后用比较法证明猜想的正确性,这种从特殊到一般的推理形式是很重要的。

例3. 对于实数a、b、c,有下列命题

①若,则;②若,则;

③若,则;④若,则;

⑤若。

其中真命题的个数是()

A. 2

B. 3

C. 4

D. 5

解析:①c的正、负或是否为零未知,因而判断ac与bc大小缺乏依据,故该命题是假命题。

②由,是真命题。

③,

∴。故该命题为真命题。

两边同乘以,得。

又。

故该命题为真命题。

⑤由已知条件知:

又。故该命题为真命题。

综上可知,命题②、③、④、⑤都是真命题。

故选C。

点评:通过本题的练习,可以使我们熟悉不等式的基本性质,更好地掌握各性质的条件和结论。在各性质中,乘法性质的应用最易出错,即在不等式的两边同乘(除)以一个数时,必须能确定该数是正数、负数或零,否则结论不确定。另外,若要判断命题是真命题,应说明理由或进行证明,推理过程应紧扣有关定理、性质等,若判断命题是假命题只需举一反例。

例4. 证明下列不等式

①已知求证:。

②若,求证:。

解析:①∵,两边同乘以正数,

得。

②∵

故。

点评:对于不等式的性质,关键是要正确理解和运用,要弄清每一性质的条件和结论,性质4 及推论均有较强的条件,在运用时要特别注意。

例5. 已知,求证:

解析:∵

又,∴

点评:应用不等式的性质进行推导时,应注意紧扣基本不等式成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则。

例6. 已知,探求不等式的证明方法。

解析:证法一∵,对任意成立。

∴令也成立。

即。

证法二∵

对成立。

证法三∵

∴,即

证法四要证成立,根据不等式的性质,

只要证:

只要证:

只要证:

∵对于任意都成立。

∴对于任意都成立。

即时有

证法五如图所示Rt△ABC,C为直角,O为斜边AB中点,作CD⊥AB于D。

则Rt△ABC∽Rt△BCD,从而

令0

连接OC,则

点评:本例从五个角度对基本不等式给予证明,证法一是换元法,即借用

,通过换元得证;证法二是综合法,即从,这一事实出发,通过恒等变形得证;证法三是比较法,即通过作差变形、变号得证;证法四是分析法,即通过逐步寻求使不等式成立的充分条件得证,证法五是几何法,即利用直角三角形的平面几何性质获得证明,除此之外,还可探求其三角证法和解析法。

例7. 设。

比较A、G、H、Q的大小。

解析:

点评:本题证明方法很多,可以探求其它证明方法,注意充分运用基本不等式

及其变形。

例8. 甲、乙二人沿同一条道路同时从A地向B 地出发,甲用速度v l与v2(v l≠v2)各走一半路程,乙用v l与v2各走全程所需时间的一半,试判断甲、乙两人谁先到达B地?证明你的结论。

解析:设全程为2s,则甲走完全程所用时间

乙走完全程所用时间为t2,

∴,即

所以,乙先到达B地。

点评:从实际问题中抽象出数学表达式,再用基本不等式比较大小,也可以作差比较大小,即由

例9. 已知,求函数的最大值。

解析:解法一∵

当且仅当,即时,等号成立。

∴时,函数取最大值。

解法二∵

当且仅当,即时,等号成立。

∴当时,y取最大值为。

点评:如果一个函数的解析式可看成关于自变量的两个式子的积的形式,并且通过变形能够满足“一正、二定、三相等”条件则可用基本不等式求其最大值,解题的关键是构造和为定值这个条件,本题可用二次函数求最值,即

,当。

例10. 已知,且,求的最小值。

解析:解法一∵

∴。

当且仅当,即时,取等号。

∴当x=4,y=12时,取最小值16。

解法二由得

当且仅当,即y=12时,取等号,此时,x=4,

∴当x=4,y=12时,x+y取最小值16。

解法三由,得

当且仅当x-1=y-9时取等号。又,

∴当时,取最小值16。

点评:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察学会变形。另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另一个变量范围的影响。

例11.如图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成。

(l)现有可围36m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?

解析:(1)设每间虎笼长x m,宽为y m,则由条件知:4x+6y=36,即2x+3y=18。设每间虎笼面积为S,则S=xy。

解法一由于,

∴,得

即,当且仅当时,等号成立。

由,解得。

故每间虎笼长为4.5m,宽为3m时,可使面积最大。

解法二由,得

当且仅当,即时,等号成立,此时。

故每间虎笼长4.5m,宽3m时,可使面积最大。

(2)由条件知

设钢筋网总长为l,则

解法一∵

当且仅当时,等号成立。

由,解得

故每间虎笼长6m,宽4m时,可使钢筋网总长最小。

解法二由

当且仅当=y,即y=4时,等号成立,此时x=6。

故每间虎笼长6m,宽4m时,可使钢筋网总长最小。

点评:在使用极值定理,求函数的最大值或最小值时要注意:①x,y都是正数;②积xy (或和x+y)为定值;③x与y必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论。

【模拟试题】

1. ()

A. ab>0

B. ab<0

C. -b>0>-a

D. -a>0>-b

2. 若a>0且a≠1,p=,则p、q的大小关系是()

A. p<q

B. p≤q

C. p>q

D. p≥q

3. 已知1

A. lg2x > lgx2 > lglgx

B. lglgx > lgx2 > lg2x

C. lgx2 > lg2x > lglgx

D. lg2x > lglgx > lgx2

4. 设b>a>0,且a+b=1,则此四个数,2ab,a2+b2,b中最大的是()

A. b

B. a2+b2

C. 2ab

D.

5. ab没有最大值的条件是()

A. a2+b2 为定值

B. a,b R+,且a+b为定值

C. a,b,且a+b为定值

D. ab<0,且a+b为定值

*6. 当x时,可得到不等式,由此可推广为

,其中P等于()

A. (n-1) n

B. n n

C. n n-1

D. x n

7. 在空格上填上适当条件,使下列命题成立

1)若a>b且____________,则a2>b2;

2)若a2>b2且___________,则a

3)若a>b>0且__________,则

8. 当x>1时,函数y=9x+的最小值为________;

9. 若lgx+lgy=2,则的最小值为______;

10. 函数的最大值为_______。

11. 已知a>2,求证:log a(a-1)log a(a+1)<1

12. 已知a,b,c均为正数,求证:。

13. 设为整数,求证:。

14. 求函数的最小值。

【参考答案】

1~6:CCCADB

7. (1)a+b>0 (2)a+b<0 (3)y>x>0或x>0>y

8. 33 9. 10.

11.

12. 均为正数,,

13. 提示1:应用

左边

;

提示2:应用

同理三式相加即可

14.

当即x=0时等号成立,

不等式性质的两个重要应用

不等式性质的两个重要应用 一.利用不等式性质证明不等式 利用不等式的性质及其推论可以证明一些不等式。解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用. 例1:若0>>b a ,0<-. 分析:本题考查学生对不等式性质的掌握及灵活应用。注意性质的使用条件. 解:∵0<< d c ,0>->-d c ,又0>>b a ∴0>->-d b c a ,故 d b c a -<-11。 而0< e ,∴d b e c a e ->-. 二.利用不等式性质求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径. 三.利用不等式性质,探求不等式成立的条件 不等式的性质是不等式的基础,包括五个性质定理及三个推论,不等式的性质是解不等式和证明不等式的主要依据,只有正确地理解每条性质的条件和结论,注意条件的变化才能正确地加以运用,利用不等式的性质,寻求命题成立的条件是不等式性质的灵活运用. 例2:已知三个不等式:①0>ab ;②b d a c >;③ad bc >。以其中两个作条件,余下一个作结论,则可组成_____________个正确命题. 解:对命题②作等价变形:0>-?>ab ad bc b d a c 于是,由0>ab ,ad bc >,可得②成立,即①③?②; 若0>ab ,0>-ab ad bc ,则ad bc >,故①②?③; 若ad bc >, 0>-ab ad bc ,则0>ab ,故②③?①。 ∴可组成3个正确命题.

不等式及其性质(教师版)

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2)五种不等号的读法及其意义: 符号读法意义 “≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小 “<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大 “≤”读作“小于或等 于” 即“不大于”,表示左边的量不大于右边的量 “≥”读作“大于或等 于” 即“不小于”,表示左边的量不小于右边的量 (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x 表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1. 判断下列各式哪些是等式,哪些是不等式. (1)4<5; (2)x2+1>0; (3)x<2x-5; (4)x=2x+3; (5)3a2+a; (6)a2+2a≥4a-2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是() A.18<t<27 B.18≤t<27 C.18<t≤27D.18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a;②-2>-5;③x≥-1;④

2.1.2等式性质与不等式的性质【试题版】

2.1.2等式性质与不等式的性质 1. 已知a>b,c>d,且c,d均不为0,那么下列不等式一定成立的是() A.ad>bc B.ac>bd C.a-c>b-d D.a+c>b+d 2. 给出下列命题: ①a>b?a2>b2;②a2>b2?a>b;③a>b?b a<1;④a>b? 1 a< 1 b. 其中正确的命题个数是() A.0B.1 C.2 D.3 3. 若-1<α<β<1,则下列各式中恒成立的是() A.-2<α-β<0B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<1 4. 若a>b>0,c b d B. a c< b d C.a d> b c D. a d< b c 5.若a,b,c∈R,a>b,则下列不等式恒成立的是() A.1 a< 1 b B.a 2>b2 C. a c2+1> b c2+1D.a|c|>b|c| 6.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a

+d >b +c ,a +c b >a >c B .b >c >d >a C .d >b >c >a D .c >a >d >b 7.已知a >0,b >0,c >0,若 c a +b ><,则mb _____ma , b m a m --_____b a (用>,<填空). 10.已知若a >b > c ,且a +b +c =0,则b 2-4ac 0.(填“>”“<”或“=”) 11.已知12,36a b ≤≤≤≤,则32a b -的取值范围为_____. 12.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是 . 13.对于实数a ,b ,c ,有下列说法: ①若a >b ,则ac bc 2,则a >b ;③若a ab >b 2; 其中正确的是________(填序号). 14.设a ,b 为正实数,有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;

{高中试卷}高三数学一轮复习:不等式性质及解法练习题3[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点:

监考老师: 日 期: 第7章 第1节 一、选择题 1.(文)(20XX·深圳市深圳中学)不等式(x -1)x +2≥0的解集是( ) A .{x|x>1} B .{x|x≥1} C .{x|x≥1且x =-2} D .{x|x≥1或x =-2} [答案] D [解析] 不等式化为????? x -1≥0x +2≥0或x +2=0, ∴x≥1或x =-2,故选D. (理)(20XX·天津文,7)设集合A ={x|x -a|<1,x ∈R},B ={x|1<x <5,x ∈R},若A∩B =?,则实数a 的取值范围是( ) A .{a|0≤a≤6} B .{a|≤2,或a≥4} C .{a|a≤0,或a≥6} D .{a|2≤a≤4} [答案] C [解析] |x -a|<1?a -1

函数,函数y =f ′(x)的图象如图所示.若实数a 满足f(2a +1)<1,则a 的取值范围是( ) x -2 0 4 f(x) 1 -1 1 A.????0,32 B.??? ?-12,32 C.????12,72D.??? ?-32,32 [答案] D [解析] 由f ′(x)的图象知,f(x)在[-2,0]上单调递减,在[0,+∞)上单调递增,又由表知若f(2a + 1)<1,则-2<2a +1<4,∴-321,则下列不等式成立的是( )

不等式的基本性质知识点

不等式的基本性质知识点 不等式的基本性质知识点 1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。 ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1<x2, f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[( x1+)2 +x22] 再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a>bb<a (对称性)

(2) a>b, b>ca>c (传递性) (3) a>ba+c>b+c (c∈R) (4) c>0时,a>bac>bc c<0时,a>bac<bc。 运算性质有: (1) a>b, c>da+c>b+d。 (2) a>b>0, c>d>0ac>bd。 (3) a>b>0an>bn(n∈N, n>1)。 (4) a>b>0>(n∈N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

七年级下册不等式及其基本性质讲义

环球雅思教育学科教师讲义年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课□复习课□习题课 授课日期及时段 教学内容 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。 注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。 提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。 参考答案:

(1)a >0 (2)y-2≥0 (3)a+6>7 (4) ≥3 (5)8+3x ≤1 注意:列不等式时应注意两点: ①"是正数"表示为>0","是负数"表示为<0";"非正数"表示为"≥0"。 ②"不大于"用"≤"表示,"不小于"用"≥"表示。 2.不等式的基本性质 (1)不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 用式子表示:如果a>b ,那a+c>b+c (或a –c>b –c ) (2)不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 用式子表示:如果a>b ,且c>0,那么ac>bc , c b c a >。 (3)不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 用式子表示:如果a>b ,且c<0,那么acb ,那么bb ,b>c 那么a>c 。 注意:不等式的基本性质是对不等式变形的重要依据。不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。 说明:常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ; ⑤若ab >0或0a b >,则a 、b 同号; ⑥若ab <0或0a b <,则a 、b 异号。 任意两个实数a 、b 的大小关系: ①a-b>O ?a>b ; ②a-b=O ?a=b ; ③a-b

不等式的意义、性质及其应用

不等式的意义、性质及其应用 教学重点:不等式的性质 教学难点:不等式的实际应用 一、问题引入 某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式? 依题意得4x>6(x-10) 二、概念回顾 1.不等式:用“>”或“<”号表示大小关系的式子,叫不等式. 解析:(1)用≠表示不等关系的式子也叫不等式 (2)不等式中含有未知数,也可以不含有未知数; (3)注意不大于和不小于的说法 例1 用不等式表示 (1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3. 三.不等式的解 不等式的解:能使不等式成立的未知数的值,叫不等式的解. 解析:不等式的解可能不止一个. 例2 下列各数中,哪些是不等是x+1<3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5 练习: 1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个. 2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数? 四.不等式的解集 1.不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集. 例3 下列说法中正确的是( )

A.x=3是不是不等式2x>1的解 B.x=3是不是不等式2x>1的唯一解; C.x=3不是不等式2x>1的解; D.x=3是不等式2x>1的解集 2.不等式解集的表示方法 例4 在数轴上表示下列不等式的解集 (1)x>-1;(2)x ≥-1;(3)x<-1;(4)x ≤-1 分析:按画数轴,定界点,走方向的步骤答 五、不等式的性质 不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变. 例1 利用不等式的性质,填”>”,:<” (1)若a>b,则2a+1 2b+1; (2)若-1.25y<10,则y -8; (3)若a0,则ac+c bc+c; (4)若a>0,b<0,c<0,则(a-b)c 0. 例2 利用不等式性质解下列不等式 (1)x-7>26; (2)3x<2x+1; (3)3 2x>50; (4)- 4x>3. 分析:利用不等式性质变形为最基本形,利用数轴表示解集 练习: 1.根据不等式的性质,把下列不等式化为x>a 或xx x (2)22 121--≤x x (3)-3x>2 (4)-3x+2<2x+3 3. 已知不等式3x-a ≤0的解集是x ≤2,求a 的取值范围. 六、不等式的实际应用 问题一:某学校计划购买若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.学校经核算选择甲商场比较合算,你知道学校至少要买多少台电脑? 解:设购买x 台电脑,到甲商场比较合算,则 6000+6000(1-25%)(x -1)<6000(1-20%)x 去括号,得:6000+4500x -45004<4800x 移项且合并,得:-300x <1500 不等式两边同除以-300,得:x>5 ∵x 为整数 ∴x ≥6 答:至少要购买6台电脑时,选择甲商场更合算. 问题二 :甲、乙两个商店以同样的价格出售同样的商品,同时又各自推出不同的优惠方案:在甲商店累计购买100元商品后,再买的商品按原价的90%收费;在乙商累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更大的优惠?

不等式概念及性质知识点详解与练习

、不等式的概念及列不等式 概念 不等号 表示出不等关系 1不等式的概念及其分类 (1 )定义:用“〉”、“<”、“工”、及“w”等不等号把代数式连接起来,表示不等 关系的式子。 a-b>Oa>b, a-b=Oa=b, a-b3, x 2 < 0 ② 绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③ 条件不等式:在一定条件下才能成立的不等式叫条件不等式。 (3 )不等号的类型: ① “工”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ② “〉”读作“大于”,它表示左边的数比右边的数大; ③ “<”读作“小于”,它表示左边的数比右边的数小; ④ 读作“大于或等于”,它表示左边的数不小于右边的数; ⑤ “w”读作“小于或等于”,它表示左边的数不大于右边的数; 注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。 (4 )常见不等式基本语言的含义: ① 若x > 0,则x 是正数;②若x < 0,则x 是负数;③若x > 0,则x 是非负数;④若x w 0, 则x 是非正数;⑤若 x-y >0,则x 大于y ;⑥若x-y < 0,则x 小于y ;⑦若x-y >0,贝U x x 不小于y ;⑧若x-y w 0,则x 不大于y ;⑨若xy >0 (或一〉0),则x , y 同号;⑩若xy < 0 y (或-< 0),则x , y 异号; y (5 )等式与不等式的关系: 等式与不等式都用来表示现实中的数量关系, 等式表示相等关系,不等式表示不等关系, 但 不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。 2、列不等式: (1 )根据已知条件列不等式,实际上就是用不等式表示代数式间的不等关系,重点是抓住 关键词,弄清不等关系。 (2)步骤:①正确列出代数式;②正确使用不等号 不等式 列不等式 步骤 设未知数 列出代数式

2.1.1 不等式的基本性质(含答案)

【课堂例题】 例1.利用性质1和性质2证明: (1)如果a b c +>,那么a c b >-; (2)如果,a b c d >>,那么a c b d +>+ 例2.利用性质3证明: 如果0,0a b c d >>>>,那么ac bd >. (选用)例3.利用不等式的性质证明: 如果0a b >>,那么110a b < <.

【知识再现】 1.不等式性质的基础: a b >? ;a b =? ;a b >,则 ; 性质2.(加法性质) 若a b >,则 ; 性质3.(乘法性质) 若,0a b c >>,则 ; 若,0a b c ><,则 . 3.几条比较有用的推论: 性质4.(同向可加性) 若,a b c d >>,则 ; 性质5.(正数同向可乘性) 若0,0a b c d >>>>,则 ; 性质6.(正数的倒数性质) 若0a b >>,则 ; 性质7.(正数的乘方性质) 若0a b >>,则 *()n N ∈; 性质8.(正数的开方性质) 若0a b >>,则 *(,1)n N n ∈>. 【基础训练】 1.请用不等号表示下列关系: (1)a 是非负实数, ; (2)实数a 小于3,但不小于2-, ; (3)a 和b 的差的绝对值大于2,且小于等于9, . 2.判断下列语句是否正确,并在相应的括号内填入“√”或“×”. (1)若a b >,则a b c c >;( ) (2)若ac bc <,则a b <;( ) (3)若a b <,则1 1 a b <; ( ) (4)若22ac bc >,则a b >;( ) (5)若a b >,则n n a b >;( ) (6)若0,0a b c d >>>>,则a b c d >;( ) 3.用“>”或“<”号填空: (1)若a b >,则a - b -; (2)若0,0a b >>,则b a 1b a +; (3)若,0a b c >>,则d ac + d bc +; (4)若,0a b c ><,则()c d a - ()c d b -; (5)若,,0a b d e c >><,则d ac - e b c -. 4.(1)如果a b >,那么下列不等式中必定成立的是( ) (A) 1 1 a b <; (B) 22a b >; (C)22ac bc >; (D)2211 a b c c >++. (2)如果0a b >>,那么下列不等式不一定成立的是( ) (A) 1 1 a b <; (B) 2ab b >; (C)22ac bc >; (D) 22a b >. 5.已知,x y R ∈,使1 1 ,x y x y >>同时成立的一组,x y 的值可以是 .

《不等式及其基本性质》教案1

《不等式及其基本性质》教案 学习目标: 1.通过实际问题中的数量关系的分析,体会到现实世界中有各种各样的数量关系的存在,不等关系是其中的一种. 2.了解不等式及其概念;会用不等式表示数量之间的不等关系. 3.掌握不等式的基本性质,并能利用不等式的基本性质对不等式进行变形. 学习重点: 不等式的概念和不等式的性质. 学习难点: 不等式的性质3以及正确分析实际问题中的不等关系并用不等式表示. 教学过程: (一)探究性质 1.明确定义 2.不等式的意义:表示生活中量与量之间不等关系的式子. 例题:1.“神七”速度v超过11200米/秒,才能脱离地球引力,飞入太空,怎样表示v和11200之间的关系? 3.想一想: (1)如果a<b,用不等号连接下列各式的两边. ①a + 2 b + 2 ②a– 5 b– 5 (2)如果2x-8≥3 ,那么2x11. 4.小结: 不等式性质1: 即 (二)探究性质 1.用不等号填空: ①已知5<8,则5×3 8×3;5×(-3)8×(-3) ②已知-5>-8,则-5×3 -8×3;-5×(-3)-8×(-3) 归纳:不等式两边同时乘以一个正数,不等号方向;不等式两边同时乘以一个负数,不等号方向. 2.用不等号填空: ①已知6<8,那么6÷2 8÷2;6÷(-2)8÷(-2) ②已知-6>-8,那么-6÷2 -8÷2;6÷(-2)-8÷(-2)

归纳:不等式两边同时除以一个正数,不等号方向 ;不等式两边同时除以一个负数,不等号方向 . (三)例题分析 例1.(1)若x +1>3,则x _____________.根据___________ __. (2)2x >-6,则x _____________.根据_______ _____. (3)-3y ≤5,则y .根据 . 例2.如果m > n .判断下列不等式是否正确. (1)m +7 < n +7 ( ) (2)m -2 < n -2 ( ) (3)3m < 3n ( ) (4)9 9n m >( ) 例3.利用不等式的基本性质,将下列各不等式化为“x a >”或“x a <”的形式. (1)546x x <- (2)5621x x -+<+ (四)课堂练习 1.用代数式表示:比x 的5倍大1的数不小于x 的 21与4的差_____________. 2.若a >b .下列各不等式中正确的是( ) A .a -1b ,则a +1>b +1 ②若a >b ,则a -1>b -1 ③若a >b ,则-2a <-2b ④若a >b ,则2a <2b

专题2.1 不等式的性质及常见不等式解法(精练)(原卷版)

专题2.1 不等式的性质及常见不等式解法 一、选择题 1.(2019·北京高考真题(文))已知集合A ={x |–11},则A ∪B =( ) A .(–1,1) B .(1,2) C .(–1,+∞) D .(1,+∞) 2.(2019·全国高考真题(理))已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A .}{43x x -<< B .}{42x x -<<- C .}{22x x -<< D .}{23x x << 3.(2020·山西省高三其他(理))已知集合2 {|20}A x x x =+->,{1,0,1,2}B =-,则( ) A .{2}A B = B .A B R = C .(){1,2}R B C A =- D .(){|12}R B C A x x =-<< 4.(2020·山东省高三二模)已知集合11A x x ?? = B .3a > C .1a < D .13a << 6.(2020·福建省高三其他(文))已知全集U =R ,集合{ }21M x x =-≤,则U C M =( ) A .()1,3 B .[]1,3 C .()(),13,-∞?+∞ D .(,1][3,)-∞+∞ 7.(2020·上海高三二模)不等式1 02 x x -≤-的解集为( ) A .[1,2] B .[1,2) C .(,1][2,)-∞?+∞ D .(,1)(2,)-∞?+∞ 8.(2020·浙江省高一期末)已知a ,b ∈R ,若0a b +<,则( ) A .22<0a b - B .>0a b - C .0a b +< D .>0+a b 9.(2020·黑龙江省鹤岗一中高一期末(文))如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞ C .(),1-∞ D .(] ,1-∞ 10.(2020·上海高三二模)已知x ∈R ,则“1x >”是“|2|1x -<”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件

高中数学第三章不等式3.1不等关系不等式的性质及其应用素材北师大版必修

不等式的性质及其应用 不等式的性质是证明不等式和解不等式的理论依据,不等式性质的应用也是历年高考的重点。因此掌握不等式的性质及其应用是非常必要的,本文就不等式的性质及其应用加以探讨。 一、不等式最基本的性质 对称性:a b b a >?< 传递性:,a b b c a c >>?> 加法性: ,a b c R a c b c >∈?+>+ 乘法性: 00 a b ac bd c d >≥??>? >≥? 除法性: 110a b ab a b >??? 乘方性: 0()n n a b a b n N *>≥?>∈ 开方性: 0)a b n N *>≥>∈ 倒数法则:011ab a b a b >??? 二、不等式性质的应用 (1)比较实数的大小 因为“0a b a b ->?>;0a b a b -=?=;0a b a b -≠且的大小 分析:对于1(1)log a a +和(1)log a a +这两个对数,由于式中含有参数a ,故我们不能直接确定它 们之间的大小关系,于是可用上面的不等式的最基本的性质,让它们作差从而比较大小。 解:∵1 111(1)(1)1log log log log 10a a a a a a a a a ++++-===-<,∴1(1)(1)log log a a a a ++< 点评:通过让两个式子作差,并经过恒等变形,从而确定了两式差的符号,即确定了两式的大小。 例2、(2006年上海卷)如果0,0a b <>,那么,下列不等式中正确的是( ) A. 11a b < 22a b < D.||||a b > 解:对于A :如果0,0a b <>,那么110,0a b <>,由不等式的传递性知 11a b <,故选A 点评:在运用不等式性质时,不要忽略性质成立的条件 (2)求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,求解步骤:先建立待求范围的整体与已知范围的整体的等量关系,然后通过“一次性不等关系的运算,求得待求的范围”。 例2、若二次函数)(x f 图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围。

不等式及其基本性质

不等式及其基本性质 设u=f(x1,x2,…,x n),v=g(x1,x2,…,x n)是两个取值为实数的函数,若u-v是正数,就说u大于v,记成u>v,也说v小于u,记成v<u. 用记号“>”、“<”、“≥”或“≤”连结两个这样的函数所组成的式子,叫做不等式. 设上面两个函数的定义域分别为D f,D g,则称D f∩D g为下列不等式的允许值集: f(x1,x2,…,x n)>g(x1,x2,…,x n) (或f(x1,x2,…,x n)<g(x1,x2,…,x n), 或f(x1,x2,…,x n)≥g(x1,x2,…,x n), 或f(x1,x2,…,x n)≤g(x1,x2,…,x n). 不等式两边的函数,如果都是代数函数,则称这个不等式为代数不等式;如果至少有一个是超越函数,则称这个不等式为超越不等式.前者可以划分为有理不等式(整式不等式和分式不等式)和无理不等式;后者包括指数不等式、对数不等式、三角不等式和反三角不等式等. 不等式具有如下的基本性质(本文所用字母除特别声明以外,均表示实数). 定理1 若a>b,b>c,则a>c. 定理2 在a>b,a=b,a<b中有且只有一个成立. 定理3 若a>b,则a+c>b+c. 推论1 可以把不等式中任何一项变为相反的符号后,从一边移到另一边. 推论2 若a>b,c>d,则a+c>b+d. 一般地,若a i>b i,i=1,2,…,n,则 a1+a2+…+a n>b1+b2+…+b n. 推论3 若a≥b,c<d,则a-c>b-d.

定理4若a>b,则当c>0时,ac>bc;当c<0时,ac<bc;当c=0时,ac=bc. 推论1 若a>b>0,c>d>0,则ac>bd. 一般地,若a i>b i>0,i=1,2,…,n,则 a1a2…a n>b1b2…b n. 推论2 若a≥b>0,0<c<d,则a/c>b/d. 推论3 若a>b>0,整数n>1,则a n>b n. 含有绝对值符号的不等式还具有如下的常用性质. 定理5 设a>0,则|x|<a的充要条件是-a<x<a;|x|>a的充要条件是x >a或x<-a. 定理6 |a+b|≤|a|+|b|, 其中等号当且仅当ab≥0时成立. 推论1|a+b|≥||a|-|b||. 推论2 |a1±a2±…±a n|≤|a1|+|a2|+…+|a n|.

一元一次不等式的解法(教师版).doc

初二下册第二章一元一次不等式及不等式组 一元一次不等式的解法(基础)知识讲解 【学习目标】 1.理解并掌握一元一次不等式的概念及性质; 2.能够熟练解一元一次不等式; 3.掌握不等式解集的概念并会在数轴上表示解集. 【要点梳理】 要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如, 2 x50 是一个一元一次不等式. 3 要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式( 单项式或多项式 ) ; ②只含有一个未知数; ③未知数的最高次数为 1. (2)一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<” 、“≤”、“≥”或“>”连接,不等 号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不 等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法: 与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:x a (或 x a )的形式,解一元一次不等式的一般步骤为:(1) 去分母; (2) 去括号; (3) 移项; (4) 化为ax b(或ax b)的形式(其中a 0); (5) 两边同除以未知数的系数,得到不等式的 解集 . 要点诠释: (1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意: ①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号; ③去括号时,若括号前面是负号,括号里的每一项都要变号; ④在不等式两边都乘以( 或除以 ) 同一个负数时,不等号的方向要改变. 要点三、不等式的解及解集 1.不等式的解: 能使不等式成立的未知数的值,叫做不等式的解. 2.不等式的解集: 对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 要点诠释: 不等式的解是具体的未知数的值,不是一个范围 不等式的解集是一个集合,是一个范围.其含义:

不等式性质的应用

不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππβπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若 不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππ βπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若

不等式基本性质1

第二章一元一次不等式与一元一次不等式组 2.不等式的基本性质 甘肃省白银市靖远县第八中学胡凌霄 一、学生知识状况分析 本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。学生已经掌握等式的基本性质,同时经历了解一元一次方程、二元一次方程组的研究过程及方法,为进一步学习不等式的基本性质奠定了基础。学习时可以类比七年级上册学习的等式的基本性质。 二、教学任务分析 不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。 本节课教学目标: (1)知识与技能目标: ①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。 ②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。 (2)过程与方法目标: ①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。 ②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。 ③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的

能力。 (3)情感与态度目标: ①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。 ②尊重学生的个体差异,关注学生对问题的实质性认识与理解。 三、教学过程分析 本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。 第一环节:情景引入,提出问题 活动内容:利用班上同学站在不同的位置上比高矮。请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。问题1:怎样比才公平? 活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。 活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。 第二环节:活动探究,验证明确结论 活动内容:参照教材与多媒体课件提出问题: (1)还记得等式的基本性质吗?请用字母表示它。不等式有类似的性质吗?先猜一猜。 (2)用等号或不等号完成下面的填空。 如果2 < 3;那么 2 × 5 3 × 5; 2 ×错误!未找到引用源。 3 ×错误!未找到引用源。;

高中数学专题讲义-不等式性质的应用 比较大小

【例1】 若0a b <<,1a b +=,则在下列四个选项中,较大的是( ) A .1 2 B .22a b + C .2ab D .b 【例2】 将23 2,12 23?? ??? ,1 22按从大到小的顺序排列应该是 . 【例3】 若52x =-,23x =-,则,x y 满足( ) A .x y > B .x y ≥ C .x y < D .x y = 【例4】 若 11 0a b <<,则下列不等式中, ①a b ab +< ②||||a b > ③a b < ④ 2b a a b +> 正确的不等式有____ .(写出所有正确不等式的序号) 典例分析 比较大小

【例5】已知,a b∈R,那么“|| a b >”是“22 a b >”的() A.充分非必要条件B.必要非充分条件 C.充分必要条件D.既非充分又非必要条件【例6】若0 b a <<,则下列不等式中正确的是() A.11 a b >B.a b >C.2 b a a b +>D.a b ab +> 【例7】比较下列代数式的大小: ⑴23 x x +与2 x-; ⑵61 x+与42 x x +; 【例8】比较下列代数式的大小: ⑴43 x x y -与34 xy y -; ⑵(其中0 xy>,且x y >) ⑶x y x y与y x x y(其中0,0, x y x y >>≠).

【例9】 a 、b 、c 、d 均为正实数,且a b >,将 b a 、a b 、b c a c ++与a d b d ++按从小到大的顺序进行排列. 【例10】 比较大小:log a a b 、log a b 与log b a (其中21a b a >>>) 【例11】 已知a 、b 、c 、d 均为实数,且0ab >,c d a b - <-, 则下列各式恒成立的是( ) A .bc ad < B .bc ad > C .a b c d > D .a b c d < 【例12】 当a b c >>时,下列不等式恒成立的是( ) A .ab ac > B .a c b c > C .ab bc > D .()0a b c b --> 【例13】 已知三个不等式:0ab >,0bc ad ->, 0c d a b ->(其中a 、b 、c 、d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( ) A .0 B .1 C .2 D .3

相关文档
最新文档