初三数学总复习----方程与方程组(一)
九年级数学 人教版 中考专题复习-方程和方程组篇

中考复习-方程和方程组篇学生学校年级九年级次数科目数学教师日期时段课题中考复习-方程和方程组篇教学重点一元一次方程,二元一次方程组,一元一次不等式组教学难点分式方程;一元二次方程教学目标1、熟练计算各类方程教学步骤及教学内容一、错题回顾二、内容讲解1几个概念2一元一次方程方程与方程组3一元二次方程4方程组6应用三、课堂总结错题回顾已知直线y=kx+b ,若k+b=-9,kb=8,那么该直线不.经过..第 象限.(如图,直线y=3 x+3与两坐标轴分别交于A 、B 两点(1)求∠ABO 的度数(2)过A 的直线l 交x 轴半轴于C ,AB=AC ,求直线l 的函数解析式.如图,直线y=23x+4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( )管理人员签字: 日期: 年 月 日A .(﹣3,0)B .(﹣6,0)C .(﹣32,0) D .(﹣52,0)【方程和方程组篇】二、内容讲解【学生总结】等式的性质:①性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b (c≠o )那么ac=二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的组3、 叫做解方程4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程【解一元一次方程】一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤: 1。
2。
3。
4。
5。
概念考点:(1)若关于x 的方程22(2)10()a a x x ---+=是一元一次方程,求a 的值.(2)若关于x 的方程5413524n x -+=是一元一次方程,求n 的值.解方程:(1) 3131=+-x x (2)x x x -=--+22132(3)53210232213+--=-+x x x (4)32116110412xx x --=+++*带小数方程4x 1.55x 0.8 1.2x0.50.20.1----=【二元一次方程组】二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法例1 解方程组: 213211x y x y +=⎧⎨-=⎩①②.对应训练(1)解方程组: 2()134123()2(2)3x y x yx y x y -+⎧-=-⎪⎨⎪+--=⎩.3(2)3814x y x y -=⎧⎨-=⎩23(3)253s t t s =⎧⎪+⎨=⎪⎩356(4)415x y x y -=⎧⎨+=-⎩43(1)4(4)(5)(6)35115(1)3(5)7525x x y x y y x y x +-⎧-=-=⎧⎪⎨⎨-=+⎩⎪=+⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x yx y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩*含参方程组.已知关于x 、y 的方程组52111823128x y a x y a +=+⎧⎨-=-⎩①②的解满足x >0,y >0,求实数a 的取值范围.【一元一次不等式组】掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.例题:用不等式表示:①a 为非负数,a 为正数,a 不是正数 解: ②(2)8与y 的2倍的和是正数; (3)x 与5的和不小于0;(5)x 的4倍大于x 的3倍与7的差;【学生总结:】基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )例题:①解不等式 31(1-2x )>2)12(3 x②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页.问从第六天起,每天至少读多少页? 解:(1) 在数轴上表示解集:“大右小左”“” (2) 写出下图所表示的不等式的解集3、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边例题:①不等式组⎩⎨⎧-<<,3,2x x ⎩⎨⎧->>,3,2x x ⎩⎨⎧-<>,3,2x x ⎩⎨⎧-><,3,2x x 数轴表示解集考点二:在数轴上表示不等式(组)的解 例2 把不等式组1215x x >⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .对应训练2.不等式组2(5)65212x x x +≥⎧⎨->+⎩的解集在数轴上表示正确的是( )A .B .C .D .考点三:不等式(组)的解法例3 不等式2x-1>3的解集是.例4 解不等式组23120xx+>⎧⎨-≥⎩,并把解集在数轴上表示出来.对应训练3.不等式2x-4<0的解集是.4.解不等式组211 00x xx+>⎧⎨-<⎩①②,并把它的解集在数轴上表示出来.考点四:不等式(组)的特殊解例5 不等式组21312xx-<⎧⎪⎨-≤⎪⎩的整数解有()个.A.1 B.2 C.3 D.4 对应训练5.求不等式组21025xx x+>⎧⎨>-⎩的正整数解.考点五:确定不等式(组)中字母的取值范围 例6 若不等式组0122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是 .对应训练6.已知x=3是关于x 的不等式3x-22ax +>23x的解,求a 的取值范围.课堂总结:针对练习【分式方程】1.解分式方程1x -1-2=31-x,去分母得( )A .1-2(x -1)=-3B .1-2(x -1)=3C .1-2x -2=-3D .1-2x +2=32. 分式方程x x -1-1=3(x -1)(x +2)的解为( )A .x =1B .x =-1C .无解D .x =-23. 分式方程2x +13-x =32的解是___________ __.4. 分式方程4x -3-1x=0的根是____________.5. 关于x的分式方程mx2-4-1x+2=0无解,则m=_____________.解方程:=0.6.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.11。
初三复习 一次方程和方程组PPT课件

2.解方程的依据------等式的性质
(1)等式的两边都加上(或减去)同一个数或同一个 整式,所得结果仍是等式. (2)等式两边都乘以或除以(除数不为0)同一个数或 整式,所得结果仍是等式.
3.解一元一次方程的一般步骤:
①去分母 ②去括号 ③移项 ④合并同类项⑤系数化为1
4.方程组的常用解法:
①代入消元法 ②加减消元法 ③换元法
4.方程 yy212y32的解是________
5.方程组
x
y 12x 2y7
0
的解是________
6.方程组
2
方程组
ax by 2 ax by 4
的解,
求a、b的值
例1
(1)写出一个以x=-1为根的一元一次方程
{ (2)写出一个以
x 1 为解的二元一次方程组
y 2
(3)王老师在课堂上给出了二元方程x-y=-xy,让
同学们写出它的解,你会写吗?
例2 解方程
(1)2x-(13-x)=3
(2)1.5x1 x 0.5 3 0.6
例3.解方程组
{(1)
3x+y=8 2x-y=7
(2)250((32x3y))58((x23y))2207
3
例4
已知方程2x+3m=4x+1和方程 5x+3m=4x+1的解相同,求m的值.
1.关于x的方程2(x-1)-a=0的根是3,则a的值为( )
A.4
B.-4 C.5 D.-5
2.已知x+y=5,且x-y=1,则xy=______
3.当x=______时,代数式3x-4和2(x-3)互为相反数.
一 次方程与方程组
1.主要概念:
2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用

耽搁,故李老师骑自行车先行出发,20 min后,张老师乘坐汽车出发,结果
两人同时到达①.已知汽车的平均速度是自行车平均速度的2倍,求李老师骑自
行车的平均速度;
2025版
数学
甘肃专版
解:设自行车的平均速度为x km/h,则汽车的平均速度为2x km/h,根据题意,
2025版
第三节
数学
甘肃专版
分式方程及其应用
2025版
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
相
关
概
念
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
分
式
方
程
的
实
际
应
用
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
分
式
方
程
的
实
际
应
用
数学
甘肃专版
2025版
数学
甘肃专版
2025版
得
- = ,解得x=15,
经检验,x=15是原分式方程的解,且符合题意.
答:李老师骑自行车的平均速度为15 km/h.
2025版
数学
甘肃专版
【分层分析】
第一步:设自行车的平均速度为x km/h;
中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
中考复习:第五讲方程与方程组

第五讲 方程与方程组第1课时 一元一次方程与二元一次方程组考点一、一元一次方程的概念 (6分)1、方程含有未知数的等式叫做方程。
2、方程的解能使方程两边相等的未知数的值叫做方程的解。
3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
考点二、二元一次方程组 (8~10分)1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是(2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。
4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方正组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组A 级 基础题1.(山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( ) A. 3,0x y =⎧⎨=⎩ B.1,2x y =⎧⎨=⎩ C. 5,2x y =⎧⎨=-⎩ D.2,1x y =⎧⎨=⎩3.(湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩B.50,610320x y x y +=⎧⎨+=⎩C.50,6320x y x y +=⎧⎨+=⎩D.50,106320x y x y +=⎧⎨+=⎩4.(贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________. 7.(湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.10.(山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( ) A .± 2 B.2 C .2 D .411.(湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(内蒙古呼和浩特)解方程组:4(1)3(1)2,2.23x y y x y --=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解. (3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”; 小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程考点一、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。
初三数学知识点梳理之方程(组)

初三数学知识点梳理之方程(组 )数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺,为此小编为大家整理了初三数学知识点梳理之方程(组 ),希望可以帮助到大家。
★重点★一元一次、一元二次方程,二元一次方程组的解法 ; 方程的相关应用题 (特别是行程、工程问题 )☆ 内容纲要☆一、基本看法1.方程、方程的解(根 )、方程组的解、解方程(组 )2.分类:二、解方程的依据-等式性质1.a=ba+c=b+c2.a=bac=bc (c0)三、解法1.一元一次方程的解法:去分母去括号移项合并同类项系数化成 1 解。
2.元一次方程组的解法:⑴基本思想:消元⑵方法:①代入法②加减法四、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法(注意特色 )⑵配方法 (注意步骤 -推倒求根公式)⑶公式法:⑷因式分解法 (特色:左边 =0)3.根的鉴识式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:。
5.常用等式:五、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧 !!) ②换元法 (例,)⑷验根及方法3.简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、列方程(组)解应用题一归纳列方程 (组 )解应用题是中学数学联系实质的一个重要方面。
其详尽步骤是:⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元 (未知数 )。
①直接未知数②间接未知数(经常二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷搜寻相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出) ,列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程 (组 )解应用题实质是先把本责问题转变成数学问题 (设元、列方程 ) ,在由数学问题的解决而以致本责问题的解决 (列方程、写出答案 )。
初三数学总复习资料_分专题试题及答案(90页)

(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:
北师大初中数学中考总复习:一次方程及方程组--知识讲解-精选

中考总复习:一次方程及方程组--知识讲解【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程. (2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般..步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2去括号 去括号法则(可先分配再去括号)乘法分配律注意正确的去掉括号前带负数的括号3 移项把未知项移到方程的一边(左边),常数项移到另一边(右边)等式性质1移项一定要改变符号4合并 同类项 分别将未知项的系数相加、常数项相加1、整式的加减;2、有理数的加法法则 单独的一个未知数的系数为“±1”5系数化为“1” 在方程两边同时除以未知数的系数(或方程两边同时乘以未知数系数的倒数)等式性质2不要颠倒了被除数和除数(未知数的系数作除数——分母)*6检根 x=a方法:把x=a 分别代入原方程的两边,分别计算出结果. ① 若 左边=右边,则x=a 是方程的解; ② 若 左边≠右边,则x=a 不是方程的解. 注:当题目要求时,此步骤必须表达出来.说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.(2015•顺德区校级三模)一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅=C . 208030%80%x ⨯⨯=D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯. 根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.(2015春•宁波期中)解下列方程组. (1) (2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解; (2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:【变式1解方程组【答案】方程②化为,再用加减法解,答案:【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.① ②4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm【答案】设桌子高度为acm ,木块竖放为bcm ,木块横放为ccm.则80,a=7570a b c a c b +-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x 人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000, 解得:x=40, ∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x ,y 人, 根据题意列出方程组: 601000(10002000)100000x y x y +=⎧⎨++=⎩解得:2040y x =⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上 票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩.答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解.【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆.【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学总复习-------方程与方程组(一)
一、选择题:
1. 已知方程①3x -1=2x +1,②x +31=32(x -21),③23x -1=x ,④27+431x +=7-413+x 中,解为x=2的是方程 ( )
A 、①、②和③
B 、①、③和④
C 、②、③和④
D 、①、②和④
2. 方程3
2x -2=3x 的解是 ( ) A 、x=2 B 、x=-11
6 C 、x=-6 D 、x=-76 3.
方程x(x +1)=0的根是 ( ) A 、0 B 、1 C 、0和1 D 、0和-1 4.
要使方程ax=a 的解为x=1,必须满足条件 ( ) A 、a 可取任何数 B 、a>0 C 、a<0 D 、a ≠0 5. 已知关于x 的方程
5
1432-=+x a x 的解是非负数,则( ) A 、53->a B 、53-≥a C 、53>a D 、53-≤a 6.
关于x 的方程(m 2-4)x 2+5x -3=0是一元二次方程,则m 满足( )
A 、m ≠2
B 、m ≠-2
C 、m ≠±2
D 、m 为任意实数
7. 根为2、-1的一元二次方程是( )
A 、x 2-x +2=0
B 、x 2-x -2=0
C 、x 2+x -2=0
D 、x 2+x +2=0
8. 方程2x 2+3x +2=0的根的情况是( )
A 、有两个相等的实数根
B 、有两个不相等的实数根
C 、有两个实数根
D 、沒有实数根 9. 已知关于x 的一元二次....方程0112)21(2=-+--x k x k 有两个不相等的实数根,则k 的取值范围是( )
A 、2<k
B 、2<k 且21≠k
C 、21<≤-k
D 、21<≤-k 且2
1≠k 10. 如果0,0<>b
a a ,则22)1()4(+----
b a a b 的值是( ) A 、-3 B 、3 C 、322++b a D 、522-+-b a
二、填空题:
11. 25与x 的3倍的差比x 的绝对值的2倍大1的方程是______________。
12. 已知方程mx +2=2(m -x)的根为x=0.5,那么m= 。
13. 已知-2是方程3a -x=1-2x 的解,那么a= 。
14. 方程x -1=1的解是x= 。
15. 关于x 的方程(m+1)x 2-(m -1)x+2=0,问:
(1)当m 为 ,此方程是一元一次方程?这个一元一次方程的根为 。
(2)当m 为 ,此方程是一元二次方程?这个一元二次方程的二次项系数 、一次项系数 和常数项 。
16、 方程(4x +1)(2x -1)=x 2+3化为一般形式是 .
17、 方程x 2-kx +1=0的一根为2-3,则k = ,另一根为 .
18、 当m= 时,方程mx 2-3mx+m+5=0有两个相等的实数根,这两个根是
19、 关于x 的二次方程k 2x 2-(2k+1)x+1=0有实数根,则k 的取值范围是
三、解下列方程 :
20、 (1)
412+x -1=312-x -12110+x (2)23.1-x -2.18.18-x =x x --3
.04.05
21、 (1)x 2+2x =3 (2)3x(x -1)=2(1-x)
(3) (2x -1)2=(x+1)2 (4)2x 2-5x+3=0
22、 已知关于x 的一元二次方程01)1(2)2(2=++---m x m x m ,当m 为何数时: (1)方程没有一个实数根;(2)方程有两个相等的实数根;(3)方程有两个不相等的实数根。
23、 已知关于x 的一元二次方程01)12(22=++-+-m x m x ,求证:无论m 为何值,方程总有两个不
相等的实数根。