函数的单调性

合集下载

函数的简单性质-单调性

函数的简单性质-单调性

求最值
求函数最大值
在闭区间上,如果函数在某区间内单 调递增,那么该函数在此区间内取得 最大值。同样,如果函数在某区间内 单调递减,那么该函数在此区间内取 得最小值。
求函数最小值
在闭区间上,如果函数在某区间内单 调递增,那么该函数在此区间内取得 最小值。同样,如果函数在某区间内 单调递减,那么该函数在此区间内取 得最大值。
对于函数$f(x) = x^{3} - 3x^{2} + 2$,其导数为$f'(x) = 3x^{2} - 6x$。要使$f(x)$在区间$( - infty,a)$上是 增函数,需要满足$f'(x) > 0$,即$3x^{2} - 6x > 0$, 解得$x < 0$或$x > 2$。因此,当$a < 0$或$a > 2$ 时,函数$f(x) = x^{3} - 3x^{2} + 2$在区间$( infty,a)$上是增函数。
反例应用
在研究经济发展时,需要考虑到各种因素对经济的影响,包括政策、技术、人口等。通过 找到单调性的反例,可以更全面地了解经济发展的实际情况,为政策制定提供更有针对性 的建议。
06 习题与解答
习题
判断函数$f(x) = x^{2} - 2x$在 区间$( - infty,a)$上是减函数的
条件是什么?
单调性与奇偶性的关系
总结词
函数的奇偶性是指函数图像关于原点对称的性质,而单调性是指函数值随自变量变化的 趋势。虽然奇偶性和单调性是函数的两种不同性质,但它们之间也存在一定的关系。例 如,奇函数在对称轴两侧的函数值是相等的,因此奇函数在对称轴两侧的单调性是一致
的。
详细描述
对于奇函数,如果它在某个区间内单调递增,那么它在该区间内关于原点对称的区间内 也单调递增;同样地,如果奇函数在某个区间内单调递减,那么它在该区间内关于原点 对称的区间内也单调递减。而对于偶函数,由于其图像关于y轴对称,因此偶函数在任

函数单调性的性质

函数单调性的性质

函数单调性的性质:(1)增函数:如果对于属于定义域I 内某个区间上的任意两个自变量的值, 当时,都有,0)()(2121>--x x x f x f(2)减函数:如果对于属于定义域I 内某个区间的任意两个自变量的值,当时, 都有,0)()(2121<--x x x f x f(3) 函数的单调性还有以下性质.1.函数y =-f (x )与函数y =f (x )的单调性相反.2.当f (x )恒为正或恒为负时,函数y =)(1x f 与y =f (x )的单调性相反.3.在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等. 4 .如果k>0 函数k ()f x 与函数()f x 具有相同的单调性。

如果k<0 函数k ()f x 与函数()f x 具有相反的单调性。

5..若()f x ≠0,则函数()1f x 与()f x 具有相反的单调性,. 6. 若()f x >O ,函数()f x 与函数()f x 具有相同的单调性。

若 ()f x <0,函数()f x 与函数()f x 具有相反的单调性7。

.函数()f x 在R 上具有单调性,则()f x -在R 上具有相反的单调性。

复合函数的单调性。

如果函数 ()x g u = A x ∈ B u ∈ ()u f y = ()B C ⊆ D y ∈,则()[]x g f y =称为x 的复合函数。

解决复合函数的问题,关键是弄清复合的过程,即中间变量u 的定义域与值域的作用。

复合函数的单调性的判断:同增异减。

函数单调状况 内层函数()u g x = 增 增 减 减 外层函数()y f u = 增 减 增 减 复合函数增减减增题型一:求函数的单调区间及该区间上的单调性1.求下列函数的增区间与减区间(1) y =|x 2+2x -3| 1122---=x xx y32y 2+--=x x2.判断函数f (x )=-x 3+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x ∈(0,+∞),函数f (x )是增函数还是减函数?题型二:.已知简单函数的单调性求与其相关函数的单调性例1.若函数y =ax , y =bx-在(0,+∞)上都是减函数,则函数y =ax 2+bx 在(0,+∞)上是 ________(填单调性).例2.设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.答案:在(- 4,0)上单调递减。

函数的单调性(定义法)

函数的单调性(定义法)

函数的单调性知识点:1.函数单调性定义(1).定义法,对任意的x1,x2∈D,D⊆I,x1>x2 ,若f(x1)−f(x2)>0则称f(x)在D 内是单增,若f(x1)−f(x2)<0则称f(x)在D内是单减.(2). 对定义在D上的函数f(x),设x1,x2∈D, D⊆I , x1<x2,则有:①f(x1)−f(x2)x1−x2>0⇔f(x)是D上的单调递增函数;②f(x1)−f(x2)x1−x2<0⇔f(x)是D上的单调递减函数.(注意:函数的单调性的局部性(注意:函数的单调性,从定义上来讲,是指函数在定义域的某个子区间上的单调性,是局部的特征,在某个区间上单调,在整个定义域上不一定单调。

求单调区间时,必须先求出函数的定义域;单调区间只能用区间表示,若有多个单调区,应分别写),函数的单调性最值主要涉及初等函数、复合函数、抽象函数、分段函数等情况.)2.复合函数的单调性:3.几种常见函数的单调性:f(x)=ax+bcx+d (abcd≠0,bc≠ad);f(x)=ax +bx(ab≠0)例1.多种方法判断下列函数的单调性:(1).f(x)=x + 1x x∈(0,1)(2).y=x−1xx∈(0,+∞); (3).y=x3x∈R;(4).f(x)=axx²−1,x∈(-1,1)(a≠0)(5).f(x)=x+√1+x2,x∈R例2.(1).已知f(x)=x(x≠a),若a>0且f(x)在(1.+∞)内单调递减,求a的x−a在区间[1,2]上都是减函数,求a的取值取值范围. (2).若f(x)=−x2+2ax,与g(x)=ax+1范围.(3).已知函数f(x)= √3−ax(a≠1)若f(x)在区间(0,1]上是减函数,则a−1实数a的取值范围.(4).已知函数f(x)=√x²+1–ax(a>0)①.证明当a≥1时,函数f(x)在区间[0,+∞)上为单调减函数.②.若函数f(x)在区间[1,+∞)上是增函数,求a的取值范围。

函数的单调性和运算性质

函数的单调性和运算性质

函数的单调性和运算性质
函数的单调性也可以叫做函数的增减性。

当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。

定义
函数的单调性也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。

当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少)。

在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。

运算性质
f(x)与f(x)+a具有相同单调性;
f(x)与g(x) = a·f(x)在 a>0 时有相同单调性,当 a<0 时,具有相反单调性;
当f(x)、g(x)都是增(减)函数时,若两者都恒大于零,则f(x)×g(x)为增(减)函数;若两者都恒小于零,则为减(增)函数;
两个增函数之和仍为增函数;增函数减去减函数为增函数;两个减函数之和仍为减函数;减函数减去增函数为减函数;函数值在区间内同号时,增(减)函数的倒数为减(增)函数。

证明函数单调性的方法

证明函数单调性的方法

证明函数单调性的方法证明一个函数的单调性是数学分析中的重要内容,它涉及到函数的增减性质,对于函数的研究具有重要意义。

在数学分析中,我们常常需要证明一个函数在某个区间上是单调递增或者单调递减的。

下面,我将介绍几种常见的方法来证明函数的单调性。

1. 导数法。

导数法是证明函数单调性常用的方法之一。

对于给定的函数f(x),如果它在某个区间上具有一阶导数,那么我们可以通过导数的正负来判断函数的单调性。

具体来说,如果在某个区间上f'(x)大于0,则函数在该区间上是单调递增的;如果f'(x)小于0,则函数在该区间上是单调递减的。

2. 函数的增减表。

函数的增减表是一种通过导数的符号来判断函数单调性的方法。

我们可以通过求出函数的导数,并列出导数的符号随着自变量的变化而变化的情况,从而得出函数在某个区间上的单调性。

通过增减表,我们可以清晰地看出函数的单调性,并进行证明。

3. 极值点和拐点。

对于一个函数f(x),它的极值点和拐点也可以帮助我们证明函数的单调性。

如果在某个区间上f'(x)恒大于0,并且f''(x)恒大于0,那么函数在该区间上是单调递增的;如果f'(x)恒小于0,并且f''(x)恒小于0,那么函数在该区间上是单调递减的。

通过分析极值点和拐点,我们可以得出函数的单调性。

4. 函数图像法。

最直观的方法是通过函数的图像来观察函数的单调性。

我们可以通过绘制函数的图像,并观察函数在某个区间上的变化趋势,从而得出函数的单调性。

通过观察函数的图像,我们可以直观地理解函数的单调性,并进行证明。

综上所述,证明函数单调性的方法有多种多样,我们可以根据具体的函数和问题选择合适的方法进行证明。

在实际应用中,我们需要灵活运用这些方法,从而准确地判断函数的单调性,为数学分析和实际问题的解决提供有力的支持。

函数的单调性、奇偶性、周期性

函数的单调性、奇偶性、周期性

函数的单调性、奇偶性、周期性一、函数的单调性 1.增函数定义设函数y=f(x)的定义域为A ,区间I ⊆A ,如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时, 都有f(x 1)<f(x 2),那么就说f(x)在区间I 上是单调增函数.I 称为y=f(x)的单调增区间。

2、减函数定义:设函数y=f(x)的定义域为A ,区间I ⊆A ,如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时, 都有f(x 1) >f(x 2),那么就说f(x)在区间I 上是单调减函数.I 称为y=f(x)的单调减区间。

注意:(1)函数的单调性是函数在定义域内的某个区间上的性质,是函数的局部性质; (2)必须是对于区间I 内自变量x 的任意两个值x 1,x 2,当x 1<x 2时,总有f(x 1)<f(x 2)(或f(x 1) >f(x 2)),才能说函数y=f(x) 在区间I 上具有单调增减性。

(3)判断函数的单调性:一利用定义,二利用函数的图象,三是利用导数。

(4)利用函数的图象分别指出: 一次函数y=kx+b 、 反比例函数y= kx(k ≠0)、二次函数y=a x 2+bx+c 的单调区间(5) 定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况; 外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减.②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.(6)、利用定义证明函数f(x)在给定的区间I 上的单调性的一般步骤:① 任取x 1,x 2∈I ,且x 1<x 2; ② 作差f(x 1)-f(x 2);③ 变形(通常是因式分解和配方); ④ 定号(即判断差f(x 1)-f(x 2)的正负); ⑤ 下结论(即指出函数f(x)在给定的区间I 上的单调性). (7)函数单调性的判定:(1)图象法;(2)定义法 (3导数法) 二、复合函数))((x g f y =单调性的判断:对于函数)(u f y =和)(x g u =,如果)(x g u =在区间),(b a 上是具有单调性, 当),(b a x ∈ ,),(n m u ∈,且)(u f y =在区间),(n m 上也具有单调性, 则复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同得增,异得减”或“同增异减”.三、单调性的有关结论:1.若f(x), g(x)均为增(减)函数,则f(x)+g(x) 函数; 2.若f(x)为增(减)函数,则-f(x)为 ;3.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性。

判断函数单调性的方法

判断函数单调性的方法

判断函数单调性的方法函数的单调性是指函数在定义域内是否递增或递减。

判断一个函数的单调性需要观察它的导数或增减性,下面将详细介绍判断函数单调性的方法。

一、定义函数的单调性假设函数f(x)定义在区间[a, b]上,如果对于任意的x1, x2∈[a, b],且x1<x2,有f(x1)≤f(x2),那么函数f(x)在区间[a, b]上单调递增;如果对于任意的x1, x2∈[a, b],且x1<x2,有f(x1)≥f(x2),那么函数f(x)在区间[a, b]上单调递减。

二、判断函数单调性的准则1. 函数导数法函数的导数能够反映函数的增减性,因此我们可以通过观察函数的导数来判断函数的单调性。

1.1 如果函数f(x)在区间[a, b]上的导函数f'(x)≥0,则函数在该区间上单调递增;1.2 如果函数f(x)在区间[a, b]上的导函数f'(x)≤0,则函数在该区间上单调递减;1.3 如果函数f(x)在区间[a, b]上的导函数f'(x)>0,则函数在该区间上严格单调递增;1.4 如果函数f(x)在区间[a, b]上的导函数f'(x)<0,则函数在该区间上严格单调递减。

2. 函数零点法2.1 如果函数f(x)在区间[a, b]上恒大于零,即f(x)>0,则函数在该区间上严格单调递增;2.2 如果函数f(x)在区间[a, b]上恒小于零,即f(x)<0,则函数在该区间上严格单调递减;2.3 如果函数f(x)在区间[a, b]上恒大于等于零,即f(x)≥0,则函数在该区间上单调递增;2.4 如果函数f(x)在区间[a, b]上恒小于等于零,即f(x)≤0,则函数在该区间上单调递减。

3. 函数一阶导数与二阶导数法如果函数f(x)在区间[a, b]上的一阶导数f'(x)≥0,并且在该区间上的二阶导数f''(x)>0,则函数在该区间上严格单调递增;如果函数f(x)在区间[a, b]上的一阶导数f'(x)≤0,并且在该区间上的二阶导数f''(x)<0,则函数在该区间上严格单调递减。

函数单调性判断方法

函数单调性判断方法

函数单调性判断方法
1、思路
假如有一个函数f(x),想要判断它的单调性,我们先从一阶导数开始。

令f(x)的一阶导数为f’(x),对一阶导数f’(x)进行判断:(1)如果f’(x)在所有x值的情况下都大于0,则f(x)为单调递增
函数;
(2)如果f’(x)在所有x值的情况下都小于0,则f(x)为单调递减
函数;
(3)如果f’(x)在不同x值时有正有负,则f(x)不是单调函数。

2、一阶导数判断
假如一个函数f(x)定义域为[a,b],则求出f(x)的一阶导数f’(x);
(1)如果f’(x)在x=a和x=b的情况下,f’(a)>0,f’(b)>0,则
f(x)在[a,b]区间内是单调递增函数;
(2)如果f’(x)在x=a和x=b的情况下,f’(a)<0,f’(b)<0,则
f(x)在[a,b]区间内是单调递减函数;
(3)如果f’(x)在x=a和x=b的情况下,f’(a)>0,f’(b)<0或
f’(a)<0,f’(b)>0,则f(x)在[a,b]区间内是不单调函数;
(4)如果f’(x)存在x0,使得f’(x0)=0,f’(x)在x=a和x0的
情况下,f’(a)>0,f’(x0)>0,则f(x)在[a,x0]区间内是单调递增函数;
(5)如果f’(x)存在x0,使得f’(x0)=0,f’(x)在x=a和x0的
情况下,f’(a)<0,f’(x0)<0,则f(x)在[a,x0]区间内是单调递减函数;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性一、教学内容解析及学情分析从函数角度来讲. 函数的单调性是学生学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从观察图象,用自然语言描述函数图象特征,以函数解析式为依据经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.二、教学目标按照教学大纲的要求,根据教材和学情,确定如下教学目标:1.知识与技能目标:①使学生从形与数两方面理解函数单调性的概念;②掌握利用函数图象和单调性定义判断函数单调性的方法;2.过程与方法目标:①通过对函数单调性定义的探究,渗透数形结合的思想方法;②通过对函数单调性的证明,提高学生的推理论证能力;3.情感、态度与价值观目标:①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进学生形成研究氛围和合作意识.②重视知识的形成过程教学,培养学生细心观察、认真分析、严谨论证的良好思维习惯让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与收获的乐趣.三、教学重、难点教学重点:增(减)函数概念的形成;教学难点:①形成增(减)函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表达;②用定义证明函数的单调性.四、教法、学法教法:根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲解和学生探究发现的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力.同时使用多媒体辅助教学以及几何画板的使用,增强动感和直观性,充分发挥其快捷、生动、形象的特点,有助于学生对问题的理解和认识,提高教学效果和教学质量;学法:合作实践、学生展示、小组讨论、发现总结等方法.五、教具准备实物展示台、几何画板、多媒体.六、教学过程:(一)问题情境:在2016年8月10号的里约奥运会上,由陈若琳和刘蕙瑕组成的双人组合获得10米台跳水冠军,展示跳水动图,问题1:跳水运动员的运动轨迹是什么?问题2:从左向右看,图象的变化趋势是什么?函数图象的上升与下降的趋势就反映了函数的单调性.设计意图:把我国运动员获得奥运冠军这件时事作为情境引入,增强学生的民族自豪感,另外根据运动员的运动轨迹曲线很自然地引入函数的单调性这节课,让学生感受数学来自生活.(二)建构定义:1. 概念探究阶段第一次认识:(图形语言)观察函数2x y =的图象,思考1:从左向右看函数在区间()∞+,0上的图象有怎样的变化趋势?(上升?下降?)思考2:怎样描述图象的上升呢?第二次认识:(文字语言)教师几何画板展示,点A 在()∞+,0上向上运动时,A 点坐标的变化.让学生观察到,函数2x y =在区间()∞+,0上,随着自变量x 的增大,函数值y 也增大.这是我们从形的角度观察到的,那么怎样用符号和式子描述函数值y 随着自变量x 的增大而增大呢?第三次认识:(符号语言)首先:将两个“增大”符号化,比较才能出大小,在区间()∞+,0上的1x ,2x ,即当12x x <时,)()(21x f x f <.在区间D 上的1x ,2x ,即当12x x <时,)()(21x f x f <.此时一定能保证在区间D 上的图象是上升的吗?图象可能会出现哪些情况?需要添加什么条件使得在区间D 上的图象是上升的?所以,进一步完善表达:对于区间()∞+,0上的任意的两个自变量的值21,x x ,当12x x <时,都有)()(21x f x f <,那么就说函数2)(x x f =在区间()∞+,0上是增函数. 设计意图:通过由图象直观感知 自然语言描述 数学符号语言描述,即从直观到抽象、特殊到一般、感性到理性的认识过程,学生能够更好的感受数学知识的生成过程.通过一系列的问题逐步引导学生发现1x ,2x 的任意性,让学生体会数学的严谨性.2. 本着从特殊到一般的原则,对于一般函数,我们来定义增函数: 设函数)(x f 的定义域为I ,I D ⊆,任意D x x ∈21,,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数.3.对比增函数的定义,由学生归纳出减函数的定义.设函数)(x f 的定义域为I ,I D ⊆,任意D x x ∈21,,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数.即减函数图象在区间D 内呈下降趋势,当x 的值增大时,函数值y 减小. 设计意图:得出减函数定义,培养学生的类比能力.4.对定义的理解:(1)21,x x 的任意性;教师几何画板展示,帮助学生从运动变化的观点理解21,x x 的任意性.(2)对21x x <的理解:此时)(1x f 与)(2x f 不等,说明变量不同,函数值不同,所以我们不在一点出讨论函数的单调性,当端点在定义域的范围内,区间可开可闭,当端点不在定义域的范围内,区间是开区间.(3)分析定义中自变量与因变量的变化关系,当21x x ≠时,()()()()02121>--x f x f x x 说明了什么?设计意图:定义是数学的核心,通过教师带领学生理解定义,可以提高学生的认识和理解.5.函数的单调性定义如果函数)(x f y =在区间D 上是增函数或者减函数,那么就说函数)(x f y =在区间D 上具有单调性,函数的单调性也叫函数的增减性;增函数与减函数也分别叫做单调递增函数,单调递减函数;区间D 叫做函数)(x f y =的单调区间.所以,函数的单调性是定义域内的某个区间上的性质,是函数的局部性质.探究:函数xy 1=在定义域上的单调性是怎样的? 设计意图:再次让学生体会和理解函数单调性的定义,多个单调增(减)区间用“,”“和”连接,不用“∪”.类型一:根据函数图象写出函数的单调区间例1.下图是定义在[-5,5]上的函数)(x f y =的图象,根据图象说出函数)(x f y =的单调区间,以及在每一单调区间上,)(x f y =是增函数还是减函数。

解:)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5].其中)(x f y =在[-5,-2),[1,3)上是减函数;在[-2,1), [3,5)上是增函数.变式1:变式2:变式3:设计意图:通过例1和变式,学生知道可以借助函数图象找出函数的单调区间,并加深对函数单调性概念的理解.类型二:根据函数的单调性定义证明函数的单调性.例2.用函数的单调性定义证明:函数)0(>=k x k y 在区间()∞+,0上是减函数.证明:设21,x x 是),0(+∞上的任意两个实数,且21x x <,则21122121)()()(x x x x k x k x k x f x f -=-=- 210x x <<,得,021>x x 012>-x x ,由0>k于是)()(21x f x f ->0,即)()(21x f x f >所以,函数)0(>=k xk y 在()∞+,0上是减函数。

说明:这两道例题介绍了(1)判断函数单调性的两种方法:根据图像观察,根据定义证明;(2)证明函数单调性的步骤:① 取值,设任意21x x 、属于给定区间,并规定大小;○2 作差变形)()(21x f x f -,变形的常用方法:因式分解、配方、有理化等;○3定号确定)()(21x f x f -的正负号; ④下结论:由定义得出函数的单调性.即时练习:利用定义证明函数xx y 1+=在()10,上是减函数. (四)、课堂练习:1.讨论以下函数的单调性:(1)b kx y +=(2))0(2≠++=a c bx ax y)0(3≠=k x k y )( 设计意图:让学生体会到有的函数可能在整个定义域上单调,有的函数在定义域的某个区间上单调,函数的单调性是函数的局部性质.3. 利用定义证明函数x y =在()∞+,0上是增函数.(五)、小结1.判定函数单调性的方法:图象法,定义法;2.定义法步骤:取值,作差变形,定号,下结论;3.增(减)函数概念的形成,经历了哪些过程?4.凭借直观的图象,我们能判断函数的单调性,为什么还要用数学符号语言定义增(减)函数呢?在数学中,描述事物运动变化规律的数学模型是——函数,要把握相应事物的变化规律,就需要了解函数的变化规律,通过今天的学习,我们知道函数的变化规律可以用什么来描述呢?(函数的单调性以及函数的其它性质),所以,实际生活中,我们可以用它来分析事物的变化规律.(展示气温变化曲线图,股票走势图,GDP 走势图)设计意图:让学生体会数学在生活中有着广泛应用.(六)、课后作业:一、必做题:课本:39P A 组1,2;课时九;二、选做题:1.求函数xx y 1+=的单调区间,并用定义证明. 2.已知函数)(x f y =是定义在区间[]1,1-上的增函数,且)1()2(x f x f -<-,求x 的取值范围.3.已知函数22)(2+-=ax x x f 在区间(]6,∞-上是增函数,求实数a 的取值范围.。

相关文档
最新文档