2020年甘肃省定西市中考数学试卷-含详细解析
2020年甘肃省定西市中考数学试卷-解析版

2020年甘肃省定西市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列实数是无理数的是()C. √9D. √11A. −2B. 162.若α=70°,则α的补角的度数是()A. 130°B. 110°C. 30°D. 20°3.若一个正方形的面积是12,则它的边长是()A. 2√3B. 3C. 3√2D. 44.下列几何体中,其俯视图与主视图完全相同的是()A. B. C. D.5.下列各式中计算结果为x6的是()A. x2+x4B. x8−x2C. x2⋅x4D. x12÷x26.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A. 1.24米B. 1.38米C. 1.42米D. 1.62米7.已知x=1是一元二次方程(m−2)x2+4x−m2=0的一个根,则m的值为()A. 1B. −1或2C. −1D. 08.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A. 90°B. 100°C. 120°D. 150°9.如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分BC⏜,则DC的长为()A. 2√2B. √5C. 2√5D. √1010.如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP 的长度y 随着运动时间x 的函数关系如图②所示,则AB 的长为( )A. 4√2B. 4C. 3√3D. 2√2二、填空题(本大题共8小题,共24.0分)11. 如果盈利100元记作+100元,那么亏损50元记作______元. 12. 分解因式:a 2+a =______.13. 暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:______ 元暑假八折优惠,现价:160元14. 要使分式x+2x−1有意义,则x 应满足条件______.15. 在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有______个.16. 如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为______. 17. 若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为______cm(结果保留π).18. 已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是______.三、解答题(本大题共10小题,共66.0分)19. 计算:(2−√3)(2+√3)+tan60°−(π−2√3)0.20. 解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.21. 如图,在△ABC 中,D 是BC 边上一点,且BD =BA .(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.图①是甘肃省博物馆的镇馆之宝--铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为BA,在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米 1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).24.习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了______天;(2)这七年的全年空气质量优良天数的中位数是______天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:______.26.如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.如图,在平面直角坐标系中,抛物线y=ax2+bx−2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC//AB,求点P的坐标;(3)连接AC,求△PAC面积的最大值及此时点P的坐标.答案和解析1.【答案】D【解析】解:√9=3,则由无理数的定义可知,实数是无理数的是√11.故选:D.根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.本题考查了无理数,能熟记无理数的定义是解此题的关键,注意:无理数含有①含π的,②开方开不尽的根式,③一些有规律的数.2.【答案】B【解析】解:α的补角是:180°−∠A=180°−70°=110°.故选:B.根据补角的定义,两个角的和是180°即可求解.本题考查了补角的定义,理解定义是关键.3.【答案】A【解析】解:∵正方形的面积是12,∴它的边长是√12=2√3.故选:A.根据算术平方根的定义解答.本题考查了算术平方根,解题的关键是利用了正方形的性质和算术平方根的定义.4.【答案】C【解析】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;正方体的主视图、俯视图都是正方形,因此选项C符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;故选:C.根据圆锥、圆柱、正方体、三棱柱的主视图、俯视图矩形判断即可.本题考查简单几何体的三视图,理解三视图的意义,明确各种几何体的三视图的形状是正确判断的前提.5.【答案】C【解析】解:x2与x4不是同类项,不能合并计算,它是一个多项式,因此A选项不符合题意;同理选项B不符合题意;x2⋅x4=x2+4=x6,因此选项C符合题意;x12÷x2=x12−2=x10,因此选项D不符合题意;故选:C.根据合并同类项、同底数幂乘除法的性质进行计算即可.本题考查同底数幂的乘除法的计算法则,同类项、合并同类项的法则,掌握运算性质是正确计算的前提.6.【答案】A【解析】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,=0.618,∴ab∵b为2米,∴a约为1.24米.故选:A.根据雕像的腰部以下a与全身b的高度比值接近0.618,因为图中b为2米,即可求出a 的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.7.【答案】C【解析】解:把x=1代入(m−2)x2+4x−m2=0得:m−2+4−m2=0,−m2+m+2=0,解得:m1=2,m2=−1,∵(m−2)x2+4x−m2=0是一元二次方程,∴m−2≠0,∴m≠2,∴m=−1,故选:C.首先把x=1代入(m−2)x2+4x−m2=0解方程可得m1=2,m2=−1,再结合一元二次方程定义可得m的值.此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于0.8.【答案】C【解析】解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACD是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.连结AE,根据全等的性质可得AC=20cm,根据菱形的性质和等边三角形的判定可得△ACB是等边三角形,再根据等边三角形和菱形的性质即可求解.考查了菱形的性质,全等图形,等边三角形的判定与性质,解题的关键是得到△ACB是等边三角形.9.【答案】D【解析】解:∵点D在⊙O上且平分BC⏜,∴BD⏜=CD⏜,∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC=√22+42=2√5,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.先根据圆周角得:∠BAC=∠D=90°,根据勾股定理即可得结论.本题考查圆周角定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用勾股定理求线段的长,属于中考常考题型.10.【答案】A【解析】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或−2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.连接AE,由题意DE=OE,设DE=OE=x,则OA=OD=2x,AE=2√5,在Rt△AEO 中,利用勾股定理构建方程即可解决问题.本题考查动点问题,正方形的性质,解直角三角形等知识,解题的关键是理解题意读懂图象信息,属于中考常考题型.11.【答案】−50【解析】解:∵盈利100元记作+100元,∴亏损50元记作−50元,故答案为:−50.根据盈利为正,亏损为负,可以将亏损50元表示出来,本题得以解决.本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.12.【答案】a(a+1)【解析】【分析】本题考查了提取公因式法分解因式,正确得出公因式是解题关键.直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).13.【答案】解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.【解析】设广告牌上的原价为x元,根据现价=原价×折扣率,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.【答案】x≠1【解析】解:当x−1≠0时,分式有意义,∴x≠1,故答案为x≠1.当分式的分母不为零时,分式有意义,即x−1≠0.本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键.15.【答案】17【解析】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴xx+3=0.85,解得:x=17,经检验x=17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.根据口袋中有3个黑球,利用小球在总数中所占比例得出与试验比例应该相等求出即可.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.16.【答案】(7,0)【解析】解:∵A(3,√3),D(6,√3),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).利用平移的性质解决问题即可.本题考查坐标与图形变化−平移,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】π3【解析】解:设扇形的半径为R,弧长为l,根据扇形面积公式得;60π⋅R2360=π6,解得:R=1,∵扇形的面积=12lR=π6,解得:l=13π.故答案为:π.3lR,即可得出弧长.首先根据扇形的面积公式求出扇形的半径,再根据扇形的面积=12⋅l⋅R(l为扇形的弧长,R为半径),熟记扇形的面积本题考查了扇形的面积公式:S=12公式是解题的关键.18.【答案】2032【解析】解:当x<4时,原式=4−x−x+5=−2x+9,当x=1时,原式=7;当x=2时,原式=5;当x=3时,原式=3;当x≥4时,原式=x−4−x+5=1,∴当x分别取1,2,3,…,2020时,所对应y值的总和是:7+5+3+1+1+⋯+1=15+1×2017=2032.故答案为:2032.直接把已知数据代入进而得出变化规律即可得出答案.此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.19.【答案】解:原式=4−3+√3−1=√3.【解析】直接利用乘法公式以及特殊角的三角函数值、零指数幂的性质分别化简得出答案.此题主要考查了二次根式的混合运算,正确化简各数是解题关键.20.【答案】解:解不等式3x−5<x+1,得:x<3,解不等式2(2x−1)≥3x−4,得:x≥−2,则不等式组的解集为−2≤x<3,将不等式组的解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12AC,位置关系为:EF//AC.【解析】(1)根据尺规作基本图形的方法:①作∠ABC的角平分线交AD于点E即可;②作线段DC的垂直平分线交DC于点F即可.(2)连接EF,根据等腰三角形的性质和三角形中位线定理,即可写出线段EF和AC的数量关系及位置关系.本题考查了作图−复杂作图、线段垂直平分线的性质,解决本题的关键是掌握线段垂直平分线的性质.22.【答案】解:如图,设BG=x米,在Rt△BFG中,FG=BGtanβ=xtan42∘,在Rt△BDG中,DG=BGtanα=xtan31∘,由DG−FG=DF得,x tan31∘−xtan42∘=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.【解析】在两个直角三角形中,用BG表示DG、FG,进而用DG−FG=DF=5列方程求出BG即可.本题考查直角三角形的边角关系,用BG表示DG、FG是列方程求解的关键.23.【答案】解:(1)共有5种可能选择的结果,因此张帆一家选择“E:张掖七彩丹霞景区”的概率是15;(2)从A,B,C,D四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A、D两个景区的有2种,∴P(选择A、D)=212=16.【解析】(1)共有5种可能选择的结果,因此张帆一家选择“E:张掖七彩丹霞景区”只有1种,因此可求出概率;(2)列表法表示所有可能出现的结果,进而求出概率.考查列表法、树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.24.【答案】26 254【解析】解:(1)∵296−270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x−=17(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.(1)根据折线统计图可得2019年比2013年的全年空气质量优良天数增加的天数;(2)先将这七年的全年空气质量优良天数从小到大排列,即可得中位数;(3)根据表格数据利用加权平均数公式即可求这七年的全年空气质量优良天数的平均天数;(4)用80%×366即可得兰州市空气质量能达标的优良天数.本题考查了折线统计图、加权平均数、中位数,解决本题的关键是掌握折线统计图.25.【答案】3 函数y随x的增大而减小【解析】解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.(1)观察函数的自变量x与函数值y的部分对应值表可得当x=3时,y=1.5;(2)根据表中数值描点(x,y),即可画出函数图象;(3)观察画出的图象,即可写出这个函数的一条性质.本题考查了函数的图象、函数值、函数的表示方法,解决本题的关键是根据函数图象得函数的性质.26.【答案】解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°−∠OAB−∠ABO=120°,∴∠ACB=1∠AOB=60°;2(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.【解析】(1)连接OA,先由切线的性质得∠OAE的度数,再等腰三角形的性质得∠OAB=∠ABE=∠E,再由三角形内角和定理求得∠OAB,进而得∠AOB,最后由圆周角定理得∠ACB的度数;(2)设⊙O 的半径为r ,再根据含30°解的直角三角形的性质列出r 的方程求解便可. 本题主要考查了切线的性质,等腰三角形的性质,圆周角的性质,三角形内角和的性质,含30°角的直角三角形的性质,用方程思想解决几何问题,关键是熟悉掌握这些定理. 27.【答案】(1)证明:∵△ADN≌△ABE ,∴∠DAN =∠BAE ,DN =BE ,∵∠DAB =90°,∠MAN =45°,∴∠MAE =∠BAE +∠BAM =∠DAN +∠BAM =45°,∴∠MAE =∠MAN ,∵MA =MA ,∴△AEM≌△ANM(SAS).(2)解:设CD =BC =x ,则CM =x −3,CN =x −2,∵△AEM≌△ANM ,∴EM =MN ,∵BE =DN ,∴MN =BM +DN =5,∵∠C =90°,∴MN 2=CM 2+CN 2,∴25=(x −2)2+(x −3)2,解得,x =6或−1(舍弃),∴正方形ABCD 的边长为6.【解析】(1)想办法证明∠MAE =∠MAN =45°,根据SAS 证明三角形全等即可.(2)设CD =BC =x ,则CM =x −3,CN =x −2,在Rt △MCN 中,利用勾股定理构建方程即可解决问题.本题考查旋转变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.28.【答案】解:(1)抛物线y =ax 2+bx −2,则c =−2,故OC =2,而OA =2OC =8OB ,则OA =4,OB =12,故点A 、B 、C 的坐标分别为(−4,0)、(12,0)、(0,−2);则y =a(x +4)(x −12)=a(x 2+72x −2)=ax 2+bx −2,故a =1,故抛物线的表达式为:y =x 2+72x −2;(2)抛物线的对称轴为x =−74,当PC//AB 时,点P 、C 的纵坐标相同,根据函数的对称性得点P(−72,2);(3)过点P 作PH//y 轴交AC 于点H ,由点A、C的坐标得,直线AC的表达式为:y=−12x−2,则△PAC的面积S=S△PHA+S△PHC=12PH×OA=12×4×(−12x−2−x2−72x+2)=−2(x+2)2+8,∵−2<0,∴S有最大值,当x=−2时,S的最大值为8,此时点P(−2,−5).【解析】(1)抛物线y=ax2+bx−2,则c=−2,故OC=2,而OA=2OC=8OB,则OA=−4,OB=12,确定点A、B、C的坐标;即可求解;(2)抛物线的对称轴为x=−74,当PC//AB时,点P、C的纵坐标相同,即可求解;(3)△PAC的面积S=S△PHA+S△PHC=12PH×OA,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、面积的计算等,有一定的综合性,但较为容易.。
2023年甘肃省定西市中考数学试卷含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.9的算术平方根是( )A. 81B. 3C. −3D. 42.若a2=3b,则ab=( )A. 6B. 32C. 1 D. 233.计算:a(a+2)−2a=( )A. 2B. a2C. a2+2aD. a2−2a4.若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )A. −2B. −1C. −12D. 25.如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长于点E,则∠DEC=( )A. 20°B. 25°C. 30°D. 35°6.方程2x =1x+1的解为( )A. x=−2B. x=2C. x=−4D. x=47.如图,将矩形纸片ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为( )A. 2B. 4C. 5D. 68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是( )A. 该小组共统计了100名数学家的年龄B. 统计表中m的值为5C. 长寿数学家年龄在92−93岁的人数最多D. 《数学家传略辞典》中收录的数学家年龄在96−97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB与地面CD所成夹角∠ABC=50°时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF与地面的夹角∠EBC=( )A. 60°B. 70°C. 80°D. 85°10.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为( )A. (4,2√ 3)B. (4,4)C. (4,2√ 5)D. (4,5)二、填空题:本题共6小题,每小题3分,共18分。
2020年甘肃省定西市中考数学试卷附详细答案解析

2020年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A. B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115° B.120° C.135° D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c ﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570 10.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A. B. C. D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1= .12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2020的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= °.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2020个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的 A,B两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤100 50 0.25根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的 3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的 P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O 的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2020年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•白银)下面四个手机应用图标中,属于中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2020•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a 与n值是关键.3.(3分)(2020•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2020•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2020•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2020•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115° B.120° C.135° D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2020•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2020•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2020•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570 【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2020•白银)如图①,在边长为4cm的正方形ABCD 中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ 的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A. B. C. D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•白银)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2020•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2020•白银)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2020的值为0 .【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12020=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c 的值,本题属于基础题型.14.(3分)(2020•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= 58 °.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2020•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1 .【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2020•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2020•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2020•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8 ,第2020个图形的周长为6053 .【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2020个图形的周长为2+3×2020=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2020•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2020•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2020•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2020•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的 A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2020•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:甲乙 6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 14可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2020•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤100 50 0.25根据所给信息,解答下列问题:(1)m= 70 ,n= 0.2 ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的 3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的 3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2020•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的 P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D 以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2020•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF (ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2020•白银)如图,AN是⊙M的直径,NB∥x轴,AB 交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2020•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,∴S△ABN=BN•OA=(n+2)×4=2(n+2),∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
定西中考数学试题及答案

定西中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列哪个数是无理数?A. -3B. 0.3C. πD. √4答案:C2. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B3. 已知函数f(x) = 2x - 3,当x > 1时,f(x)的值域是什么?A. (-∞, -1)B. (-1, +∞)C. (1, +∞)D. [1, +∞)答案:B4. 一个长方体的长、宽、高分别是a、b、c,其体积V可以表示为:A. V = a + b + cB. V = ab + bc + acC. V = abcD. V = √(a^2 + b^2 + c^2)答案:C5. 已知圆的半径为r,圆的面积S可以表示为:A. S = πrB. S = πr^2C. S = 2πrD. S = r^2答案:B6. 一个数的相反数是它本身,这个数是什么?A. 1B. 0C. -1D. 2答案:B7. 若a、b互为倒数,则ab的值为:A. 0B. 1C. -1D. 2答案:B8. 一个数的绝对值是它本身,这个数是什么?A. 正数B. 负数C. 非负数D. 非正数答案:C9. 一个二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 + b^2D. a^2 - b^2答案:A10. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 2答案:C二、填空题(本大题共5小题,每小题4分,共20分。
请将答案填写在答题卡上。
)11. 如果一个数的平方等于9,那么这个数是_________。
答案:±312. 一个等腰三角形的底边长为6厘米,两腰相等,若腰长为5厘米,则其周长为_________厘米。
2020年甘肃省定西市中考数学试卷含答案解析(3)

2020年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=7.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD 的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共50分。
甘肃省定西市中考数学试卷及答案

甘肃省定西市中考数学试卷及答案(本试卷满分为150分,考题时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.图中几何体的主视图是2.下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2C .(2x 3)2=4x 9D .x 3+x 3=x3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.多项式2a 2-4ab +2b 2分解因式的结果正确的是A .2(a 2-2ab +b 2)B .2a (a -2b )+2b 2C .2(a -b ) 2D .(2a -2b ) 25.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 A .12 B .13 C .14 D .1 7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 A .13 B .12 C .34D .1 10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为a b 1C . B . A .D .正面A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-12=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲ .16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_▲ .(1)(2)EB D CE18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、BAED F中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题: (1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x(k >0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.第220题A BC D Ox y ABCD Oxyy =4x23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲乙型号 ABCDE单价(元/台)6000400025005000200025.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32.(1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.A B C QED OA B CDE GF O (1)AD E GF (2)数学试题参照答案及评分标准A卷(满分100分)一、选择题(满分40分)评分标准:答对一题得4分,不答或答错均得0分1.D 2.B 3.B 4.C 5.D 6.A 7.D 8.A 9.B10.C二、填空题(满分32分)评分标准:在每小题后的横线上填上最终结果,答对一题得4分,不答或答错和不是最终结果均得0分.11.7 13.5.2 14.(322)(2)570x x x--= 15.112.25或16.2 17.31x-<< 18.三、解答题(满分28分)19.Ⅰ.原式=2(1)(1)1x x xx--++·21xx-.=11x+·(1)(1)x xx+-=1xx-当2x=-时,原式=32(或当x==22)Ⅱ.解:(1)设直线1l与2l的交点为M,则由32y xy x=-+⎧⎨=⎩解得1,2.x y =⎧⎨=⎩∴(12)M ,.(2)设经过点A 且平行于2l 的直线的解析式为2.y x b =+ ∵直线1l 与x 轴的交点(30)A , ∴60b +=, ∴ 6.b =-则:所求直线的解析式为2 6.y x =-20.解:结论:四边形ABCD 是平行四边形. 证明:∵DF ∥BE . ∴∠AFD =∠CEB .又∵AF CE DF BE ==,, ∴△AFD ≌△CEB (SAS ). ∴AD CB =,∠DAF =∠BCE . ∴AD ∥CB .∴四边形ABCD 是平行四边形.说明:其它证法可参照上面的评分标准评分.21.Ⅰ.①15,34;10,16;22万; ②34(74%-6%)≈23(万人)③答案不唯一,只要符合题意均可得分. Ⅱ.解:点A 在双曲线4y x=上,且在△OBA 中,AB OB =,∠90OBA =°则4OB AB =. ∴2AB OB ==过点C 作CE ⊥x 轴于E CF ,⊥y 轴于F .设BE x =. 由在BCD △中90BC CD BCD ==,∠°.则CE x =. 又点C 在双曲线4y x=上 (2) 4.x x ∴+=解得10x x =>,,1.21)x OD ∴=∴=+=∴点D .B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.解:(1)由已知111(21)(40)(32)B C D -,,,,, (2)由勾股定理得:AC =则3)是方程210x ax ++=的一根,设另一根为0x ,则0x 3)=1.03x ==3)3)]a ∴=-+=-另解:23)3)10a a ++==,23.解:连接FG 并延长交AB 于M AC ,于N , BCE △和四边形ABCD 分别是正三角形和正方形..4530MN AB MN CD BAC ABE ∴⊥⊥=︒=︒,∠,∠∴设MF x =,则 1.x +=122.BCE ABF x S S S S ∴==∴--△△阴影正方形=112==另解:14BCDF S S S =-阴影正方形四边形1111()(12)4222264=---⨯-=24.解:(1)树状图如下:共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)=(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤得8880x --≤≤,不符合题意.当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ 得57.x ≤≤答:购买A 型号电脑可以是5台,6台或7台. 25.(1)连接OB BQ ,切O 于B ..OB BQ ∴⊥在Rt OBQ △中,92OQ BQ ==,32OB ∴==. 即O 的半径是32.(2)延长BO 交AC 于F .AB BC =则.AB BC BF AC =∴⊥,又AE 是O 的直径,90ACE ABE ∴==︒∠∠.BF CE ∴∥(另解:DBF OBA OAB DCE =∠=∠=∠∠) ..33521.3325BOD CED BO ODCE DEDE BO CE OD ∴∴=⨯∴===-△∽△∴在Rt ACE △中,3,1AE CE ==,则AC =又O 是AE 的中点,1122OF CF ∴==,则 2.BF = ∴在Rt ABF △中,12AF AC ==AB ∴=在Rt ABE △,BE =(如用ABQ BEQ △∽△及解Rt ABE △得AB BE ,,计算正确也得分) 故:四边形ACEB的周长是:1+26.解:(1)DEF △是边长为2OABC 中,2460OC BC COA AB x ===︒⊥,,∠,轴5,OA AB ∴==依题意:①当201t <≤时 ②222122)(2)422t S t t <<=--=--+时,③当25t S =≤≤时(2)由已知点(00)(1(5O C B ,,,设过点O 、C 、B 的抛物线的解析式为2.y ax bx =+则255a b a b =+=+,, 解得5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线的解析式为:255y x x =-+. ∴若存在点G ,使得DCA OABC S S =△梯形;此时,设点G 的坐标为2().55x x x -+,射线DF 与抛物线的交点在x 轴上方.2115()(54)22x ∴⨯⨯=⨯+化简得2690x x -+=,解得 3.x =则此时点(3G GH x ⊥,作轴于H ,则9cot 605DH GH =︒== ∴此时9192)55t =+=(秒 故:存在时刻195t =(秒)时,OAG △与梯形OABC 的面积相等.。
甘肃省定西市2020版中考数学试卷(I)卷

甘肃省定西市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)(2014·嘉兴) ﹣3的绝对值是()A . ﹣3B . 3C .D .2. (2分) (2017七下·单县期末) 下列计算正确的是()A . x3+x3=x6B . x3÷x4=C . (m5)5=m10D . x2y3=(xy)53. (2分) (2017七下·蒙阴期末) 若把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A .B .C .D .4. (2分)(2020·滨江模拟) 一次中学生田径运动会上,21名参加男子跳高项目的运动员成绩统计如下:成绩(m)1.501.551.601.651.70人数■86■1其中有两个数据被雨水淋湿模糊不清了,则在这组数据中能确定的统计量是()A . 平均数B . 中位数C . 众数D . 方差5. (2分)(2018·南宁模拟) 已知圆O的半径是3,A,B,C 三点在圆O上,∠ACB=60°,则弧AB的长是()A . 2πB . πC . πD . π6. (2分) (2018九下·湛江月考) 小明用一枚均匀的硬币进行试验,连续抛三次,结果都是正面朝上的概率是()A .B .C .D .7. (2分) (2015九上·平邑期末) 一元二次方程x2﹣4=0的解是()A . x1=2,x2=﹣2B . x=﹣2C . x=2D . x1=2,x2=08. (2分)(2017·河北模拟) 下列等式成立的是()A . + =B . =C . =D . =﹣9. (2分) (2017八下·鄂托克旗期末) 下列命题中,错误的是().A . 平行四边形的对角线互相平分B . 菱形的对角线互相垂直平分C . 矩形的对角线相等且互相垂直平分D . 角平分线上的点到角两边的距离相等10. (2分) (2019八上·江阴开学考) 下列命题是真命题的是()A . 三角形的三条高都在三角形的内部B . 平移前后图形的形状和大小都没有发生改变C . 两条直线被第三条直线所截,同旁内角互补D . 过一点有且只有一条直线与已知直线平行11. (2分) (2019九上·海淀月考) 如图,直线y x+3分别与x轴,y轴交于点A、点B ,抛物线y=x2+2x﹣2与y轴交于点C ,点E在抛物线y=x2+2x﹣2的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是()A . 4B . 4.6C . 5.2D . 5.612. (2分)如图,线段AB= 、CD= ,那么,线段EF的长度为()A .B .C .D .二、填空题: (共8题;共8分)13. (1分)最近,被称为“史上最大尺度反腐剧”的《人民的名义》引发全民追剧热潮,据统计某周日该剧平台单天播放量超过了惊人的45亿,请将数据45亿用科学记数法表示为________.14. (1分)若xy=1,x=4,则y=________.15. (1分)(2020·青岛) 计算的结果是________.16. (1分)(2018·抚顺) 甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下: =1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,________的成绩更稳定.17. (1分) (2016八下·江汉期中) 矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为________ cm.18. (1分)(2017·松北模拟) 如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD= ﹣1,则∠ACD=________°.19. (1分)(2016·包头) 如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y= (x<0)的图象经过点A,若S△ABO= ,则k的值为________.20. (1分) (2019九上·景县期中) 如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A'B'C',且点A在A'B'上,则旋转角为________。
甘肃省定西市2020版中考数学试卷C卷

甘肃省定西市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)﹣2的绝对值是()A . 2B .C .D .2. (2分)(2020·乐清模拟) 下列计算中,正确的是()A .B .C .D .3. (2分) (2019八上·威海期末) 一个多边形的内角和比外角和多540°,这个多边形为()A . 五边形B . 六边形C . 七边形D . 八边形4. (2分)某地统计部门公布最近5年国民消费指数增长率分别为8.5%、9.2%、9.9%、10.2%、9.8%.业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据比较小的是()A . 方差B . 平均数C . 众数D . 中位数5. (2分) (2018七上·宜昌期末) 如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A .B .C .D .6. (2分) (2018八上·深圳期中) 在平面直角坐标系中,点在第()象限A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)菱形具有而一般平行四边形不具有的性质是()A . 对边相等B . 对角相等C . 对角线互相垂直D . 对角线互相平分8. (2分) (2020八下·昆明期末) 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则下列表述正确的是()A . 当时,随的增大而增大B . 当时,随的增大而减小C . 当时,随的增大而增大D . 当时,随的增大而减小二、填空题 (共8题;共8分)9. (1分)立方等于-64的数是________10. (1分) (2019九上·莲湖期中) 若m、n是关于x的一元二次方程x2-x+2=0的两个实数根,则m+n=________.11. (1分)(2019·安顺) 若实数a、b满足|a+1|+ =0,则a+b=________.12. (1分) (2019八下·宜兴期中) 如图在□ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=52°,则∠B=________13. (1分)÷ · =________÷ ·________.14. (1分) (2017七下·河东期中) 如图,AB//CD,CB平分∠ABD,若∠C=35°,则∠D的度数为________.15. (1分)(2019·荆州) 如图①,已知正方体的棱长为,,,分别是,,的中点,截面将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为________ .16. (1分)(2020·乐东模拟) 如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P 从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为________时,BP与⊙O相切.三、解答题 (共9题;共91分)17. (5分)解不等式≤,并求出它的正整数解18. (5分)(2019·宜兴模拟) 如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.19. (5分)(2014·河池) 乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?20. (11分)(2017·冠县模拟) 为了方便居民低碳出行,2015年12月30日,湘潭市公共自行车租赁系统(一期)试运行以来,越来越多的居民选择公共自行车作为出行的交通工具,市区某中学课外兴趣小组为了了解某小区居民出行方式的变化情况,随机抽取了该小区部分居民进行调查,并绘制了如图的条形统计图和扇形统计图(部分信息未给出).请根据上面的统计图,解答下列问题:(1)被调查的总人数是________人;(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少?(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的有多少人?21. (10分)(2019·福州模拟) 如图,线段BC所在的直线是以AB为直径的圆的切线,点D为圆上一点,满足BD=BC,且点C、D位于直径AB的两侧,连接CD交圆于点E.点F是BD上一点,连接EF,分别交AB、BD于点G、H,且EF=BD.(1)求证:EF∥BC;(2)若EH=4,HF=2,求的长.22. (10分) (2018八上·确山期末) “魅力数学”社团活动时,张老师出示了如下问题:如图①,已知四边形ABCD中,AC平分∠DAB,∠DAB=120°,∠B与∠D互补,试探究线段AB,AD,AC之间的数量关系;小敏反复探索,不得其解,张老师提示道:“数学中常通过把一个问题特殊化来找到解题思路”,于是,小敏想,若将四边形ABCD特殊化,看如何解决问题:(1)特殊情况入手添加条件:“∠B=∠D”,如图②易知在Rt△CDA中,∠DCA=30°,所以,写出边AD与AC之间的数量关系,同理可得AB与AC的数量关系,由此得AB,AD,AC之间的数量关系;(2)解决原来问题受到(1)的启发,在原问题上,添加辅助线,过点C分别作AB,AD的垂线,垂足分别为E、F,如图③,请写出探究过程;(3)解后反思“一题多解”是数学解题的魅力之一,小敏在张老师的引导下,受探究结论的启发,结合图中的60°角,通过构造等边三角形,利用三角形全等同样解决了该问题,请在图①中作出辅助线,并简述你的探究过程.23. (10分)(2020·新都模拟) 如图,在平面直角坐标系中,一次函数与反比例函数的图象相交于两点,过点作轴于点D,,,B点的坐标为.(1)求一次函数和反比例函数的表达式;(2)求的面积;(3) P是y轴上一点,且是等腰三角形,请直接写出所有符合条件的P点坐标.24. (15分)(2020·射阳模拟) “全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:销售单价(元/千克)12162024日销售量(千克)220180140(注:日销售利润日销售量(销售单价成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围);(2)根据以上信息,填空:① ________千克;②当销售价格 ________元时,日销售利润最大,最大值是________元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.25. (20分)(2020·萧山模拟) 如图,在边长为6的正方形ABCD中,点E为边AD上的一个动点(与点A,D 不重合) ,∠EBM=45°,BE交对角线AC于点F,BM交于AC于点G,交CD于点M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⏜2020 年甘肃省定西市中考数学试卷一、选择题(本大题共 10 小题,共 30.0 分) 1. 下列实数是无理数的是( )A. −2B. 16C. √9D. √112. 若α = 70°,则α的补角的度数是( ) A. 130° B. 110° C. 30°3. 若一个正方形的面积是 12,则它的边长是( ) A. 2√3 B. 3 C. 3√2D. 20°D. 44.下列几何体中,其俯视图与主视图完全相同的是( )A.B. C. D.5. 下列各式中计算结果为x 6的是()A. x 2 + x 4B. x 8 − x 2C. x 2 ⋅ x 4D. x 12 ÷ x 26.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使 雕像的腰部以下 a 与全身 b 的高度比值接近0.618,可以增加 视觉美感.若图中 b 为 2 米,则 a 约为( ) A. 1.24米 B. 1.38米 C. 1.42米 D. 1.62米7. 已知x = 1是一元二次方程(m − 2)x 2 + 4x − m 2 = 0的一个根,则 m 的值为( ) A. 1 B. −1或 2 C. −1 D. 08.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节 A E 间的距离.若 AE 间的距离调节到 60cm ,菱形的边长AB = 20cm ,则∠DAB 的度数 是( )A. 90°B. 100°C. 120°D. 150°9.如图,A 是⊙ O 上一点,BC 是直径,AC = 2,AB = 4,A .B. √5C. 2√5D. √10点 D 在⊙ O 上且平分BC ,则 DC 的长为()第1页,共17页10.如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2二、填空题(本大题共8小题,共24.0分)11.如果盈利100元记作+100元,那么亏损50元记作______元.12.分解因式:a2+a=______.13.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:______元暑假八折优惠,现价:160元14.要使分式x+2有意义,则x应满足条件______.x115.在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有______个.16.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).△把OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为______.17.若一个扇形的圆心角为60°,面积为πcm2,则这个扇6形的弧长为______cm(结果保留π).18.已知y=√(x4)2x+5,当x分别取1,2,3,…,2020时,所对应y值的总和是______.三、解答题(本大题共10小题,共66.0分)19.计算:(2√3)(2+√3)+tan60°(π2√3)0.3x5<x+120.解不等式组:{2(2x1)≥3x4,并把它的解集在数轴上表示出来.21.如图,在△中,D是BC边上一点,且=.(1)尺规作图(保留作图痕迹,不写作法):①作∠的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.图①是甘肃省博物馆的镇馆之宝--铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度如图,雕塑的最高点B到地面的高度为BA,在测点C用仪器测得点B的仰角为,前进测量示意图一段距离到达测点E,再用该仪器测得点B的仰角为,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据的度数31°的度数42°CE的长度5米仪器()的高度1.5米D.请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高 度(结果保留一位小数). (参考数据:si n 31° ≈ 0.52,cos31° ≈ 0.86,tan31° ≈ 0.60, si n 42° ≈ 0.67,cos42° ≈ 0.74,tan42° ≈ 0.90)23. 2019 年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020 年 1 月,甘肃省已有五家国家 5A 级旅游景区,分别为 A :嘉峪关文物景区; B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E : 张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择 E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了 E :张掖七彩丹霞景区,他们再从 A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择 A , 两个景区的概率(要求画树状图或列表求概率).24. 习近平总书记于 2019 年 8 月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”近年来, 在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民 引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了______天;(2)这七年的全年空气质量优良天数的中位数是______天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=______时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:______.26.如图,⊙O△是ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.如图,在平面直角坐标系中,抛物线y=ax2+bx−2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC//AB,求点P的坐标;,求PAC面积的最大值及此时点P的坐标.(3)连接AC△答案和解析1.【答案】D【解析】解:√9=3,则由无理数的定义可知,实数是无理数的是√11.故选:D.根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.本题考查了无理数,能熟记无理数的定义是解此题的关键,注意:无理数含有①含π的,②开方开不尽的根式,③一些有规律的数.2.【答案】B【解析】解:α的补角是:180°−∠A=180°−70°=110°.故选:B.根据补角的定义,两个角的和是180°即可求解.本题考查了补角的定义,理解定义是关键.3.【答案】A【解析】解:∵正方形的面积是12,∴它的边长是√12=2√3.故选:A.根据算术平方根的定义解答.本题考查了算术平方根,解题的关键是利用了正方形的性质和算术平方根的定义.4.【答案】C【解析】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;正方体的主视图、俯视图都是正方形,因此选项C符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;故选:C.根据圆锥、圆柱、正方体、三棱柱的主视图、俯视图矩形判断即可.本题考查简单几何体的三视图,理解三视图的意义,明确各种几何体的三视图的形状是正确判断的前提.5.【答案】C【解析】解:x2与x4不是同类项,不能合并计算,它是一个多项式,因此A选项不符合题意;同理选项B不符合题意;x2⋅x4=x24=x6,因此选项C符合题意;x12÷x2=x12−2=x10,因此选项D不符合题意;故选:C.根据合并同类项、同底数幂乘除法的性质进行计算即可.本题考查同底数幂的乘除法的计算法则,同类项、合并同类项的法则,掌握运算性质是正确计算的前提.6.【答案】A△ ⏜ ⏜ ⏜【解析】解:∵雕像的腰部以下 a 与全身 b 的高度比值接近0.618,∴ a = 0.618,b∵ b 为 2 米,∴ a 约为1.24米.故选:A .根据雕像的腰部以下 a 与全身 b 的高度比值接近0.618,因为图中 b 为 2 米,即可求出 a 的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.7.【答案】C【解析】解:把x = 1代入(m − 2)x 2 + 4x − m 2 = 0得: m − 2 + 4 − m 2 = 0, −m 2 + m + 2 = 0,解得:m 1 = 2,m 2 = −1,∵ (m − 2)x 2 + 4x − m 2 = 0是一元二次方程, ∴ m − 2 ≠ 0, ∴ m ≠ 2, ∴ m = −1,故选:C .首先把x = 1代入(m − 2)x 2 + 4x − m 2 = 0解方程可得m 1 = 2,m 2 = −1,再结合一元 二次方程定义可得 m 的值.此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于 0. 8.【答案】C【解析】解:连结 AE ,∵ AE 间的距离调节到 60cm ,木制活动衣帽架是 由三个全等的菱形构成, ∴ AC = 20cm ,∵菱形的边长AB = 20cm , ∴ AB = BC = 20cm , ∴ AC = AB = BC ,∴△ ACD 是等边三角形, ∴ ∠B = 60°, ∴ ∠DAB = 120°.故选:C .连结 AE ,根据全等的性质可得AC = 20cm ,根据菱形的性质和等边三角形的判定可得 △ ACB 是等边三角形,再根据等边三角形和菱形的性质即可求解.考查了菱形的性质,全等图形,等边三角形的判定与性质,解题的关键是得到 ACB 是 等边三角形. 9.【答案】D【解析】解:∵点 D 在⊙ O 上且平分BC ,∴ BD = CD , ∵ BC 是⊙ O 的直径, ∴ ∠BAC = ∠D = 90°, ∵ AC = 2,AB = 4,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.先根据圆周角得:∠BAC=∠D=90°,根据勾股定理即可得结论.本题考查圆周角定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用勾股定理求线段的长,属于中考常考题型.10.【答案】A【解析】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或−2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.连接AE,由题意DE=OE,设DE=OE=x,则OA=OD=2x,AE=2√5,在Rt△AEO中,利用勾股定理构建方程即可解决问题.本题考查动点问题,正方形的性质,解直角三角形等知识,解题的关键是理解题意读懂图象信息,属于中考常考题型.11.【答案】−50【解析】解:∵盈利100元记作+100元,∴亏损50元记作−50元,故答案为:−50.根据盈利为正,亏损为负,可以将亏损50元表示出来,本题得以解决.本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.12.【答案】a(a+1)【解析】【分析】本题考查了提取公因式法分解因式,正确得出公因式是解题关键.直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).13.【答案】解:设广告牌上的原价为x元,x3=0.85,解得:x=200.故答案为:200.【解析】设广告牌上的原价为x元,根据现价=原价×折扣率,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.【答案】x≠1【解析】解:当x−1≠0时,分式有意义,∴x≠1,故答案为x≠1.当分式的分母不为零时,分式有意义,即x−1≠0.本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键.15.【答案】17【解析】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴x解得:x=17,经检验x=17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.根据口袋中有3个黑球,利用小球在总数中所占比例得出与试验比例应该相等求出即可.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.16.【答案】(7,0)【解析】解:∵A(3,√3),D(6,√3),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).利用平移的性质解决问题即可.本题考查坐标与图形变化−平移,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】π3【解析】解:设扇形的半径为R,弧长为l,根据扇形面积公式得;60π⋅R2=π,3606解得:R=1,∵扇形的面积=1l R=π,26解得:l=1π.3故答案为:π.3首先根据扇形的面积公式求出扇形的半径,再根据扇形的面积=1l R,即可得出弧长.2本题考查了扇形的面积公式:S=1⋅l⋅R(l为扇形的弧长,R为半径),熟记扇形的面积2公式是解题的关键.18.【答案】2032【解析】解:当x<4时,原式=4−x−x+5=−2x+9,当x=1时,原式=7;当x=2时,原式=5;当x=3时,原式=3;当x≥4时,原式=x−4−x+5=1,∴当x分别取1,2,3,…,2020时,所对应y值的总和是:7+5+3+1+1+⋯+1=15+1×2017=2032.故答案为:2032.直接把已知数据代入进而得出变化规律即可得出答案.此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.19.【答案】解:原式=4−3+√3−1=√3.【解析】直接利用乘法公式以及特殊角的三角函数值、零指数幂的性质分别化简得出答案.此题主要考查了二次根式的混合运算,正确化简各数是解题关键.20.【答案】解:解不等式3x−5<x+1,得:x<3,解不等式2(2x−1)≥3x−4,得:x≥−2,则不等式组的解集为−2≤x<3,将不等式组的解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】解:(1)如图,①BE即为所求;tanβ = tan42∘ , tanα = tan31∘ , tan42∘ = 5, −②如图,线段 DC 的垂直平分线交 DC 于点 F .(2) ∵ BD = BA ,BE 平分∠ABD ,∴点 E 是 AD 的中点,∵点 F 是 CD 的中点,∴ EF △是 ADC 的中位线,∴线段 EF 和 AC 的数量关系为:EF = 1 AC , 2 位置关系为:EF//AC .【解析】(1)根据尺规作基本图形的方法:①作∠ABC 的角平分线交 AD 于点 E 即可;②作线段 DC 的垂直平分线交 DC 于点 F 即可.(2)连接 EF ,根据等腰三角形的性质和三角形中位线定理,即可写出线段 E F 和 AC 的 数量关系及位置关系.本题考查了作图−复杂作图、线段垂直平分线的性质,解决本题的关键是掌握线段垂直 平分线的性质.22.【答案】解:如图,设BG = x 米,在Rt △ BFG中,FG = BG x 在Rt △ BDG 中,DG =BG x由DG − FG = DF 得,xxtan31∘ 解得,x = 9,∴ AB = AG + BG = 1.5 + 9 = 10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.【解析】在两个直角三角形中,用 BG 表示 DG 、FG ,进而用DG − FG = DF = 5列方程 求出 BG 即可.本题考查直角三角形的边角关系,用 BG 表示 DG 、FG 是列方程求解的关键.23.【答案】解:(1)共有 5 种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”的概率是1;5(2)从 A ,B ,C ,D 四个景区中任选两个景区所有可能出现的结果如下:12 = 1.x共有 12 种可能出现的结果,其中选择 A 、D 两个景区的有 2 种,∴ P (选择A 、D) =2 6【解析】(1)共有 5 种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”只 有 1 种,因此可求出概率;(2)列表法表示所有可能出现的结果,进而求出概率.考查列表法、树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确 解答的前提.24.【答案】26 254【解析】解:(1) ∵ 296 − 270 = 26,∴ 2019年比 2013 年的全年空气质量优良天数增加了 26 天;故答案为:26;(2) ∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是 254 天;故答案为:254;(3) ∵ − = 1 (213 + 233 + 250 + 254 + 270 + 296 + 313) ≈ 261(天), 7 则这七年的全年空气质量优良天数的平均天数为 261 天;(4) ∵全年空气质量优良天数比率达80%以上.∴ 366 × 80% = 292.8 ≈ 293(天),则兰州市空气质量优良天数至少需要 293 天才能达标.(1)根据折线统计图可得 2019 年比 2013 年的全年空气质量优良天数增加的天数;(2)先将这七年的全年空气质量优良天数从小到大排列,即可得中位数;(3)根据表格数据利用加权平均数公式即可求这七年的全年空气质量优良天数的平均天 数;(4)用80% × 366即可得兰州市空气质量能达标的优良天数.本题考查了折线统计图、加权平均数、中位数,解决本题的关键是掌握折线统计图. 25.【答案】3 函数 y 随 x 的增大而减小【解析】解:(1)当x = 3时,y = 1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.(1)观察函数的自变量x与函数值y的部分对应值表可得当x=3时,y=1.5;(2)根据表中数值描点(x,y),即可画出函数图象;(3)观察画出的图象,即可写出这个函数的一条性质.本题考查了函数的图象、函数值、函数的表示方法,解决本题的关键是根据函数图象得函数的性质.26.【答案】解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°−∠OAB−∠ABO=120°,∴∠ACB=1∠AOB=60°;2(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.【解析】(1)连接OA,先由切线的性质得∠OAE的度数,再等腰三角形的性质得∠OAB=∠ABE=∠E,再由三角形内角和定理求得∠OAB,进而得∠AOB,最后由圆周角定理得(2)设⊙O的半径为r,再根据含30°解的直角三角形的性质列出r的方程求解便可.本题主要考查了切线的性质,等腰三角形的性质,圆周角的性质,三角形内角和的性质,含30°角的直角三角形的性质,用方程思想解决几何问题,关键是熟悉掌握这些定理.27.【答案】(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x−3,CN=x−2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x−2)2+(x−3)2,解得,x=6或−1(舍弃),∴正方形ABCD的边长为6.【解析】(1)想办法证明∠MAE=∠MAN=45°,根据SAS证明三角形全等即可.(2)设CD=BC=x,则CM=x−3,CN=x−2,在Rt△MCN中,利用勾股定理构建方程即可解决问题.本题考查旋转变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.28.【答案】解:(1)抛物线y=ax2+bx−2,则c=−2,故OC=2,而OA=2OC=8OB,则OA=4,OB=1,2故点A、B、C的坐标分别为(−4,0)、(1,0)、(0,−2);2则y=a(x+4)(x−1)=a(x2+7x−2)=ax2+bx−2,故a=1,22故抛物线的表达式为:y=x2+7x−2;2(2)抛物线的对称轴为x=−7,4当PC//AB时,点P、C的纵坐标相同,根据函数的对称性得点P(−7,2);2(3)过点P作PH//y轴交AC于点H,1 1 1 71由点 A 、C 的坐标得,直线 AC 的表达式为:y = − 1 x − 2, 2△则 PAC 的面积S = △?? PHA + △?? PHC = 2 PH × OA = 2 × 4 × (− 2 x − 2 − x 2 − 2 x + 2) = −2(x + 2)2 + 8,∵ −2 < 0,∴ S 有最大值,当x = −2时,S 的最大值为 8,此时点P (−2, −5).【解析】(1)抛物线y = ax 2 + bx − 2,则c = −2,故OC = 2,而OA = 2OC = 8OB ,则OA = −4,OB = 1,确定点 A 、B 、C 的坐标;即可求解;2(2)抛物线的对称轴为x = − 7,当PC//AB 时,点 P 、C 的纵坐标相同,即可求解;4(3) △ PAC 的面积S = △?? PHA + △?? PHC = 2 PH × OA ,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、面积的计算等,有一定的综 合性,但较为容易.。