workbench中如何查看网格质量

合集下载

网格划分质量查看及总结!

网格划分质量查看及总结!

网格划分质量查看及总结!上节的一些补充,网格划分的环境配置:单元质量查看方法不良的单元形状会导致不准确的结果,然而到目前为止,还没有一个比较通用的标准来判定单元形状的好坏。

一种单元形状在一个分析中可能会带来不正确的结果,但在另外一个分析中又可能是完全能接受的,因而单元形状的好坏以及结果的准确性完全由用户根据经验或者相关行业规范进行判定和分析。

ANSYS网格质量评定指标介绍:评定网格质量的常见八个参数,他们分别是纵横比、对边偏差角、单元最大内角、雅克比比率、单元翘曲系数、网格质量系数、偏斜系数、正交质量系数。

总结为1. Aspect Radio(网格纵横比):其值越接近1,说明网格质量越好。

2. Parallel Deviation(对边偏角差):其值越接近0,说明网格质量越好。

3. Maximum Corner Angle(单元最大内角):三角形,越接近60度越好;四边形,越接近90度越好。

4. Jacobian Ratio(雅克比比率):其值越接近1,说明网格质量越好。

5. Wraping Factor(翘曲系数):其值越接近0,说明网格质量越好。

6. Mesh Metric(网格质量系数):其值越接近1,说明网格质量越好。

7. Skewness(偏斜系数):其值越接近0,说明网格质量越好。

8. Orthogonal Quality(正交质量系数):其值越接近1,说明网格质量越好。

如何只关心一部分区域的网格质量,例如应力集中地部位,网格划分的很细,整体的网格划分质量如何也便没有那么重要。

所以没有绝对的网格质量如何就可以或是不可以。

————————————————版权声明:本文为CSDN博主「是刃小木啦~」的原创文章,转载请附上原文出处链接及本声明。

ANSYS网格质量检查

ANSYS网格质量检查

A relatively “good” mesh in terms of max skewness, however the average and standard deviation are large
A-20
Appendix A: Mesh Quality
网格质量影响要素
• 膨胀
不适当的:
– – – – 表面网格质量 膨胀表面选择 膨胀选项 膨胀算法 (compression 或 stair-stepping层) – 膨胀参数 – 高级膨胀选项
好的
(OK)
可接受的
(ok)
可疑的
(!)
A-12
Appendix A: Mesh Quality
CFX网格正交性
•正交性度量由以下组成: • ip-face 法向向量, n, 与 • node-to-node 向量, s.
Training Manual
• 正交性椅子 = n· s, >1/3 想要的 • 正交角 = 90º -acos(n· s), >20º想要的 • 这不同于CFD后处理中Max/Min面角? YES!
A-9
Appendix A: Mesh Quality
求解中网格质量的影响
例子
网格 1
(max,avg)CSKEW=(0.912,0.291) (max,avg)CAR=(62.731,7.402)
Training Manual
VzMIN≈-90ft/min VzMAX≈600ft/min
Large cell size change
– 对六面体, 三角形和四边形: 应小于 0.8 – 对四面体: 应小于 0.9
• 差网格质量可能导致不精 确求解和缓慢收敛 • 一些程序可能要求比建议 值更低的偏斜值

ANSYS 13.0 Workbench 网格划分及操作案例

ANSYS 13.0 Workbench 网格划分及操作案例
对选中的实体可施加 6 种网格划分方法,如图 3­3 所示。
图 3­3 3D 实体网格划分方法
(1)自动划分网格【Automatic】:程序基于几何的复杂性,自动检测实体,对可以扫掠 的实体采用扫掠方法划分六面体网格,对不能扫掠划分的实体采用协调分片算法划分四面体 网格。
(2)四面体网格【Tetrahedrons】:生成四面体单元,采用基于 TGrid 的协调分片算法【Patch Conforming】和基于 ICEM CFD 的独立分片算法【Patch Independent】。
ANSYS 13.0 中,两种四面体算法都可用于零件、体及多体零件,也可用于膨胀层网格。 协调分片算法的分片面及边界考虑零件实体间的相互影响采用小公差,常用于考虑几何体的 小特征,可以用虚拟拓扑工具把一些面或边组成组,构成虚拟单元,从而减少单元数目,简 化小特征,简化载荷提取,因此如果采用虚拟拓扑工具可以放宽分片限制。
1)六面体域网格【Hex Dominant】:生成非结构化的六面体域网格,主要采用六面体单元, 但是包含少量棱锥单元和四面体单元,用于那些不能扫掠的体,常用于结构分析。也用于不 需要膨胀层及偏斜率和正交质量在可接受范围内的 CFD 网格划分。
使用方法为:导航树中选择【Mesh】,右击鼠标,选择【Insert】→【Method】,图形区选 择要划分的实体确认,明细窗口中设置【Method】=Hex Dominant,如图 3­7 所示。
图 3­8 显示可扫掠实体
在【Mesh】上单击右键,选择【Insert】→【Method】,图形区中确认要扫掠的实体,明细窗 口中设置【Method】=Sweep,如果对薄壁模型,补充设置薄层扫掠【Src/Trg Selection】=Automatic Thin,沿厚度的单元层数【Sweep Num Divs】=2,可以得到薄层扫掠网格,参见图 3­9 所示。

ANSYS网格质量检查

ANSYS网格质量检查

VzMIN≈-90ft/min VzMAX≈600ft/min
(max,avg)CSKEW=(0.801,0.287) (max,avg)CAR=(8.153,1.298)
网格 2
VzMIN≈-100ft/min VzMAX≈400ft/min
CFX网格质量考虑事项
• CFX求解器对网格质量要求和FLUENT 求解器有点不同,由于两个编码 的求解器结构的不同
FLUENT网格质量要求
• 对Fluent最重要的网格质量度量是:
– Skewness – Aspect Ratio – Cell Size Change (ANSYS 网格不能执行)
对所有或大多数程序: • Skewness:
– 对六面体, 三角形和四边形: 应小于 0.8 – 对四面体: 应小于 0.9
=
20.4 ok
Maximum Aspect Ratio
=
13.5 OK
Maximum Mesh Expansion Factor
= 700.4 !
好的
(OK)
可接受的
(ok)
可疑的
(!)
CFX网格正交性
•正交性度量由以下组成: • ip-face 法向向量, n, 与 • node-to-node 向量, s.
• Aspect Ratio:
– 应小于 40, 但取决于流体特性 – 膨胀层可容忍大于 50
• Cell Size Change:
– 应在1与2之间
• 差网格质量可能导致不精 确求解和缓慢收敛
• 一些程序可能要求比建议 值更低的偏斜值
Skewness 和 Fluent 求解器
• 不推荐高 skewness 值 • 一般保持体网格最大 skewness 值 < 0.95。而这个值和物理分析类型和单

网格质量检查

网格质量检查

网格质量检查【技术篇】网格质量检查2017-04-01 by:CAE仿真在线来源:互联网查看网格划分的质量,提供详尽的质量度量列表,如表所示,ANSYS ,可以查看网格度量图表,能够直观地在该图表下进行各种选项控制。

单元质量除了线单元和点单元以外,基于给定单元的体积与边长的比值计算模型中的单元质量因子,该选项提供一个综合的质量度量标准,范围为0~1,1代表完美的正方体或正方形,0 代表单元体积为零或负值。

纵横比纵横比对单元的三角形或四边形顶点计算长宽比,参见图,理想单元的纵横比为1,对于小边界、弯曲形体、细薄特性和尖角等,生成的网格中会有一些边远远长于另外一些边。

结构分析应小于20,如四边形单元警告限值为 20,错误限值为1E6。

雅克比率除了线性的三角形及四面体单元,或者完全对中的中间节点的单元以外,雅可比率计算所有其他单元,高雅克比率代表单元空间与真实空间的映射极度失真。

雅可比率检查同样大小尺寸下,二次单元比线性单元更能精确地匹配弯曲几何体。

在尖劈或弯曲边界,将中边节点放在真实几何体上则会导致产生边缘相互叠加的扭曲单元。

一个极端扭曲单元的雅可比行列式是负的,而具有负雅可比行列式的单元则会导致分析程序终止。

所有中边节点均精确位于直边中点的,正四面体的雅可比率为1.0。

随着边缘曲率的增加,雅可比率也随之增大。

单元内一点的雅可比率是单元在该点处的扭曲程度的度量,雅可比率小于等于 40 是可以接受的。

翘曲因子对某些四边形壳单元及六面体、棱柱、楔形体的四边形面计算,参见图,高翘曲因子暗示程序无法很好地处理单元算法或提示网格质量有缺陷。

理想的无翘曲平四边形值为 0,对薄膜壳单元的错误限值为 0.1,对大多数壳单元的错误限值为 1,但Shell181 允许承受更高翘曲,翘曲因子的峰值可达 7,对这类单元,翘曲因子为5 时,程序给出警告信息。

一个单位正方体的面产生22.5°及45°的相对扭曲,相当于产生的扭曲因子分别为 0.2及 0.4。

检查网格质量好坏的标准

检查网格质量好坏的标准

检查网格质量好坏的标准.txt21春暖花会开!如果你曾经历过冬天,那么你就会有春色!如果你有着信念,那么春天一定会遥远;如果你正在付出,那么总有一天你会拥有花开满圆。

如何检查网格质量,用什么指标来说明网格好不好呢?怎么控制?一般是什么原因造成的? 一般也就是,网格的角度,网格变形的梯度等等吧判断网格质量的方面有很多,不知你用的是什么软件,下面总结的是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。

Area单元面积,适用于2D单元,较为基本的单元质量特征。

Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1.Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。

Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。

EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。

最好是要控制在0到0.4之间。

EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。

2D质量好的单元该值最好在0.1以内,3D单元在0.4以内。

MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Size Change相邻单元大小之比,仅适用于3D单元,最好控制在2以内。

Stretch伸展度。

通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Taper锥度。

仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。

流体有限元分析的网格评价标准

流体有限元分析的网格评价标准

流体有限元分析的网格评价标准基于ANSYS Workbench流体有限元分析的网格质量评价ANSYS Workbench的网格剖分平台有两个:一个是集成在 Workbench平台上的高度自动化网格划分工具Meshing,另一个是高级专业几何网格划分工具ICEM CFD。

一、Meshing 网格评估统计Meshing网格设置可以在Mesh下进行操作,单击模型树中的Mesh图标,在出现的【Details of “Mesh”】参数设置面板中的【Statistics】中进行网格统计及质量评价的相关设置,图1为【Statistics】面板,显示了Nodes节点数、Elements单元数、Mesh Metric网格质量等。

图1 【Statistics】面板用Meshing进行网格划分完成后,可以在Mesh Metric下拉菜单中选择相应的网格质量检查工具来检查划分网格的质量好坏。

对于用于流体分析的的网格,一般在此检查Skewness(偏斜)和Orthogonal(正交品质)。

Skewness的值位于0和1之间,0最好,1最差。

流体分析的网格一般保证其值最大值(Max)小于0.95,如图2所示。

图2 查看网格Skewness值Orthogonal的值位于0和1之间,0最差,1最好。

流体分析的网格一般保证其值最小值(Min)高于0.1,如图3所示。

图2 查看网格Orthogonal值二、ICEM CFD网格检查及评价ICEM CFD的网格质量检查,可通过【Edit Mesh】菜单下的【Display Mesh Quality】查询(划分结构化网格时,【Blocking】菜单下也有相应的按钮)。

流体分析时(结构化网格)用的最多的为determinant 2×2×2,角度angle检查作为辅助参考:图3 Display Mesh Quality行列式:determinant行列式检查通过计算每一个六面体的雅可比行列式值然后标准化行列式的矩阵来表征单元的变形。

【流体】ANSYSmeshing网格划分之-上手1-3Dtube网格划分

【流体】ANSYSmeshing网格划分之-上手1-3Dtube网格划分

【流体】ANSYSmeshing网格划分之-上手1-3Dtube网格划分在之前的入门文章《ANSYS meshing 网格划分之 - 入门1 - 3D 几何边界命名》中,我们用中间放置有阻流器的tube作为例子学会边界命名操作。

本章在此基础上,依然采用此tube几何文件为例,正式上手学习ANSYS meshing三维网格划分。

1. 几何命名好之后,在workbench工作界面,左键按住Geometry模块的第二栏,不要放松鼠标,拉到Mesh模块的第二栏中,然后鼠标放开。

两个模块之间出现一条蓝色的连接线,表示已经成功将几何导入到Mesh模块中。

2. 鼠标左键双击Mesh模块第三栏的Mesh,打开mesh软件界面。

工作界面和其他软件基本一样,在划分网格时,主要注意的窗口有如下:3. 调整透明度。

当几何导入到Mesh模块中时,有时是半透明显示,但是有时候是不透明显示,如上图所示。

这样就看不到tube里面的结构,因此,需要将几何调整到透明状态,方便后面操作。

4. 网格划分。

Mesh模块是ANSYS的网格划分工具之一,能够划分CFD网格,CAE分析网格和电磁分析网格。

所以需要指定划分类型,软件会帮您将一些默认参数进行调整,更好划分网格。

本章是划分CFD网格,导入到Fluent软件中使用。

ANSYS Meshing模块划分网格的设置,基本都是通过鼠标右键设计树中的Mesh选择,即上面图片中的1所指,包括体网格、面网格、线网格等划分选择。

然后在底部的Details窗口中设置相关参数。

由于管子的直径只有14mm,所以需要将网格划分总参数进行修改,如下图。

网格划分总参数有许多,将会在后续文章中一一讲解,现在是先按照本文走一遍网格划分,熟悉操作。

选择四面体网格划分方法。

鼠标右键设计树中的Mesh,选择Method。

在Details中选中几何,Method选Tetrahedrons四面体网格。

因为这是流体流动,所以需要对壁面划分边界层网格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在details of mesh下有一项mesh metric,默认的是none。

点开后,就会看到里面有几个检查项目:Element Quality, Aspect Ratio, Jacobian Ratio, Warping Factor, Parallel Deviation, Maximum Corner Angle, 和Skewness。

下面做一点简单的介绍,详细内容请参考HELP
1.png(18.49 KB, 下载次数: 15)
在Geometry下选择某个体,我们就可以只对这个体上的网格进行检查。

png(17.06 KB, 下载次数: 9)
第一项是element quality。

这是基于一个给定单元的体积与边长间的比率。

其值处于0和1
之间,0为最差,1为最好。

第二项为aspect ratio。

对于三角形,连接一个顶点跟对边的中点成一条线,再连另两边的中点成一条线,最后以这两条线的交点为中点构建两个矩形。

之后再由另外两个顶点构建四个矩形。

这六个矩形中的最长边跟最短边的比率再除以sqrt(3)。

最好的值为1。

值越大单元越差。

对四边形而言,通过四个中点构建两个四边形,aspect ratio就是最长边跟最短边的比率。

同样最好的值为1。

值越大单元越差。

第三项,Jacobian Ratio。

在单元的一些特定点上计算出雅可比矩阵行列式。

其值就是最大值跟最小值的比率。

1最好。

值越大就说明单元越扭曲。

如果最大值跟最小值正负号不同,直接赋值-100。

第四项,warping factor。

主要用于检查四边形壳单元,以及实体单元的四边形面。

其值基于单元跟其投影间的高差。

0说明单元位于一个平面上,值越大说明单元翘曲越厉害。

第五项,parallel deviation。

在一个四边形中,由两条对边的向量的点积,通过acos得到一个角度。

取两个角度中的大值。

0最好。

第六项,maximum corner angle。

最大角度。

对三角形而言,60度最好,为等边三角形。

对四边形而言,90度最好,为矩形。

第七项,skewness。

是最基本的网格质量检查项,有两种计算法,Equilateral-Volume-Based Skewness 和Normalized Equiangular Skewness。

其值位于0跟1之间,0最好,1最差。

在选定检查项后,我们还可以查看这一项的最差单元。

3.png(18.22 KB, 下载次数: 8)
最差单元由红线标出,但这个时候我们看得并不是很清楚
4.png(61.31 KB, 下载次数: 14)
还好在V12中网格显示也得到改善。

选择wireframe显示模式,是不是看得更清楚些?
5.png(49.09 KB, 下载次数: 11)。

相关文档
最新文档