材料加工原理8-41精品资料
材料加工原理课件

车床
• 能够加工中小孔以及薄 壁管材
• 适用于黑心铸件、铸锭 等材料
磨床
• 将零件磨成规定的形状 和尺寸
• 适用于制作精密零件的 加工工具
案例分析
1 创新成型技术
通过引入计算机数字控制技术,创造出对计算机程序控制成型、整体车削加工等全新加 工程序。
2 高速切削技术
运用高速减摩来提高切削效率和精度,并降低温度和成本。
3 悬臂梁加工
通过悬臂的方式,增加机械加工的运动自由度和机械性能,快速完成工艺。
课程总结
观念变革
要把握知识和技术的最新变化,灵活运用创新 思维,注重产品质量与市场需求。
实践操作
不断提高自身的能力,通过实践和交流,进一 步提高自己的加工技巧和知识水平。
原理概述
材料本质
材料加工原理是连续弹性加工和塑性加工相结合的物理过程,对材料本身的特点和力学性能 有很高的要求。
成形技术
通过变形和分离来形成所需材料的几何尺寸和表面特征,成为成形加工技术。
加工方法
1
机加工
包括车、铣、刨等,能够应对不同材料的需求。
2
锻压成型
通过冲压和挤压将钢材等材料变成所需形状,广泛应用于大量生产中。
3
热加工
如高温形变,热轧,热锻等,能够改变材料的性质和结构。
加工工艺
冷拔工艺
通过金属材料的塑性变形,实现 长轴向尺寸的压缩。
炼钢工艺
将生铁和轧钢坯中的杂质去除或 控制,达到制造出优质钢铁的目 的。
铸造工艺
将熔化后的金属注入预先准备好 的铸模中,通过冷却定形为所需 要的金属制品。
加工工具与设备
铣床
材料热加工原理

材料热加工原理材料热加工是指通过加热和变形来改善材料的性能和形状的加工方法。
热加工可以使金属材料变得更加柔软,易于加工,同时也可以改变材料的组织结构和性能,使其具有更好的力学性能和耐磨性。
在工程领域中,热加工是一种常见的加工方法,它广泛应用于铸造、锻造、热轧、热挤压等工艺中。
热加工的基本原理是利用高温对金属材料进行加热,使其达到一定的塑性,然后通过外力使其发生塑性变形,从而改变其形状和性能。
热加工的原理主要包括以下几个方面:1. 材料的塑性变形。
在高温下,金属材料的塑性会大大增加,这是因为高温可以使金属晶粒的结构发生变化,使其形成一种较为柔软的状态,从而使得金属材料更容易发生塑性变形。
在热加工过程中,金属材料会受到外力的作用,从而发生塑性变形,改变其形状和性能。
2. 材料的组织结构变化。
在热加工过程中,金属材料的组织结构也会发生变化。
在高温下,金属材料的晶粒会发生再结晶,从而使其晶粒尺寸变大,晶界移动,晶粒形状发生变化,这些都会影响材料的性能。
通过控制热加工过程中的温度、变形速率等参数,可以使金属材料的组织结构得到精细化和均匀化,从而提高材料的力学性能和耐磨性。
3. 热加工的应用。
热加工广泛应用于金属材料的加工和制造过程中。
例如,在铸造过程中,通过对金属熔体进行热处理,可以使其达到一定的流动性,从而便于铸造成型;在锻造过程中,通过对金属坯料进行加热,可以使其变得更加柔软,从而便于进行塑性变形;在热轧和热挤压等工艺中,也需要对金属材料进行加热处理,以便于进行变形加工。
总之,材料热加工是一种重要的加工方法,通过控制热加工过程中的温度、变形速率等参数,可以使金属材料的组织结构得到精细化和均匀化,从而提高材料的力学性能和耐磨性。
在工程领域中,热加工被广泛应用于铸造、锻造、热轧、热挤压等工艺中,为材料加工和制造提供了重要的技术支持。
材料加工原理课件课件

欢迎来到材料加工原理课件!本课程将带你深入了解材料加工的基本原理和 各种工艺,展示最新的技术和行业趋势。让我们开始探索吧!
材料加工原理介绍
1
加工基础
解释什么是材料加工以及其在工业生产中的重要性。
2
物质结构
探索不同材料的结构和性质对加工过程的影响。
3
加工参数
介绍影响加工质量和效率的关键参数。
了解车削的基本原理以及用于粗加工和精加工的不同类型。
2
铣削
探索铣削的原理和用途,以及不同刀具类型的特点。
3
钻削
介绍钻削工艺及其在孔加工中的应用。
塑性加工及其原理
挤压
了解挤压工艺以及在制造连续性截面的材料中 的应用。
冲压
介绍冲压工艺及其在快速制造大批量零件中的 应用。
拉伸
探索拉伸过程中材料的行为和塑性变形的机制。
基本材料加工工艺
1 铸造
了解铸造工艺以及其在制造复杂形状和大型 件和热量改变材料的形状。
3 成型
4 切削制造
介绍常见的成型工艺,如挤压、拉伸和压缩, 以及它们的应用。
讨论切削工艺及其在制造各种形状的零件时 的作用。
热加工及其原理
焊接
了解不同类型的焊接工艺和焊接过程中的热能转化。
锻压
讨论锻压的原理和用途,以及在制造高强度零 件时的优势。
材料焊接及其原理
电弧焊接
了解电弧焊接的原理、设备和常 见应用。
激光焊接
探索激光焊接技术的原理和在高 精度制造中的应用。
摩擦焊接
介绍摩擦焊接的原理以及在异种 材料连接中的优势。
材料压缩及其原理
1 挤压
了解压缩的原理和在制造复杂形状和构件中 的应用。
材料加工原理课件

随着个性化需求的增加,未来材料加工将更加注重个性化与定制化, 满足不同用户的需求。
THANKS
感谢观看
04
材料加工设备与、落砂机、抛丸机等,用于生产砂型铸件。
特种铸造设备
如金属型铸造机、离心铸造机、连续铸造机等,适用于特定类型的铸件生产。
焊接设备
手工焊接设备
包括焊枪和焊条,适用于手工焊接金属材料。
自动焊接设备
如焊接机器人、焊接专机等,能够实现自动化焊接,提高生产效率。
电子信息产业
医疗器械制造
材料加工在电子信息产业中广泛应用,涉 及芯片制造、电子封装、PCB板制造等领域, 是现代电子产品的核心技术之一。
材料加工在医疗器械制造中具有重要作用, 如钛合金、医用不锈钢等材料的加工制造, 对医疗技术的发展起到关键作用。
材料加工新技术与新工艺
增材制造
增材制造技术通过逐层堆积材料来制造三维实体,具有个 性化定制、高效、节能等优点,是现代制造技术的重要发 展方向。
对流换热定律
在流体流动过程中,流体与固体壁面之间的热量 交换速率与表面积、温差及流体的性质有关。
辐射换热定律
物体之间相互辐射和吸收热量,其交换速率与物 性、温度、波长等因素有关。
传质学原理
扩散定律
物质在静止或缓慢流动的流体中传递 的速率与该物质的浓度梯度和扩散系 数成正比。
对流传质定律
在流动的流体中,溶质传递的速率与 浓度梯度、流体流动的速度、扩散系 数及质量作用系数成正比。
钎焊
使用熔点低于母材的金属作为钎料,将母材连接在一起。
塑性加工技 术
轧制
01
通过旋转轧辊将金属板材轧制成各种形状和尺寸的板材和管材。
锻造
高分子材料加工原理

高分子材料加工原理一、高分子材料加工原理:1.高分子材料的加工性质:1)、高分子材料的加工性:高分子具有一些特有的加工性质,如良好的可塑性,可挤压性,可纺性和可延性。
正是这些加工性质为高分子材料提供了适于多种多样加工技术的可能性,也是高分子能得到广泛应用的重要原因。
高分子通常可以分为线型高分子和体型高分子,但体型高分子也是由线型高分子或某些低分子物质与分子量较低的高分子通过化学反应而得到的。
线型高分子的分子具有长链结构,在其聚集体中它们总是彼此贯穿、重迭和缠结在一起。
在高分子中,由于长链分子内和分子间强大吸引力的作用,使高分子表现出各种力学性质。
高分子在加工过程所表现的许多性质和行为都与高分子的长链结构和缠结以及聚集态所处的力学状态有关。
根据高分子所表现的力学性质和分子热运动特征,可将其划分为玻璃态、高弹态和粘流态,通常称这些状态为聚集态。
高分子的分子结构、高分子体系的组成、所受应力和环境温度等是影响聚集态转变的主要因素,在高分子及其组成一定时,聚集态的转变主要与温度有关。
不同聚集态的高分子,由于主价健与次价健共同作用构成的内聚能不同而表现出一系列独特的性质,这些性能在很大程度上决定了高分子材料对加工技术的适应性,并使高分子在加工过程表现出不同的行为。
高分子在加工过程中都要经历聚集态转变,了解这些转变的本质和规律就能选择适当的加工方法和确定合理的加工工艺,在保持高分子原有性能的条件下,能以最少的能量消耗,高效率地制备良好的产品。
玻璃态高分子不宜进行引起大变形的加工,表现为坚硬的固体,但可通过车、铣、削、刨等进行加工。
在玻璃化温度Tg以下的某一温度,材料受力容易发生断裂破坏,这一温度称为脆化温度,它是材料使用的下限温度。
在Tg以上的高弹态,高分子的模量减少很多,形变能力显著加大。
在Tg-Tf温度区靠近Tf,由于高分子的粘性很大,可进行某些材料的真空成型、压力成型、压延和弯曲成型等。
把制品温度迅速冷却到Tg以下温度是这类加工过程的关键。
材料加工原理课件

材料加工技术面临的挑战
技术创新不足
当前材料加工技术的发展面临着技术创新不足的挑战。新 的材料加工技术需要不断探索和研究,需要加大科研力度 和资金投入。
人才短缺
随着材料加工技术的不断发展,人才短缺问题逐渐凸显。 培养具备专业技能和创新能力的材料加工人才成为当前的 重要任务。
成本压力
随着材料加工技术的精密化、智能化发展,生产成本不断 提高。如何在保证产品质量和性能的同时降低生产成本是 当前材料加工技术面临的重要挑战。
电子领域应用
半导体制造
半导体制造是电子领域的关键环节,其中材料加工技术如薄膜沉积、光刻和刻 蚀等是必不可少的。这些技术可以制造出高度集成的半导体芯片。
电子封装
电子封装中,材料加工技术如金属引线框架的制作和焊接等是关键。这些技术 可以确保电子产品的可靠性和性能。
建筑领域应用
钢结构制造
建筑领域中,钢结构是常见的结构形式之一。为了确保钢结构的安全性和稳定性 ,材料加工技术如切割、弯曲和焊接等是必不可少的。
案例三:高强度钢焊接工艺研究
总结词
高强度钢焊接工艺研究可以提高焊接质量和效率,降 低成本。
详细描述
高强度钢焊接工艺研究主要包括优化焊接参数、选择合 适的焊接方法和采用先进的焊接设备等。优化焊接参数 可以控制熔池温度、冷却速度和热影响区等,提高焊接 质量和效率。选择合适的焊接方法可以适应不同的材料 类型和厚度要求,例如激光焊接、电子束焊接和气体保 护焊等。采用先进的焊接设备可以实现自动化和机器人 焊接,提高生产效率和质量稳定性。此外,高强度钢焊 接工艺研究还可以涉及焊接缺陷检测和修复技术,以确 保产品质量。
推动科技进步
材料加工技术的发展不断推动着科 技进步,促进新材料、新工艺和新 设备的研发和应用。
材料加工技术的基本原理和应用

材料加工技术的基本原理和应用材料加工技术是现代工业生产的重要基础之一,通过对各种材料进行加工,可以制造出各种复杂的零部件和设备,大大提高了人们生产和生活的便利性。
在材料加工技术中,有许多的基本原理和应用需要掌握,下面我们就来详细了解一下这些内容吧。
一、基本原理1.1 金属材料加工原理金属材料加工原理是指通过一系列工艺和加工设备来改变金属材料的形状和性能,使其符合特定的设计要求。
金属材料加工原理主要包括塑性变形、切削加工和热加工等方面。
其中,塑性变形包括挤压、拉伸、压缩和扳动等加工方式。
切削加工则是通过下切削、横向切削和斜向切削等方式来加工金属材料。
热加工则是通过工件和设备的热变形来加工金属材料,主要包括热挤压、热轧和热拉伸等方式。
1.2 非金属材料加工原理非金属材料加工原理主要包括挤压、拉伸、压缩和扳动等方式。
比如说,塑料加工过程中,通过一系列的挤压、拉伸和压缩等方式,来改变材料的形状和性能。
另外,非金属材料的切削和热加工与金属材料有所不同,采用的工艺和设备也有所差别。
二、应用方向2.1 金属材料加工技术在汽车工业中的应用汽车工业是金属加工技术的一个重要应用领域,通过各种材料的加工和组装,可以完成整个汽车的生产制造过程。
在汽车工业中,金属材料加工技术主要应用于车身部件的加工和制造、发动机及变速器的加工和制造、悬挂和制动系统的加工和制造等方面。
其中,钣金加工、铸造加工和焊接加工是汽车工业中最为常见的加工技术。
2.2 金属材料加工技术在电子工业中的应用电子工业也是金属加工技术的一个重要应用领域,通过各种材料的加工和制造,可以完成整个电子产品的生产制造过程。
在电子工业中,金属材料加工技术主要应用于电容器、电感、变压器、继电器和半导体等电子元件的制造过程中。
金属材料的加工方式有钣金加工、铸造加工、冷锻加工、热压加工和切削加工等,它们都可以实现对电子空间进行复杂的形状和性能的加工。
2.3 非金属材料加工技术在建筑工程中的应用随着建筑工程的大规模发展,在建筑材料的加工和制造过程中,非金属材料加工技术得到了广泛应用。
gbt88041-2003热塑性塑料管材拉伸性能测[资料]
![gbt88041-2003热塑性塑料管材拉伸性能测[资料]](https://img.taocdn.com/s3/m/e0e99265f342336c1eb91a37f111f18583d00c89.png)
GBT88041-2003 热塑性塑料管材拉伸性能测pdf文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
G T 0 .1 2 0 B/ 8 4 - 0 3 8前GBT 4 0 3热塑性塑料管材 0-20《 / 8 8言拉伸性能测定》分为三个部分 :—第 1 部分 : 试验方法总则 ; —第2 部分 : 聚氯乙烯(VCU)抓化聚抓乙烯 (VCC 和高抗冲聚抓乙烯( V - 硬 P - , P -) P CHD管材 ; —第3 部分 : 烃管材 . 聚烯本部分为G / 80-20 的第 1 BT 4 03 8 部分. 等同采用 I 65-: 9 S 29 1 7热塑性塑料管材拉伸性 O 1 9能测定第 I 部分 : 试验方法总则》 .本部分与 G / 80. 0 和 BT 43 0 一起, BT 42 03 G / 80. 03 8 -2 8 -2 代替G / 80. 80.-180 BT 41 842 98 8本标准与 B T 4 98 G / 80- 18 相比, 8 主要变化如下 : 1 本标准在结构上分为三个部分 , G / 80- 18 是由两个部分组成 : 而 B T 4 98 8 - GBT 4 1 98 热塑性塑料管材拉伸性能试验方法聚氯乙烯管材》 0.-18《 / 8 8 — - 98 热塑性塑料管材拉伸性能试验方法聚乙始管材》 0. 19K G / 8 42 B T 8 2 .原标准中试样状态调节时间为 4h而现在改为根据试样的厚度来确定 ; , 3 试样的数量由 5 改为由公称外径来确定 ; 个 4 增加了原理一章 ; 5 增加了附录 A, 本部分的附录 A 为资料性附录. 本标准由中国轻工业联合会提出.本标准由全国塑料制品标准化委员会(C8 . T 4) 归口本部分由华亚芜湖塑胶有限公司负责起草 , 福建亚通新材料科技股份有限公司参加起草 . 本部分主要起草人 : 高仅雨 , 周令仁 , 魏作友 .Gs T 0 . - 2 0 / 8 4 1 03 8引言IO 5 S 6 9的第一部分规定了一种用于确定热塑性塑料管材拉伸性能的短期性能的试验方法 . 2 本方法为进一步的研究与开发提供数据 . 当力的应用条件和本试验方法有相当大的差别时 ,本试验方法不能作为应用的重要依据 , 应用此类需要相应的冲击 , 和疲劳试验蠕变拉伸性能试验方法应主要为材料制成管材后进行试验 , 试验结果能对材料加工控制有利 , 能作但不为管材长期性能的质量评定依据. IO 5 是在 IO 7基础上起草制定的. S 6 9 2 S 5 2 为使用方便起 , 草了用于确定热塑性塑料管材拉伸性能的完整文件 , 如需要更详细 , 参见可I O 2 S 5 7,应当注意的是 IO 7 S 5 应用于材料制成片材形式 , IO 5 应用于材料制成管状形式 . 2 而 S 6 9 2 应考虑到只用所提供的管材进行测试 , 例如不减少壁厚 , 困难在于试验试样的选择. IO 7 S 5 规定了试样为几毫米厚 , 2 而管材的壁厚可达到 6 mm, 0 正是这个原因, 两标准之间有一定的差别 .对薄壁管材 , 试样可用裁刀裁切 ; 对于厚壁管材只有通过机械加工制样 IO 5 S 6 9由三部分组成, 2 第一部分总则 , 规定了热塑性塑料管材拉伸性能测定的一般条件 , 余两其部分分别给出了不同材料管材的试验步骤 ( 见前言) . 对于各种材料的基本规定在相关的部分中以资料性附录给出.GB T 84 / 80热塑性塑料管材拉伸性能测定第 1 部分 : 试验方法总则范围G / 80 的本部分规定了热塑性塑料管材的拉伸性能的试验方法 ,4 BT 8 拉伸性能主要包括以下性能 : —拉伸屈服应力 ; —断裂伸长率. 本部分适用于各种类型的热塑性塑料管材 . 2 规范性引用文件下列文件中的条款通过本部分的引用而成为本部分的条款.凡是注日期的引用文件 , 随后所有其的修改单 ( 不包括勘误的内容) 或修订版均不适用于本部分 , 然而, 鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本.凡是不注日期的引用文件 , 新版本适用于本部分. 其最 G / 3 0 92 6- 18 数据的统计处理和解释均值的估计和置信区间(e IO 0 :90 B T 3 nq 2 218 ) S 6 G / 8 42 0 0. 03 热塑性塑料管材拉伸性能测定第 2 B T 8 -2 部分 : 聚氯乙烯 (VCU)氯化聚硬 P - , 抓乙烯( V - ) P CC 和高抗冲聚抓乙烯 ( V - ) P CHI管材( t S 65- :97 i IO 92 19) d 2 G / 80.-20 43 03 热塑性塑料管材拉伸性能测试第 3 BT 8 部分: 聚烯烃管材(t 65-: 9) ( IO 931 7 i S 2 d 9GB/ 1 20 7 0 - 1 9 橡腔期料拉力 , 力 , 曲试验机 T 97 压弯原理枯犬要隶 (d IO 8 3 1 9 ) it 5 9 9 3 S沿热塑性塑料管材的纵向裁切或机械加工制取规定形状和尺寸的试样 .通过拉力试验机在规定的条件下测得管材的拉伸性能 .设备41 拉力试验机 . 应符合 G / 1 0 B T 20和 42434 4 7 . ,. ,. 的规定 .42 夹具 .用于夹持试样的夹具连在试验机上 , 使试样的长轴与通过夹具中心线的拉力方向重合 .试样应夹紧, 使它相对于夹具尽可能不发生位移. 夹具装置系统不得引起试样在夹具处过早断裂.43 负载显示计 . 拉力显示仪应能显示被夹具固定的试样在试验的整个过程中所受拉力 , 它在一定速率下测定时不受惯性滞后的影响且其测定的准确度应控制在实际值的士1 %范围内.注意事项应按照 G / 120 B T 0 7的要求 .44 引伸计 . 测定试样在试验过程中任一时刻的长度变化 .此仪表在一定试验速度时必须不受惯性滞后的影响且能测量误差范围在 1 %内的形变.试验时, 此仪表应安置在使试样经受最小的伤害和变形的位置 , 且它与试样之间不发生相对滑移 . 夹具应避免滑移 , 以防影响伸长率测量的精确性.注: 用自动记录试样的长度变化或任何其他变化的仪表推荐使4 .5 测量仪器GB T 0 . 2 0 / 8 4 1 03 8 -用于测量试样厚度和宽度的仪器 , 精度为 00 mm, . 146 裁刀 .应可裁出符合 G / 80 . G / 80. B T 42 8 或 B T 43中的相应要求的试样 . 8 47 制样机和铣刀 . 应能制备符合 G / 842 G / 80. B T 0. B T 43中相应要求的试样 . 8 或 85 试样5 1 试样要求 . 试样应符合 B T 42 G / 80 . 或 G / 80 . 8B T 43中相应要求的试样类型. 8 52 试样的制备 . 52 1 从管材上取样条 .. 从管材上取样条时不应加热或压平, 样条的纵向平行于管材的轴线 , 取样位置应符合 a或 b的要求. ) ) a 公称外径小于或等于 6 mm 的管材 ) 3 取长度约 5 mm的管段. 10 以一条任意直线为参考线 , 沿圆周方向取样 .除特殊情况外 , 每个样品应取三个样条 , 以便获得三个试样( 见表 1 . )公称外径 d / mm 样条数1<4<7 5 53表 1 取样数量7<4<20 5 8520 d<40 8蕊 55d 妻40 58b 公称外径大于 6 mm 的管材 ) 3 取长度约 5 m 10 的管段 . m 如图 1 所示沿管段周边均匀取样条 . 除另有规定外 , 按表 1应中的要求根据管材的公称外径把管段沿圆周边分成一系列样条, 每块样条制取试样 1 . 片1 —2— 3 —扇形块;样条; 试样.GB T 8 4 1 2 0 / 8 0 . 0 3 - 5 2 2 试样的选择 .. 522 1 选择……根据不同材料制品标准的要求 , 选择采用冲裁或机械加工方法从样条中间部位制取试样 . 5222 冲裁方法…… 应按照 G / 8 4 2 B T 0. G / 80. 8 或 B T 43中所要求的外形 , 8 选择合适的没有刻痕 , 口干净的裁刀刀(.) 46 ,从样条 ( 21上冲裁试样. ..) 5 5223 机械加工方法 ,.. 用机械加工方法制取试样 , 需采用铣削 . 铣削时应尽量避免使试样发热 , 避免出现如裂痕 , 刮伤及其他使试样表面品质降低的可见缺陷 .注 : 于机械加工程序建议用户参考 10 1( 关 S 2 8见附录 w 8 )5224 标线…… 从中心点近似等距离划两条标线 , 标线间距离应精确到 10 0, 划标线时不得以任何方式刮伤, 冲击或施压于试样 .以避免试样受损伤 .标线不应对被测试样产生不良影响 , 标注的线条应尽可能窄 . 5225 试样数量……除相关标准另有规定外 , 样应根据管材的公称外径按照表 1中所列数目进行裁切 . 试状态调节除生产检验或相关标准另有规定外 , 试样应在管材生产 1h之后测试.试验前根据试样厚度 , 5 应将试样置于2℃ 士2 3 ℃的环境中进行状态调节 , 时间不少于表 2 规定.管材壁厚 e m / -e <3 - 3 e < 8 < m 8 e,< 6 1 成 . ,衰 2 状态调节时间状态调节时间1h 5 i 士 mn 3 h 1 mi 土 5 n 6h 3 mi 士 0 n 1 h 士 1h 0 1 h 士 1h 61<e -<3 6 23镇e , 2 m试验速度试验速度和管材的材质和壁厚有关. 按产品标准或 G / 80. G / 80. BT 42 BT 43 8 或 8 的要求确定试验速度co 氏歇 8. 3试验步骤试验应在温度2℃ 士2 3 ℃环境下按下列步骤进行 . 测量试样标距间中部的宽度和最小厚度 , 精确到 .0 mm, .1 计算最小截面积 . 将试样安装在拉力试验机上 (.) 41并使其轴线与拉伸应力的方向一致 , 夹具松紧适宜以防止试使样滑脱 (.) 42 e 84 使用引伸计 , . 将其放置或调整在试样的标线上 (. ) 44 , 85 选定试验速度进行试验 . . 86 记录试样的应力/ . 应变曲线直至试样断裂 , 并在此曲线上标出试样达到屈服点时的应力和断裂时标距间的长度 ; 或直接记录屈服点处的应力值及断裂时标线间的长度 . 如试样从夹具处滑脱或在平行部位之外渐宽处发生拉伸变形并断裂 , 应重新取相同数量的试样进GB T 8 4 1 2 0 / 8 0 . 0 3 - 行试验 . 9 试验结果9 1 拉伸屈服应力 . 对于每个试样, 拉伸屈服应力以试样的初始截面积为基础 , 按式( 劝计算 .式中:a= F A/ ········……(1) ········ ······ ··. 拉伸屈服应力, 单位为兆 M a) 帕( P0 ;F —屈服点的拉力 , 单位为牛顿 ( ; N) A 样的原始截面积 , —试单位为平方毫米( m'. m ) 所得结果保留三位有效数字.注: 屈服应力实际上应按屈服时的截面积计算, 为了方便,但通常取试样的原始截面积计算.9 2 断裂伸长率 . 对于每个试样, 断裂伸长率按式 () 2计算 .式中 :£ ( 一L)L X = L o o 0 / 1 0 ·,·""·"… …( ) ······· . 2: 断裂伸长率 , —单位为 %; L —断裂时标线间的长度 ,单位为毫米 ( m) m ; L—标线间的原始长度, o 单位为毫米 ( m) m , 所得结果保留三位有效数字 93 统计参数 .如有要求可按 G / 36 中 BT 0 所示程序计算标准偏差和平均值的 9 置信度. 3 59 4 补做试验 . 如果所测的一个或多个试样的试验结果异常应取双倍试样重做试验 , 如五个试样中的两个试样例结果异常 , 则应再取四个试样补做试验. 1 试验报告 0 试验报告应包括下列内容 :a BT 4 ) / 80 的本部分及相关部分; G 8b 试样的详细标识包括原材料组成, ) 类型 , 源, 来公称尺寸等 ; c 试样的类型及其制备方法; ) d 试验室环境温度及试样的调节方法 ; ) e 试样数量; ) f 试验速度 ; ) 9 拉伸屈服应力 , ) 注明单个值 , 算术平均值和标准偏差 ; h 断裂伸长率 , ) 注明单个值 , 算术平均值和标准偏差 ;i BT 0 中 ) / 8 4 未规定的操 G 8 作详细情况及可能对结果产生影响的任何情况, 存在于试样上和断裂的截面中的任何特殊细节( 譬如杂质) ; 1 试验日 . ) 期1 1 P- 1 / ) M N mm'GB T 8 4 1 2 0 / 8 0 .- 0 3附录参考资A 料( 料性附录) 资A 1B T 1- 19 塑料试样状态调节和试验的标准环境( t 2 119 ) . G / 2 8 98 9 i IO :97 d S 9 A 2 S 57119 塑料 . IO -:93 2 A 3 S 57219 塑料 . IO -;93 2 拉伸性能测试方法拉伸性能测试方法第1 部分 : 方法测试第2 部分 : 塑与挤出管材的测试环境模时针旋转法 (q IO 2 : ev 3 7 S 1A 4 S 21 :94 塑料机械加工试样的制备 . IO 8 19 8 A 5B T 12 0 1 热塑性塑料管材耐外冲击性能试验方法 . G / 1 5-20 41 4) 991。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类:宏观粗糙界面的凝固(S-L界面呈割裂的锯齿状)
枝晶状(海绵状)凝固(网状结构)
机制:宏观S-L界面连续,界面推进方向与传热方向相反。
热量通过固相向环境散失。凝固速率取决于传热速率
形貌:等轴晶
14
内生凝固: 特点:既可以在界面凝固,也可在金属液内部进行。
糊状凝固(表面和中心凝固速率相差不大)
a)铸件断面温度平坦 b)结晶温度范围很宽——凝固动态曲线上的两相边
界纵向间距很大
6
3、中间凝固(结晶范围较窄或铸件断面温度梯度较大的合金) 如果合金的结晶范围较窄, 或因铸件断面的温度梯度 较大,铸件断面上的凝固 区域介于前两者之间时, 属于“中间凝固方式”。
7
中间凝固方式特点:凝固初期似逐层凝固——凝 固后期似糊状凝固 a)结晶温度范围较窄 b)铸件断面的温度梯度较大
4
2、体积凝固(铸件断面温度场较平坦或结晶范围较宽的合金)
如果合金的结晶 温度范围很宽,或因 铸件铸件断面温度场 较平坦,铸件凝固的 某一段时间内,其凝 固区域很宽,甚至贯 穿整个铸件断面,而 表面温度高于固相温 度,这种情况为“体积 凝固方式”,或称为“糊 状凝固方式”。
5
体积凝固方式(糊状凝固方式)特点:
在合金结晶温度范围已定的前提 下,凝固区域的宽窄取决与铸件 内外层之间的温度差。若铸件内 外层之间的温度差由小变大,则 其对应的凝固区由宽变窄 。
梯度很大的温度场,可以使宽结晶温度范围的合金按中间凝 固方式凝固(加高碳钢在金属型中凝固),甚至按逐层凝固方 式凝固。很平坦的温度场,可以使窄结晶温度范围的合金按 体积凝固方式凝固。所以,温度梯度是凝固方式的重要调节 因素。
a. 右边的晶体已连成骨架,但液 体还能在其间移动,为限制迁移带
b. 左边的已接近固相温度,固相 占绝大部分,骨架之间的少量液体 被分割成互补沟通的小“熔池”, 为显微迁移带
液固部分:液相占优势 固液部分:固相占优势
2
二、铸件的凝固方式及其影响因素
铸件凝固方式一般分为三种:逐层凝固、体积凝固和中间凝固。 1、逐层凝固(纯金属或共晶成分合金的凝固方式)
共晶类合金
共晶成分合金 近共晶成分合金
窄结晶温度范围合金
低碳钢 锡青铜 结晶温度范围小的黄铜
金属浇入铸型后,首先 在型壁处过冷,形成激冷层 ,然后按柱状晶的形势紧密 生长,固相界面前沿为平面 推进的方式.
16
由于凝固前沿直接与液态金属接触,当 液态凝固成为固态而发生体积收缩时, 可以不断地得到液体的补充,所以: (1)产生分散缩松的倾向小,而是在铸件 最后凝固部位留下集中缩孔,设置冒口 易消除,因此其合金的补缩特性良好; (2)这类合金铸件在凝固过程中当收缩受 阻而产生晶间裂纹时,也容易得到金属 液的充填,使裂纹愈合,所以铸件的热 裂倾向小。 (3)如果这类合金在充型过程中发生凝固 时,也具有较好的充型能力。
11
工业纯铝(99%Al)在砂型和金属型中铸造时所测得的温度场合凝固动态曲线
将它在砂型中的凝固动态 曲线与上图中低碳钢的相 应曲线比较则可看到,虽 然工业纯铝的结晶温度范 围为6度,比低碳钢的22度 小得多,但是低碳钢为逐 层凝固方式,而工业纯铝 却已体积凝固方式进行凝 固。其原因是铝的凝固温 度低、结晶潜热和导热系 数大,铸件断面的温度场 平坦。
24
2、宽结晶温度范围的合金
这类合金铸件的 凝固区域宽,液态金 属的过冷很小,容易 发展为树枝发达的粗 大等轴晶组织。
铝、镁合金 铝铜合金 铝镁合金 镁合金
铜合金 锡青铜 铝青铜 结晶温度范围大黄铜
铁碳合金 高碳钢 球墨铸铁
在凝固区域中靠近固相前沿先形成一
批晶粒周围产生溶质富集,停止生长,
分类:
形壳凝固(表面凝固速率>中心)
机制:宏观S-L界面分散,界面推进方向与传热方向相同。
热量通过液相向环境散失。凝固速率取决于液相过 冷度。
形貌:等轴晶
15
三、结晶温度范围对铸件凝固过程的影响
1、窄结晶温度范围的合金 包括纯金属、共晶成分合金和其它窄结晶温度范围的合金
纯金属
工业用铜 工业用锌 工业用锡
§8-4 铸件的凝固方式
一、铸件凝固区域及其结构
铸件凝固过程中,除 纯金属和共晶成分合 金外,断面上一般都 存在三个区域:
部分状态图
固相区
凝固区
固相区
液相区
液相区
凝固区
1
宽结晶温度范围内合金的凝固区域
1)液固部分 凝固的晶体处于悬浮状态 而未连成一片,固相可以 自由移动,为宏观迁移带。
2)固液部分
8
影响铸件凝固方式的因素
1. 合金的结晶温度范围
以二元共晶相图为例说明
1. 逐层凝固 2. 中间凝固 3. 糊状凝固
1 23
温度 温度
成分
固
表层
液
中心
液相线
液相线
固相线
S
固
液
表层
凝固区
中心
表层 中心
合金的结晶温度范围愈小,凝固区域愈窄,愈倾向于逐层凝固 。
9
以 碳 钢 为 例 说 明
10
2、铸件的温度梯度的影响
恒温下结晶的金属, 在凝固过程中其铸件断面 上的凝固区域宽度等于零, 断面上的固体和液体由一 条界线清晰地分开,随着 温度的下降,固体层不断 加厚,逐步到达铸件中心, 此为“逐层凝固方式”。
3
逐层凝固方式特点:无凝固区或凝固区很窄 凝固动态曲线上的两相边界的纵向间距很小或是无 条件重合。
a)恒温下结晶的纯金属或共晶成分合金 b)结晶温度范围很窄或断面温度梯度很大
图2-16 工业纯铝铸件断面的温度场(a)和凝固动态曲线(图b)
12
综上,铸件的凝固方式由结晶温度范围和温 度梯度共同决定:
tc 1
t
tc 1
t
趋于体积凝固 趋于逐层凝固
13
根据近代凝固理论,又把工业上常用的金属的凝固方式 分成两大类:外生凝固和内生凝固
外生凝固: 特点:凝固层从金属液-铸型界面向中心推进。
17
( 一 ) 缩孔的形成
18
( 一 ) 缩孔的形成
19
( 一 ) 缩孔的形成
20
( 一 ) 缩孔的形成
21
( 一 ) 缩孔的形成
22
( 一 ) 缩孔的形成
23
( 一 ) 缩孔的形成
铸件产生集中缩孔的基本原因 金属的液态收缩和凝固收缩之和大于固态收缩 ; 产
生集中缩孔的条件是铸件由表及里逐层凝固。缩孔一般 集中在铸件顶部或最后凝固的部位 , 如果在这些部位设 置冒口 , 缩孔将被移入冒口中。