初二上册一次函数的变换第12讲
初二数学-第12讲 一次函数k,b与图象关系

第十二讲 一次函数k,b 与图象关系【知识要点】1.一次函数)0(≠+=k b kx y 中,k (斜率):倾斜程度,b (截距):与y 轴交点坐标, 一次函数图像:一条交x 轴(0,b ),y 轴(kb-,0)的直线; 2.正比例函数的图像(kx y =的图像)是一条过原点(0,0)的直线。
3.正比例函数,一次函数具有相同的性质: ①当k >0时,y 随x 的增大而增大; ②当k <0时,y 随x 的增大而减小;||k 越大,直线与x 轴相交所成的锐角越大. 4.一次函数b kx y +=的图像与k 、b 的符号关系如下表:★同一平面内,两直线111与222的位置关系可由系数决定:①相交与2221l l k k ⇔≠ ②()平行222121//l l b b k k ⇔⎩⎨⎧≠=③重合与=222121l l b b k k ⇔⎩⎨⎧= ④()点,轴上相交与与=12221210b y l l b b k k ⇔⎩⎨⎧≠【经典例题】【例1】在直角坐标系内分别作出下列函数的图像: ① 42+=x y ② 421+-=x y ③ 42-=x y ④ 421--=x y并写出函数与坐标轴交点坐标及与坐标轴所围成面积总结:两直线平行的条件:两直线垂直的条件: 。
小结:函数y kx b =+的图像与坐标轴围成的三角形的面积为22b k。
【例2】已知一次函数)4()36(-++=n x m y 。
求:①m 为何值时,y 随x 的增大而减小;②m 、n 满足什么条件时,函数图像与y 轴的交点在x 轴下方; ③m 、n 分别为何值时,函数图像经过原点; ④m 、n 满足什么条件时,函数图像不经过第二象限。
【例3】①直线y kx b =+,经过一、二、四象限,到直线y bx k =-的图象只能是( )②设b >a ,将一次函数y=bx+a 与y=ax+b 的图象画在平面直角坐标系内,则有一组a 、b 的取值,使得下列四个图中的一个为正确的是( )③当00<,>ac ab ,直线0ax by c ++=不通过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 ④已知abc ≠0,且p acb bc a c b a =+=+=+,那么直线p px y +=一定经过( )。
第12讲 一次函数

【即时应用】
若直线y=x+3与直线y=2x-1的交点坐标为(4,7),
x 4, x y 3, 则方程组 的解为______ y 7. 2x y 1
【核心点拨】
1.理解一次函数的定义应注意以下三个方面:
(1)形式:y=kx+b;(2)条件:k≠0;(3)实质:函数y是自变量x 的一次式. 2.正比例函数都是一次函数,但一次函数不一定是正比例函数. 3.一次函数的增减性由k的符号决定,与b的符号无关.
2
3.①y=x2+5x;②y=2π r;③y=
②⑤⑥ ⑤y=( 2 3 )x+1;⑥s=30t.其中是一次函数的是_______,是 ②⑥ 正比例函数的是_____.(只填序号)
10 ;④y=kx+b; x
二、一次函数的图象和性质
1.一次函数y=kx+b(k,b是常数,k≠0)的图象和性质
k,b符号
4.(2012·怀化中考)如果点P1(3,y1),P2(2,y2)在一次函数y=2x-
1的图象上,则y1_______y2(填“>”“<”或“=”).
【解析】∵一次函数关系式为y=2x-1,∴y随x的增大而增大, 又∵3>2,∴y1>y2. 答案:>
5.如图,直线y=- 3 x+3与x轴、y轴分别交于A,B两点,则△AOB
【即时应用】 0 1.一次函数y=-2x+b的图象过原点,则b=__.
2.在直线y=2x+1上有两个点(x1,y1)和(x2,y2),且x1>x2,则 > y1___y2. 3.将直线y=-x+1向下平移两个单位后,所得直线的解析式为 y=-x-1 _______. > > 4.直线y=(k-2)x+b+1经过第一、二、三象限,则k___2,b___-1.
第12讲_一次函数

2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(_____),(______) 0,0 1,k 一条直线 的_________。 b b b.一次函数y=kx+b(k≠0)的图象是过点(0,___),(____, 一条直线 0)的__________。 k c.一次函数y=kx+b(k≠0)的图象与k,b符号的关系:
5.(2010·黔南州中考)已知正比例函数 y=kx(k≠0)的图象如图所示,则在下列选 项中k值可能是( (A)1 (C)3 ) (B)2 (D)4
3
【解析】选B.若正比例函数y= kx经过(3,5),此时k= 5 ;若 经过(2,6)此时k=3,由图象可知 5 <k<3,故选B.
3
二、填空题(每小题6分,共24分) 6.已知y是x的一次函数,下表给出了部分对应值,则m的值 是_____.
> k___0,b___0 >
> < k___0,b___0
< > k___0,b___0
< < k___0,b___0
3.一次函数的性质
一次函数y=kx+b(k ≠ 0)的性质: 增大 ⑴当k>0时,y随x的增大而_________。 减小 ⑵当k<0时,y随x的增大而_________。
例:点A(5,y1)和B(2,y2)都在直线y= -x+1上,则y1与 y2的关系是( ) C A、y1≥ y2 B、y1= y2 C、y1<y2 D、y1>y2
11.(12分)如图,已知一次函数y=kx+b的图象经过A(-2, -1),B(1,3)两点,并且交x轴于点C,交y轴于点D,
(1)求该一次函数的解析式;
第12讲一次函数复习PPT课件

当b=0 时,y=kx+b 即为 y=kx,
所以正比例函数,是一次函数的特例.
(1)若y=5x3m-2是正比例函数,m= 1 。 (2)若 y (m 2)xm23 是正比例函数,m= -2 。
考点2、正比例函数与一次函数的图象与性质
正比例函数y=kx的图象与性质
(1)图象:正比例函数y= kx (k 是常 数,k≠0)) 的图象是经过原点的一条直线, 我们称它为直线y= kx 。
1、通过近三年潍坊中考考点的展示及连接中考环节,体验潍坊中考对一次函 数的考查。 2、通过一次函数知识网络的整理,整体把握本讲的知识构成。 3、通过考点精讲及例习题,进一步加深以下知识点的认知及应用:
(1)一次函数及正比例函数的概念。 (2)一次函数的图象及性质。 (3)用待定系数法求一次函数的解析式。 (4)一次函数的实际应用。 4、通过检测过关环节反馈本讲知识的达标情况,及时查缺补漏。
4.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位 置正确的是 ( C)
A
B
C
D
5.(202X·安徽第20题)如图,一次函数y=kx+b的图象分别与反比例函数y= a x
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= a 的表达式; x
【答案】 (1)由图象可知,当x=4 h时,y=380 km,故从小刚家到该景区乘车一共用了 4小时. (2)设直线AB的函数关系式为y=kx+b, 由题意可知:A(1,80),B(3,320),
∴
∴线段AB的解析式为y=120x-40(1≤x≤3). (3)小刚一家出发2.5小时时处于AB段,把x=2.5代入y=120x-40,得y=120×2.540=260(km), 380-260=120(km). 所以小刚一家出发2.5小时时离目的地120 km.
第12讲一次函数

考点知识精讲
考点三 一次函数图象的性质
一次函数y=kx+b,当k>0时,y随x的增大而 增大 ,图象一定经 过第 一、三 象限;当k<0时,y随x的 增大 而减小,图象一定经过第 二、四 __________象限. 考点四 一次函数的应用
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量 ;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解 决问题;⑤答.
第12讲 一次函数
考点知识精讲
考点一 一次函数的定义
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b= 0 时,一次函数y=kx+b就成为 y=kx(k是常数,
正比例函数. k≠0),这时,y叫做x的______________. 1.由定义知:y是x的一次函数⇔它的解析式是 y=kx+b ,其中k 、b是常数,且k≠0. 2.一次函数解析式y=kx+b(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是1;(3)常数项b可为任意实数. 3.正比例函数解析式y=kx(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是 1 ;(3)没有常数项或者说常数项为 0 .
6.如右图所示,直线l过A、B两点,A(0,-1),
B(1,0),则直线l的解析式为
y=x-1 .
举
一
反
三
7.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山 顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路
长的2倍.小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180
b =5 , 2 解得 k=1, 4
1 5 所以 y 乙= x+ . 4 2
初二数学上册第12讲一次函数63张 ppt课件

2020/12/27
4
2012版中考数学复习指导
2020/12/27
5
2012版中考数学复习指导
2020/12/27
6
2012版中考数学复习指导
结合近几年中考试题分析,一次函数内容的考查主要有 以下特点:
1.命题方式为一次函数的图象特点、性质、解析式的确 定及实际应用,题型以选择题、填空题为主,近几年多以设计 新颖、贴近生活、反映时代特点的函数应用题及图表信息题 等方式出现,且大都需构建一次函数模型来解决.
2020/12/27
25
2012版中考数学复习指导
【思路点拨】
2020/12/27
26
2012版中考数学复习指导
【自主解答】(1)∵直线 y= 3与xx+轴3 的交点坐标为
4
A(4,0),与y轴的交点坐标为B(0,3),∴ AB 42325.
∴函数 y= 3的x+坐3标三角形的三条边长分别为3,4,5.
2.一次函数的实际应用及与方程(组)、其他函数相结合 的考查是中考的热点之一.所以应在此方面强化训练,虽说此 类问题有一定的综合性,但只要多联系、多分析一定能取得事 半功倍之效.
2020/12/27
9
2012版中考数学复习指导
2020/12/27
10
2012版中考数学复习指导
2020/12/27
一次函数的面积问题
一次函数y=kx+b(k≠0)与坐标轴的两个交点坐标A ( b , 0和)
k
B(0,b),由此可知, O A ,|O Bb =| |b|,△ABO的面积为
沪科版八年级上册数学教学课件 第12章 一次函数 一次函数

(1)当m、n为何值时,函数是一次函数? (2)如果函数是一次函数,计算当x=1时的函数值.
导引:(1)由一次函数的定义,结合原函数式的特征
知: ①二次项的系数必为0,即n2-4=0;②(2n-4)xm-2 必为一次项,即m-2=1,2n-4≠0;(2)写出表达式,运
用代入法求函数值.
n2 4 0
总结
正比例函数的图象上两点的纵坐标的大小与比例系 数以及横坐标的大小有关;比例系数是正数时, 函数值随自变量的增大而增大;比例系数是负数时, 函数值随自变量的增大而减小.本例的解法中, 方法一是用求值比较法;方法二是利用数形结合思想, 用“形”上的点的纵坐标位置来比较“数”的大小; 方法三是利用函数的增减性来比较大小.
课堂小结
画正比例函数图象的技巧: (1)由于两点确定一条直线,因此画正比例函数y=
kx(k≠0)的图象时,我们一般选(0,0)和(1,k)这两点. (2)列表时,点(x,y)可任意选取适合y=kx的点,但为方便
描点,坐标通常取整数. 注意:有些图象根据自变量取值范围的不同而有所变化, 或是一条射线,或是一条线段,或是直线上的一些点.例 如正比例函数y=2x(x≥0)的图象是一条射线.
第12章 一次函数
12.2 一次函数 (第2课时: 正比例函数的图象与性质)
学习目标
1 课堂讲解 2 课时流程
函数的图象 正比例函数的图象 正比例函数的性质
逐点 导讲练
课堂 小结
知识点 1 函数的图象
前面画过函数y=2x, y=-2x及另外一些正比例函数 的图象,可见正比例函数y=kx(k为常数,且k≠0)的图 象是一条经过原点的直线,通常我们把正比例函数 y=kx(k为常数,且k≠0)的图象叫做直线y=kx. 因为两点确定一条直线,所以画正比例函数的图象, 只要先描出两点,再过这两点画直线,就可以了.
(中考数学复习)第12讲-一次函数及其图象-课件-解析

课堂回顾 · 巩固提升
(2)由题意,得xy=2 000,
浙派名师中考
-x2+130x-4 000=0, 解得x1=50,x2=80>70(舍去). 答:该机器的生产数量为50台. (3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z= ka+b,由函数图象,得
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 6.如图12-3所示,直线y=kx+b经过点A(-1,-2)和点B(-
2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为 __-__2_<__x_<__-__1___.
图12-3
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
B.x>0
C.x<2
D.x>2
图12-2
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
5.(2013·泰安)把直线y=-x+3向上平移m个单位后,与直线y =2x+4的交点在第一象限,则m的取值范围是 ( C ) A.1<m<7 B.3<m<4 C.m>1 D.m<4 解析:把直线y=-x+3向上平移m个单位后可得:y=-x +3+m,求出直线y=-x+3+m与直线y=2x+4的交点, 再由此点在第一象限可得出m的取值范围.解得m>1.
浙派名师中考
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 函数、方程、不等式的结合 【例4】 (2012·乐山)已知一次函数y=ax+b的图象过第一、