微分方程数值解--大纲
第十章 偏微分方程数值解法

第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。
除少数特殊情况外,绝大多数情况均难以求出精确解。
因此,近似解法就显得更为重要。
本章仅介绍求解各类典型偏微分方程定解问题的差分方法。
§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。
当0=α时为第二类边界条件, 0≠α时为第三类边界条件。
抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。
随机微分方程的数值解

随机微分方程的数值解引言随机微分方程(Stochastic Differential Equation,简称SDE)是描述包含随机变量的微分方程,它在金融、物理学、生物学等领域具有广泛的应用。
与确定性微分方程相比,SDE中的随机项引入了不确定性和随机性,使得问题更具挑战性和现实性。
本文将介绍随机微分方程的基本概念、求解方法和数值解的计算。
一、随机微分方程概述1.1 确定性微分方程与随机微分方程的区别•确定性微分方程:一般形式为 dy(t) = f(y(t), t)dt,其中f是已知的函数,表示因变量y的增量与自变量t的关系。
•随机微分方程:一般形式为 dy(t) = f(y(t), t)dt + g(y(t), t)dW(t),其中dW(t)是一个随机项,通常表示为Wiener过程或布朗运动。
1.2 随机微分方程的数学表达一般形式的随机微分方程可以表示为: dy(t) = f(y(t), t)dt + g(y(t),t)dW(t),其中: - y(t)是待求解的随机过程; - f(y(t), t)表示因变量y的增量与自变量t之间的确定性关系; - g(y(t), t)表示因变量y的增量与自变量t 之间的随机关系; - dW(t)是一个随机项,通常表示为Wiener过程或布朗运动。
二、随机微分方程的求解方法2.1 解析解方法对于简单形式的随机微分方程,可以通过解析的方法求得解析解。
然而,大多数情况下,由于随机视频和随机关系的存在,解析解并不存在或难以求得。
2.2 数值解方法数值解是求解随机微分方程的主要方法之一,它通过将时间间隔分割为若干小段,采用数值方法近似求解微分方程。
常用的数值解方法有: 1. 欧拉方法(Euler Method):将时间间隔分割为若干小段,在每个小段内使用线性逼近的方式求解微分方程。
2. 随机插值方法(Stochastic Interpolation Method):利用数值差分逼近计算随机项的变化,并采用插值方法求解微分方程。
偏微分方程数值解法(1)

第十章 偏微分方程数值解法一、 典型的偏微分方程介绍 1.椭圆型方程 科学技术中经常遇到一些重要的、典型的偏微分方程。
在研究有热源稳定状态下的热传导,有固定外力作用下薄膜的平衡问题时,都会遇到Poisson 方程D y x y x f yux u ∈=∂∂+∂∂),(),(2222(10.1)其中D 表示平面区域。
特别在没有热源或没有外力时,就得到Laplace 方程02222=∂∂+∂∂y ux u (10.2)此外,当研究不可压缩理想流体无旋流动的速度势以及静电场的电位等,也会遇到(10.1)或(10.2)类型的方程。
2.抛物型方程 在研究热传导过程、气体扩散现象、电磁场的传播等问题中以及在统计物理、概率论和重子力学中,经常遇到抛物型方程。
这类方程中最简单、最典型的是热传导方程。
L x t xu a t u <<>=∂∂-∂∂0,0,022(10.3)其中a 是常数。
它表示长度为L 的细杆内,物体温度分布的规律。
3.双曲型方程 在研究波的传播、物体的振动时,常遇到双曲型方程。
这类方程中最简单、最典型的是波动方程L x t xu a t u <<>=∂∂-∂∂0,0,022222(10.4)它表示长度为L 的弦振动的规律。
二、定解问题偏微分方程(10.1)~(10.4)是描述物理过程的普遍规律的。
要使它们刻划某一特定的物理过程,必须给出附加条件。
把决定方程唯一解所必须给定的初始条件和边界条件叫做定解条件。
定解条件由实际问题提出。
对方程(10.3)来说,初始条件的提法应为)()0,(x f x u =,其中f (x )为已知函数,它表示物体在初始状态下温度分布是已知的。
边界条件的提法应为物体在端点的温度分布为已知,即⎩⎨⎧≥==0)(),()(),0(t t t L u t t u ψϕ (10.5)其中ϕ(t )和ψ(t )为已知函数。
对(10.4)来说,边界条件的提法和(10.5)形式一样,它表示弦在两端振动规律为已知。
大学课件-《微分方程数值解》第一讲

为什么要研究数学?
经济发展的全球化、计算机的迅猛发展,数 学理论与方法的不断扩充使得数学已经成为 当代高科技的一个重要组成部分和思想库 工业、经济、交通、人口、生态等领域也越 来越广泛的使用数学作为研究工具。
数学已经成为一种能够普遍实施的技术。
数学成为技术的关键
合理的模型 完整的理论 可靠的算法 快速有效的数值模拟
例子: Malthus人口模型
假设:在人口自然增长过程中,增长率与人口成正比。 t 时刻人口为 ,那么
方程的解: 将t按某一固定时间段为单位计算,则人口构成一个以 为公比的等比数列。
数值解
实际应用中,我们关心的是某个范围内 对应于某些特定的自变量的解的取值或 近似值
数值求解微分方程的意义
实际问题中,我们往往只对一个特定点 上的数据感兴趣 很多情况下,无法找到解析解 即使解析解存在,也不一定能表示为显 式解 即使对于具有显式解的方程,数值方法 仍然有其用武之地
问题的稳定性 测量误差对数值结果的影响
一些例子:
CT 技术
分子空间结构确定
Nobel Prize (1979) Medicine
Allan M. Cormack Godfrey N. Hounsfield
获奖评价:
Cormack and Hounslield have ushered in a new era in diagnostics. Now they, as well as others inspired by their pioneering contributions, are at work developing yet newer methods for the production of images of cross-sections in the body. In those images, we will be able to discern not only structure, but also function; physiology, or biochemistry. In this, new voyages of discovery are being prepared: voyages into man's own interior, into inner space
2016-偏微分方程数值解法-课程大纲-谢树森

中国海洋大学本科生课程大纲课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修一、课程介绍1.课程描述:本课程介绍数值求解偏微分方程的基本方法及相关的理论基础。
本课程针对数学类专业高年级(三年级)本科生开设。
课程基本内容包括:有限差分方法、差分格式的稳定性、收敛性分析;变分原理,Galerkin有限元方法等。
通过对模型问题的基本数值方法进行分析,阐明构造数值方法的基本思想和技巧。
通过本课程学习,使学生了解并掌握数值求解偏微分方程的基本思想、基本概念和基本理论(数值格式的相容性、稳定性、收敛性及误差估计等),能够运用算法语言对所学数值方法编制程序在计算机上运行实施并对数值结果进行分析。
培养学生理论联系实际,解决实际问题的能力和兴趣。
2.设计思路:偏微分方程是应用数学的核心内容,在其他科学、技术领域具有广泛深入的应用。
掌握偏微分方程的基础理论及求解方法是数学类专业本科生培养的基本要求。
本课程是在数学物理方程课程基础上开设的延展应用型课程,是一门数值分析理论与实践应用高度融合的专业课。
课程引导学生通过数值方法探讨和理解应用数学工具解决实际- 6 -问题的途径及理论分析框架。
学习本课程需要学生掌握了“数学分析”、“数学物理方程”、“数值分析”及“泛函分析”的核心基本内容。
课程内容安排分为有限差分方法和有限元方法两个单元模块,这是目前应用最广泛、理论发展最完善的两类数值方法,两者既有关联又有本质区别,能够体现偏微分方程数值解法的基本特征。
首先介绍有限差分方法。
有限差分方法是近似求解偏微分方程的应用最广泛的数值方法,以对连续的“导数(微分)”进行离散的“差分”近似为基本出发点,利用Fourier 分析及数值分析的基本理论,讨论椭圆、抛物、双曲等三类典型偏微分方程近似求解方法及近似方法的数学理论分析。
有限元方法是20世纪中期发展起来的基于变分原理的数值方法,具有更直接的物理背景含义,因而受到力学、工程等应用领域广泛的关注和应用。
常微分方程数值解法

欧拉方法
总结词
欧拉方法是常微分方程数值解法中最基础的方法之一,其基本思想是通过离散化时间点上的函数值来 逼近微分方程的解。
详细描述
欧拉方法基于微分方程的局部线性化,通过在时间点上逐步逼近微分方程的解,得到一系列离散点上 的近似值。该方法简单易行,但精度较低,适用于求解初值问题。
龙格-库塔方法
总结词
影响
数值解法的稳定性对计算结果的精度和可靠 性有重要影响。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有稳定性和收敛性。
数值解法的收敛性
定义
数值解法的收敛性是指随着迭代次数的增加, 数值解逐渐接近于真实解的性质。
影响
数值解法的收敛性决定了计算结果的精度和 计算效率。
分类
根据收敛速度的快慢,可以分为线性收敛和 超线性收敛等。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有收敛性。
误差分析
定义
误差分析是指对数值解法计算过程中 产生的误差进行定量分析和估计的过 程。
分类
误差可以分为舍入误差、截断误差和 初始误差等。
影响
误差分析对于提高计算精度和改进数 值解法具有重要意义。
分析方法
通过建立误差传递公式或误差估计公 式,对误差进行定量分析和估计。
生物学
生态学、生物种群动态和流行病传播 等问题可以通过常微分方程进行建模
和求解。
化学工程
化学反应动力学、化学工程流程模拟 等领域的问题可以通过常微分方程进 行描述和求解。
经济学
经济系统动态、金融市场模拟和预测 等问题可以通过常微分方程进行建模 和求解。
02 常微分方程的基本概念
常微分方程的定义
第5章_常微分方程数值解法

(5.2.6)
由于方程关于 uk +1 是隐式形式,所以式(5.2.6)称为隐式 Euler 公式。前面显式和隐式 Euler 公式在计
u '(tk ) ≈
得到的递推公式:
u (tk +1 ) − u (tk −1 ) 2h
(5.2.7)
uk +1 ≈ uk −1 + 2hf (tk , uk )
在计算 uk +1 时,需要用到前两步结果 uk −1 , uk ,称为两步法公式。 (2)积分近似方法 将(5.2.1)式的微分方程写成 du = f (t , u )dt ,在区间 [tk , tk +1 ] 上积分,有:
5.2.2 Runge-Kutta 方法 Euler 方法比较简单,但它的收敛阶数低。可以利用 Taylor 展开式构造高阶的单步方法。Euler 公式 可以看成是由一阶 Taylor 展开式得到的,所以应用高阶 Taylor 展开就可以得到高阶单步法。例如:将 u (tk +1 ) 在 tk 处作 q 阶 Taylor 展开:
dy = a − by (t ) dt
是一阶常微分方程,而
2 ∂ 2 u ( x, t ) 2 ∂ u ( x, t ) a = ∂t 2 ∂x 2
(5.1.1)
(5.1.2)
是二阶偏微分方程。 所有使微分方程成为等式的函数,都是微分方程的解;在 n 阶微分方程中,将微分方程的含有 n 个任 意常数的解称为该微分方程的通解。为确定微分方程通解中的任意常数而需要的条件称为定解条件;定解 条件可以分为初始条件和边界条件两类。由微分方程和定解条件一起构成的问题称为微分方程定解问题。 根据定解条件的不同,常微分方程分为初值问题和边值问题;若定解条件是描述函数在一点(或初始 点)处状态的,则称为初值问题,一阶常微分方程初值问题的一般形式为:
《微分方程的数值解》课件

谱方法:将微分方程离散化为谱方程, 然后求解
边界元法:将微分方程离散化为边界 元方程,然后求解
有限元法:将微分方程离散化为有限 元方程,然后求解
网格法:将微分方程离散化为网格方 程,然后求解
数值解法的步骤
确定微分方程的初值 和边界条件
选择合适的数值解法, 如欧拉法、龙格-库塔 法等
实解
应用:广泛应 用于工程、物 理、化学等领
域
优缺点:优点 是计算速度快, 缺点是精度较
低
非线性方程的数值解法
牛顿法:通过迭 代求解非线性方 程
拟牛顿法:通过 迭代求解非线性 方程,比牛顿法 收敛更快
割线法:通过迭代 求解非线性方程, 适用于求解单变量 非线性方程
迭代法:通过迭 代求解非线性方 程,适用于求解 多维非线性方程
05 数值解法的实现
M AT L A B 编 程 实 现
MATLAB简介: MATLAB是一种高 级编程语言,广泛 应用于科学计算、 数据分析等领域
数值解法:包括欧 拉法、龙格-库塔 法、四阶龙格-库 塔法等
MATLAB实现:使 用MATLAB编写程 序,实现数值解法 的计算
示例代码:给出 MATLAB实现数值 解法的示例代码, 并解释其含义和作 用
设定时间步长和空间 步长
计算微分方程的解, 并进行误差分析
绘制解的图形,并进 行结果分析
对比不同数值解法的 优缺点,选择最优解 法
04 常用的数值解法
欧拉方法
基本思想:将微分 方程转化为差分方 程,然后求解差分 方程
优点:简单易行, 适用于初值问题
缺点:精度较低, 稳定性较差
改进方法:改进欧 拉方法,如改进欧 拉方法、龙格-库 塔方法等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程数值解
(Numerical Methods for Partial Differential Equations)
课程代码:10210801
学位课程/非学位课程:非学位课程
学时/学分:46/3
课程简介:
《偏微分方程数值解》是数学类专业必修的一门专业课。
主要内容包括:变分形式和Galerkin有限元法、椭圆型方程的差分方法、抛物型方程的差分方法、双曲型方程的差分方法、离散方程的解法。
通过本课程的学习,使学生掌握求解偏微分方程数值解的基本方法,能够根据具体的微分方程使用合适的计算方法。
一、教学目标
1、知识水平教学目标
偏微分方程数值解课程的教学,要使学生掌握椭圆型微分方程、抛物型微分方程、双曲型微分方程等典型方程的差分方法,了解与之相关的理论问题,理解变分原理、有限元方法以及离散方程的解法,理解各种计算方法的收敛条件和收敛速度。
2、能力培养目标
通过偏微分方程数值解课程教学,应注意培养学生以下能力:
(1)连续问题离散化能力——掌握科学的思维方法,能够使用差分方法和有限元方法的各种格式对三类典型方程进行离散化处理。
(2)算法分析与设计能力——结合各类偏微分方程的特点,设计各种计算方法,对计算方法的收敛条件和收敛速度等进行分析,具体设计易于上机实现的算法。
(3)离散方程组的快速求解能力——理解离散方程组的特点,使用数学软件编程,具体上机实现,进行数值模拟的动手能力。
3、素质培养目标
通过数学物理方程课程教学,应注重培养学生以下素质:
(1)具体问题有限化——善于对现实世界中得到的偏微分方程进行有限差分、有限元分析的有限化思想素养。
(2)数值解法定性化——通过学习,引导学生树立偏微分方程数值求解的基本原则,培养学生对数值方法中的稳定性、收敛性和误差等进行定性分析的素质。
(3)算法实现程序化——培养学生的创造性和具体实现程序化的思维,使学生学会用数学中算法的观点思考实际问题,用程序和计算机解决数学问题。
二、教学重点与难点
1、教学重点:椭圆型、抛物型、双曲型等微分方程的差分方法,有限元方法。
2、教学难点:各种计算方法的稳定性、收敛性和误差分析,变分形式。
三、教学方法与手段
以教师讲授为主,安排上机实验,辅以习题课、课堂讨论、小论文,注重理论联系实际。
四、教学内容与目标
教学内容教学目标课时分配
(46学时)
1. 边值问题的变分形式 6
二次函数的极值掌握
两点边值问题掌握
二阶椭圆边值问题理解
Ritz-Galerkin方法理解
2. 椭圆型方程的有限元法 12
两点边值问题的有限元法掌握
线性有限元法的误差估计掌握
一维高次元理解
二维矩形元理解
三角形元理解
二阶椭圆方程的有限元法理解
有限元法上机实验掌握
3. 椭圆型方程的有限差分法 8
差分逼近的基本概念掌握
两点边值问题的差分格式掌握
二维椭圆边值问题的差分格式理解
极值定理敛速估计了解
椭圆型方程有限差分法上机实验掌握
4. 抛物型方程的有限差分法 8
最简差分格式掌握
稳定性与收敛性理解
Fourier方法了解
判别差分格式稳定性的代数准则了解
抛物型方程有限差分法上机实验掌握
5. 双曲型方程的有限差分法 6
波动方程的差分逼近掌握
一阶双曲型方程组了解
双曲方程差分格式的构造理解
6. 离散化方程的解法 6
基本迭代法掌握
交替方向迭代法理解
预处理共轭梯度法了解
多重网格法了解
综合上机实验掌握
五、考试范围与题型
1、考核方式:考查(笔试、小论文、上机实验结合)
2、考查范围:
(1)边值问题的变分形式
(2)椭圆型方程的有限元法
(3)椭圆型方程的有限差分法
(4)抛物型方程的有限差分法
(5)双曲型方程的有限差分法
(6)离散化方程的解法
六、教材与参考资料
1、教材:李荣华.2005. 偏微分方程数值解法.高等教育出版社.
2、参考资料:
李立康等著,微分方程数值解法,复旦大学出版社,1999年1月. 林群编著,微分方程数值解法基础教程,科学出版社,2001年3月.
李荣华、冯果忱,微分方程数值解法,高等教育出版社,1996.
胡建伟、汤怀民著,微分方程数值解法,科学出版社,2002年1月.。