强心苷的显色反应及其应用
(完整版)中药化学教案—第九章强心苷

(完整版)中药化学教案—第九章强⼼苷第九章强⼼苷课次:26课题:第九章强⼼苷第⼀节强⼼苷的结构与分类教学⽬的 1. 了解强⼼苷的含义、分类。
2. 掌握强⼼苷的结构类型。
教学内容 1. 强⼼苷的含义。
2. 强⼼苷的分类。
3. 强⼼苷的类型。
教学重点强⼼苷的结构类型。
第⼀节强⼼苷的结构与分类⼀、含义、结构和分类(⼀)含义强⼼苷类是指天然界存在的⼀类对⼼脏有显著⽣理活性的甾体苷类,可⽤于治疗充⾎性⼼⼒衰竭及节律障碍等⼼脏疾患,由强⼼苷元及糖缩合⽽成,其苷元是甾体衍⽣物,所连接的糖有多种类型。
(⼆)结构及分类强⼼苷的苷元是甾体衍⽣物,具有下列特征:1.苷元部分苷元部分根据在C17位上连接的不饱和内酯环不同分为两类:(1)甲型强⼼苷(强⼼甾烯类)也称甲型强⼼苷元C17位连接的是五元不饱和内酯环,即△αβ-γ内酯,⼤多数是β-构型,少数为α-构型(allo⼀体),其母核称强⼼甾。
在已知的强⼼苷元中,绝⼤多数属于强⼼甾烯类。
如强⼼甾烯。
(2)⼄型强⼼苷(蟾蜍甾⼆烯类)⼜称⼄型强⼼苷元或海葱甾⼆烯C17位连接的是六元不饱和内酯环,即△αβ,γδ-双烯δ内酯,是β-构型,其母核称蟾蜍甾或海葱甾。
⾃然界中仅少数⼏种强⼼苷元属于这⼀类型。
如蟾蜍甾⼆烯或海葱甾⼆烯。
2.其它特征:环戊烷多氢菲的结构特点:⽥字格结构,“⼭窝窝⾥两颗树,⾼⼭顶上⼀颗葱”;碳原⼦的编号与命名。
(1)天然存在的已知强⼼苷元B/C环都是反式稠合,C/D环都是顺式稠合,A/B环则顺反两种稠合⽅式都有,但⼤多数为顺式,如为反式调合,则称异强⼼甾。
(2)在苷元母核的C3、C14位上都有羟基,C3位上的羟基⼤多数是β-构型,少数为α-构型,当C3为α-构型时,命名时冠以“表(epi-)”字。
C3羟基与糖缩合⽽成苷键。
C14位上的羟基都是β-构型。
C10位上连接的多为甲基或其氧化产物(-CH2OH,-CHO,-COOH)。
C13位上连接的均为甲基。
(3)苷元母核的其他位置可能出现羰基、羟基、双键、环氧基等。
强心苷类药物使用及注意要点

强心苷类药物使用及注意要点强心苷是一类具有强心作用的苷类化合物。
主要包括有地高辛、洋地黄毒苷、毛花苷丙(西地兰)和毒毛花苷K。
临床上常用的有地高辛和西地兰。
目录强心苷类药物使用及注意要点 (1)药理作用 (2)(一)对心脏的作用 (2)(二)对神经系统的作用 (2)(三)利尿作用 (2)(四)对血管的作用 (3)体内过程 (3)临床应用 (3)常用给药剂量 (4)不良反应 (4)常见不良反应预防 (4)(1)预防洋地黄中毒 (4)(2)不良反应及其表现 (5)3.中枢系统反应 (5)药理作用(一)对心脏的作用1.正性肌力作用强心苷对心脏具有高度的选择性,能显著加强衰竭心脏的收缩力,增加心出入量,从而解除心衰的症状。
2.减慢心率的作用治疗量的强心苷对正常心率影响较小,但对心率加快及伴有房颤的心功能不全则可显著减慢心率。
3.对传导组织和心肌电生理特性的影响治疗剂量下,缩短心室和心房的动作电位和有效不应期,降低窦房结自律性,减慢房室传导。
高浓度下,强心苷可过度抑制Na+-K+-ATP酶,使细胞失钾,最大舒张电位减小,使自律性提高。
中毒剂量下,强心苷也可增强中枢交感作用。
故强心苷中毒可引起各种心律失常,以室性期前收缩、室性心动过速多见。
(二)对神经系统的作用中毒剂量的强心苷可兴奋延髓极后区催吐化学感受区而引起呕吐,还可兴奋交感神经中枢,明显地增加交感神经冲动发放,而引起快速型心律失常。
强心苷的减慢心率和抑制房室传导作用也与其兴奋脑干副交感神经中枢有关。
(三)利尿作用强心苷对心功能不全患者有明显的利尿作用。
主要是心功能改善后增加了肾血流量和肾小球的滤过功能。
此外,强心苷可直接抑制肾小管Na+-K+-ATP酶,减少肾小管对钠离子的重吸收,促进钠和水排出,发挥利尿作用。
(四)对血管的作用强心苷能直接收缩血管平滑肌,使外周阻力上升,这一作用与交感神经系统及心排血量的变化无关。
体内过程●洋地黄毒苷脂溶性高,口服吸收好,大多经肝代谢后代谢产物经肾排出,也有一部分经胆道排出而形成肝肠循环,t1/2长达5~7天,故作用维持时间也较长,属长效强心苷类;●中效类的地高辛口服生物利用度个体差异大,不同厂家、不同批号的相同制剂也可有较大差异,临床应用时应注意调整剂量。
中药化学 第九章 强心苷课件

第九章强心苷考点精要:1.强心苷苷元部分的结构特点和分类;2.强心苷糖部分的结构特点及其与苷元的连接方式;3.强心苷的理化性质(显色反应、水解);4.强心苷的提取与分离;5.强心苷的UV光谱特征;6.去乙酰毛花苷、地高辛的化学结构特点和提取分离方法。
一、大纲:二、分值本章占历年考试4分左右。
第一节概述强心苷是存在于生物界中的一类对心脏有显著生理活性的甾体苷类。
一、强心苷元部分的结构与分类(一)结构特征天然存在的强心苷元是C-17侧链为不饱和内酯环的甾体化合物。
其结构特点如下:(1)甾体母核A、B、C、D四个环的稠合方式为A/B环有顺、反两种形式,但多为顺式;B/C环均为反式;C/D环多为顺式。
(2)甾体母核C-10、C-13、C-17的取代基均为β型。
C-10多有甲基或醛基、羟甲基、羧基等含氧基团取代,C-13为甲基取代,C-17为不饱和内酯环取代。
C-3、C-14位有羟基取代,C-3羟基多数是β构型,少数是α构型,强心苷中的糖常与C-3羟基缩合形成苷。
C-14羟基均为β构型。
有的母核含有双键,双键常在C-4、C-5位或C-5、C-6位。
(二)分类根据C-17不饱和内酯环的不同,将强心苷元分为两类。
1.甲型强心苷元(强心甾烯类)甾体母核的C-17侧链为五元不饱和内酯环(△αβ-γ-内酯),基本母核称为强心甾,由23个碳原子构成。
在已知的强心苷元中,大多数属于此类。
2.乙型强心苷元(海葱甾二烯或蟾蜍甾二烯类)甾体母核的C-17侧链为六元不饱和内酯环(△αβ,γδ-δ-内酯),基本母核为海葱甾或蟾蜍甾。
自然界中仅少数苷元属此类,如中药蟾蜍中的强心成分蟾毒配基类。
二、糖部分的结构特征及其与苷元的连接方式(一)结构特征根据它们C-2位上有无羟基可以分成α-羟基糖(2-羟基糖)和α-去氧糖(2-去氧糖)两类。
α-去氧糖常见于强心苷类,是区别于其他苷类成分的一个重要特征。
1.α-羟基糖组成强心苷的α-羟基糖,除常见的D-葡萄糖、L-鼠李糖外,还有L-呋糖、D-鸡纳糖、D-弩箭子糖、D-6-去氧阿洛糖等6-去氧糖和L-黄花夹竹桃糖、D-洋地黄糖等6-去氧糖甲醚。
天然药物讲义化学第九章 强心苷

天然存在的强心苷元
O
O
O
O
O
O
OH
HO
洋地黄毒苷元
OH
HO
H
乌沙苷元
O
O
O
OH
O
HO
夹竹桃苷元
O O
CHO
OH HO
绿海葱苷元
O CH2CH3
OH HO
蟾毒素
2.结构类型
根据C17位侧链的不饱和内酯环不同分为: 甲型:C17位侧链为五元环的△-内酯 乙型:C17位侧链为六元环的△- -内酯 这两类大都是β-构型,个别为α-构型,α-型无
(2)取代基
苷元母核上的C3,C14位上都有羟基: C3位-OH多为β-型---洋地黄毒苷元,少数为 α-型(命名时冠以“表”字)——3-表洋地黄 毒苷元(3-epidigitoxigenin)。C14位-OH都是 β-型(C/D环顺式)。
C10,C13,C 17位有侧链,C10,C13多为β-CH3。 C 17位侧链为不饱和内酯环。 C11,C12和C19位可能连羰基;C4,5、C5,6、
(scillanolide)或蟾蜍甾(bufanolide)为母核命名。
22 23
20
24
r
O
21
O
R
r
O
O
OH
HO
H
乙型
OH
HO
海葱苷元
3¦Â,14¦-二羟基海葱甾4,20,22-三烯
二、糖部分
构成强心苷的糖有20多种,根据C2位上有无-OH 分为α-OH (2-OH)糖及α-去氧糖(2-去氧糖) 两类。后者主要见于强心苷。
二. 溶解性
强心苷的溶解性与所连糖的种类和数目有关, 一般可溶于水、甲醇、乙醇、丙酮等极性溶 剂;难溶于乙醚、苯、石油醚等非极性溶剂。 弱亲脂性苷微溶于氯仿-乙醇(2:1),亲脂性 苷微溶于乙酸乙酯、含水氯仿、氯仿-乙醇 (3:1)。
药理课件强心苷类

O O
OH
OH OH
D-加拿大麻糖-(D-葡萄糖)2
毒毛旋花子苷元-原生苷元
稀酸温和水解
寡糖(三糖)--毒毛旋花子三糖
温和酸水解不能得到单糖: D-加拿大麻糖和D-葡萄糖
毛地黄毒苷
D-毛地黄毒糖
毛地黄毒苷元-原生苷元
稀酸温和水解 单糖--3分子毛地黄毒糖
②. 强烈酸பைடு நூலகம்解
α-羟基糖因为α位的羟基阻碍了苷原子的质 子化,使水解较困难。需用较浓酸(3%-5%)长时间加热回流或同时加压,才可水 解α-羟基糖,可水解Ⅱ型和Ⅲ型强心苷, 得到定量的葡萄糖。但此法常引起苷元失 去1分子或数分子水,形成脱水苷元。
22 20 r 21 23
24 O
O
r
O
O
R
OH HO H HO
OH
海葱苷元
乙型
,14 3¦Â ¦-二羟基海葱甾4,20,22- 三烯
(二)糖部分
构成强心苷的糖有20多种,根据C2位上有无-OH 分为2-羟基糖(α-OH )糖和2 -去氧糖(α-去氧糖) 两类。
1.
2-羟基糖
4. A/B环顺式的甲型强心苷元,C3-OH必须 是-构型,-型无活性。 5. C10-CH3氧化成羟甲基或醛基或羧酸后, 可影响强心作用的强度或毒性,但不是 决定因素。
6. 引入5、11、12- OH有增强活性作用,
而引入1、6、16- OH有降低活性作用。
7. 在母核上引入双键,对强心作用的影响 不一致,引入4(5)与引入5-OH的影 响相似,能增强活性,而引入 16(17) 则活性消失或显著下降。 8. 无论在苷元或糖基上增加乙酰基都有增 强活性的作用。
紫花洋地黄苷B 紫花苷酶 羟基洋地黄毒苷+D-葡萄糖
天然药物化学-第九章-强心苷

和乙型强心苷。
(1)3,5-二硝基苯甲酸试剂(Kedde反应): 取样品的醇溶液,加3,5—二硝基苯甲酸试剂,如产生
红色或深红色,表示可能含有强心苷。 (2)碱性苦味酸试剂(Baljet反应):橙色或橙红色, 《中国药典》测定强心苷类药物含量。 (3)间二硝基苯试剂(Raymond反应):紫红色或蓝紫色 (4)亚硝酰铁氰化钠试剂(Legal反应):深红色
天然药物化学
第九章 强心苷
第一节 结构类型
第二节 理化性质
第三节 提取与分离
课 堂 目 标
1. 掌握强心苷的结构类型。
2. 掌握强心苷的溶解性和水解性
3. 掌握强心苷的显色反应
重 要 知 识 点
1.甲型强心苷元
2.乙型强心苷元
3.酸催化水解 4.碱催化水解
5.酶催化水解
6.显色反应
第一节 结构类型
一、基本概念 强心苷类是自然界中存在的一类对心脏具有显著生物活 性的甾体苷类化合物。
由强心苷元和糖缩合而产生的一类苷。
强心苷是治疗室率过快心房颤动的首选药和慢性心功能 不全的主要药物。 毒性:强心苷类能兴奋延髓催吐化学感受区而引起恶心、 呕吐等胃肠道反应;且有剧毒,若超过安全剂量时,可
Ⅰ型:苷元 C3-O-(2,6-去氧糖)X-(D-葡萄糖)Y Ⅱ型:苷元 C3-O-(6-去氧糖)X-(D-葡萄糖)Y Ⅲ型:苷元 C3-O-(D-葡萄糖)Y X=1-3; Y=1-2
一般初生苷其末端多为葡萄糖。 天然存在的强心苷多数属于Ⅰ型和Ⅱ型,Ⅲ型较少。
第一节 结构类型
甲型强心苷
Ⅰ型:苷元-(2,6-去氧糖)X-(D-葡萄糖)Y Ⅱ型:苷元-(6-去氧糖)X-(D-葡萄糖)Y Ⅲ型:苷元-(D-葡萄糖)Y
执业药师考试《中药化学》第九章分析

执业药师考试《中药化学》第九章分析执业药师考试《中药化学》第九章分析强心苷是指天然界存在的一类对心脏具有显著生理活性的甾体苷类。
下面是店铺分享的一些相关资料,供大家参考。
第九章强心苷第一节基本内容一、强心苷元部分的结构与分类强心苷元属甾体衍生物,其结构特征是甾体母核的C-17位上连接一个不饱和内酯环。
(一)结构特征1.强心苷元中的甾体母核部分的A、B、C、D四个环的稠合方式为B/C环反式,C/D环多为顺式,个别反式。
A/B环则有顺、反两种稠合方式,但大多是顺式。
2.甾体母核的C-10、C-13、C-17位取代基均为β-构型。
C-3和C-14位上都连有β-羟基。
(二)分类根据甾体母核C-17位上连接的不饱和内酯环的不同,可将强心苷元分为两类。
1.甲型强心苷元(强心甾烯类)在甾体母核C-17位上连接的是五元不饱和内酯环,即△αβ-γ-内酯,共由23个碳原子组成,其基本母核称为强心甾。
2.乙型强心苷(蟾蜍甾烯类)在甾体母核C-17位上连接的是六元不饱和内酯环,即△αβ,γδ-δ-内酯,共由24个碳原子组成,其基本母核称为海葱甾或蟾蜍甾。
二、糖部分的结构特征及其与苷元的连接方式(一)结构特征1.α-羟基糖2.α-去氧糖主要有2,6-二去氧糖(如D-洋地黄毒糖)、2,6-二去氧糖甲醚(如L-夹竹桃糖、D-加拿糖)等。
(二)与苷元的连接方式Ⅰ型强心苷:苷元-(2,6-去氧糖)x-(D-葡萄糖)y,如紫花样地黄苷A。
Ⅱ型强心苷:苷元-(6-去氧糖)x-(D-葡萄糖)y,如黄夹苷甲。
Ⅲ型强心苷:苷元-(D-葡萄糖)y,如绿海葱苷。
第二节理化性质一、性状强心苷多为无定形粉末或无色结晶,具有旋光性。
C-17位侧链为β-构型者味苦,α-构型者味不苦,但无强心作用。
对黏膜有刺激性。
二、溶解性强心苷一般可溶于水、甲醇、乙醇、丙酮等极性溶剂,微溶于乙酸乙酯、含醇氯仿,难溶于极性小的'溶剂。
强心苷的溶解性与其分子中所含糖的数目和种类、苷元所含的羟基数目和位置等有关。
强心苷实验实验报告

强心苷实验实验报告强心苷实验实验报告引言:心血管疾病是当今社会的一大健康隐患,而强心苷作为治疗心脏病的一种药物,一直备受研究者的关注。
本实验旨在通过对强心苷的实验研究,探索其对心脏功能的影响,为临床应用提供科学依据。
材料与方法:实验中使用的材料包括强心苷药物、实验动物(小鼠或大鼠)、实验设备(生物信号采集系统、心脏负荷增加装置等)。
首先,将实验动物随机分为实验组和对照组,实验组注射一定剂量的强心苷药物,对照组注射生理盐水。
然后,通过生物信号采集系统记录实验动物在不同时间点的心电图、血压等指标。
最后,通过心脏负荷增加装置,对实验动物进行心脏负荷的增加,观察强心苷对心脏功能的调节效果。
实验结果:在实验进行的过程中,我们观察到实验组注射强心苷后,实验动物的心电图呈现出明显的改变。
心电图显示,强心苷能够显著提高心脏的收缩力和传导速度,使心脏的节律更加规律。
同时,实验组动物的血压也有所增加,但并未超出正常范围。
此外,在心脏负荷增加的实验中,实验组动物的心脏功能表现出更好的适应能力,心脏负荷增加时心脏的收缩力和回缩力均有所提高。
讨论:通过以上实验结果可以看出,强心苷对心脏功能具有显著的正向调节作用。
强心苷能够增加心脏的收缩力和传导速度,提高心脏的整体功能。
这一结果与之前的研究相符,也为强心苷在临床上的应用提供了科学依据。
然而,强心苷作为一种药物,其使用也存在一定的风险。
在实验中,我们观察到实验组动物的血压有所增加,这可能与强心苷的血管收缩作用有关。
因此,在使用强心苷时,需要根据患者的具体情况进行剂量的调整,以避免不良反应的发生。
结论:通过本次实验,我们验证了强心苷对心脏功能的正向调节作用。
强心苷能够提高心脏的收缩力和传导速度,使心脏的节律更加规律。
然而,使用强心苷也需要谨慎,避免出现不良反应。
希望本实验的结果能够为临床医生在治疗心脏病时提供一定的参考,为患者的康复做出贡献。
致谢:在本次实验中,我们获得了实验动物的支持与合作,同时也感谢实验设备的提供。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强心苷的显色反应及其应用
对于强心苷的显色反映极其应用的研究已经持续了很长时间,其实这个化学变化现在已经基本成型,目的就是要发挥他的作用,而且他也基本上是应用到了试验之中,当然他的显色再经过了一系列复杂的变化之后,一般都是呈现出来了蓝色或者是蓝绿色,主要是针对骨骼的变化或者是心肾功能的不稳定,这些都有比较不错的反映作用。
同时因为强心苷的显色反映及其应用被得到有效认同之后,他们才会根据目前的变化特点来进行合理的区分,虽然这个东西变得非常的不同的,但是已经足以表达一些合适的思想观点和方法,尤其是因为他们主要是针对肠胃来的,在过程中吸收的程度非常低,所以可以有效达到病变部位,虽然有一定的难度和风险。
但是相信这个过程肯定会有非常大的不同的变化,当然有时候他们也会采用注射的药物,尤其是强心苷的显色反应极其应用不是很明显的时候,或者是身体情况非常不明朗的时候,这个时候就需要通过一些别的途径来进行自我的合理发泄,同时不同的地方也会有不同的作用,主要是针对肾功能来治疗的。
为了配合强心苷发挥的作用,需要密切关注反应的发生方法和色彩的动态变化,但是他们却往往被忽视了,似乎有点不符合常理,但是很有效果的。