习题课—函数极限
15极限概念习题课

极限概念习题课
一、内容小结 二、题型练习
极限概念习题课
一、内容小结 二、题型练习
一、内容小结
(一)极限的概念 (二)极限的性质 (三)主要研究问题
一、内容小结
(一)极限的概念 (二)极限的性质 (三)主要研究问题
(一)极限的概念
1.概念纵览 2.不同变化过程的联系 3.不同概念的联系 4.不同概念的定义
(1) 0 (0 1), 正整数 N , 当n N 时,
恒有:xn a .
(2) 0 , 正整数 N , 当n N 时, 恒有:
xn a k (k 0).
(一)概念辨析
➢对N的理解 数列极限的定义是否可叙述为:
0 , 使不等式 xn a 成立的正整数n
(三)主要研究问题
1.存在性 2.唯一性 3.性质 4.求法
➢证明极限存在 利用定义 利用不同过程之间的关系 利用极限与无穷小的关系 利用无穷小的性质
➢证明极限不存在 利用定义的反面说法 利用极限的性质:无界→极限不存在 利用不同过程之间的关系
(三)主要研究问题
1.存在性 2.唯一性 3.性质 4.求法
x x0
➢定理2 lim f ( x) A lim f ( x) lim f ( x) A
x
x
x
➢定理3
lim
n
xn
A
lim
k
xnk
A
({xnk } {xn})
函数的变化趋势
有趋势
无趋势
趋势为 常数A
趋势为 无穷大
无界 有界 振荡
n
A≠0 有极限
A=0 无穷小 ∞ +∞ -∞
自 x
变 量
第一章 函数与极限习题

第一章 函数与极限【内容提要】1. 函数的定义与性质(1)常量与变量、区间与邻域 常量就是在某变化过程中不变的量;而变量则是在某变化过程中变化的量。
(2)函数的概念 设有两个变量x 和y ,D 为一非空数集,如果对于D 内每一个数x ,变量y 按一定的法则f 总有唯一确定的值与之对应,则称y 是x 的函数。
记作y=f (x )。
数集D 称为函数的定义域。
(3)函数的表示法 解析法、列表法、图象法。
(4)函数的性质 有界性、奇偶性、单调性、周期性。
2. 函数的极限(1)自变量趋于无穷大时函数的极限对于给定的任意小的正数ε,总存在一个正数X ,当|x |>X 时,不等式ε<-|)(|A x f (A 是一个确定的常数)恒成立,则称常数A 为函数∞→x x f 当)(时的极限,记作lim ()()()x f x A f x A x →∞=→→∞或。
(2)自变量趋于有限值时函数的极限设函数f (x )在点0x 的某一去心邻域内有定义,如果对于任意给定的无论多么小的正数ε,总存在一个正数δ,当δ<-<||00x x 时,不等式ε<-|)(|A x f (A 是一个确定的常数)恒成立,则称常数A 为函数0)(x x x f →当时的极限,记作0l i m ()()()x f x Af x A x x →∞=→→或。
(3)极限存在定理函数f (x )在点0x 极限存在的充分必要条件是左极限和右极限存在并且相等,即lim ()x f x A →∞=⇔00lim ()lim ()x x x x f x f x A +-→→== (4)函数极限的性质定理1(唯一性)若lim ()x f x →∞(或0lim ()x x f x →)存在,则它的极限是唯一的。
定理2(局部有界性)若0lim ()x x f x →存在,则在点0x 的某一邻域内函数f (x )有界。
定理3(局部保号性)若0lim ()x x f x →=A ,且A>0(或A<0),则存在点0x 的某一去心邻域,使得在该邻域内的任意x 都有f (x )>0(或f (x )<0)。
高数第一次课随堂练习函数与极限

随堂练习 一第一章 函数与极限一、填空题1、432lim23=-+-→x kx x x ,则k= 。
2、函数xxy sin =有间断点 ,其中 为其可去间断点。
3、若当0≠x 时 ,xxx f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。
4、=++++∞→352352)23)(1(limx x x x x x 。
5、3)21(lim -∞→=+e nknn ,则k= 。
6、函数23122+--=x x x y 的间断点是 。
7、当+∞→x 时,x1是比3-+x 8、当0→x 时,无穷小x --11与x 相比较是 无穷小。
9、函数xe y 1=在x=0处是第 类间断点。
10、设113--=x x y ,则x=1为y 的 间断点。
11、已知33=⎪⎭⎫⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
12、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在 ,则a= 。
13、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。
二、计算题1、计算下列极限 (1))2141211(lim n n ++++∞→ ; (2)2)1(321lim nn n -++++∞→ ;(3)35lim 22-+→x x x ; (4)112lim 221-+-→x x x x(5))12)(11(lim 2xx x -+∞→ ; (6)x x x 1sin lim 20→ ;(7)xx x x +---→131lim21; (8))1(lim 2x x x x -++∞→ ;2、计算下列极限 (1)x wx x sin lim0→ ; (2)xxx 5sin 2sin lim 0→ ; (3)x x x cot lim 0→ ;(4)x x x x )1(lim +∞→ ; (5)1)11(lim -∞→-+x x x x ; (6)x x x 1)1(lim -→ ; 3、比较无穷小的阶(1)32220x x x x x --→与,时 ; (2))1(21112x x x --→与,时 ; (3)当0→x 时 , 232-+xx与x 。
同济高等数学第一章习题课

f (x) b k = lim [ − ] x→+∞ x x ∴ f (x) k = lim x→+∞ x
(或x →−∞)
f (x) b lim x[ −k − ] = 0 x→+∞ x x f (x) b lim [ −k − ] = 0 x→+∞ x x
b = lim [ f (x) − kx]
1
lim(cos x )
x →0
x2
ln cos x ln(1 + cos x − 1) lim = lim 2 x→ 0 x →0 → x x2 cos x − 1 = lim x→ x →0 x2 x2 − 1 = lim 2 = − x →0 x 2 1 2 − 所以, 所以,原式 = e 2
二、无穷小的比较
例11 当 下列函数分别是x的几阶无穷小 时,下列函数分别是 的几阶无穷小
~ ~
x2 2
x
1 2
2x = 1+ x + 1− x
~
x
练习: 练习: P74,3(1) , ( )
求分段函数的极限, 三、求分段函数的极限,判断分段函数的 连续性, 连续性,间断点的类型
例12
解:
1 x>0 x sin x , f ( x) = , 求 lim f ( x ). x x→ 0 → 1 − cos x − x sin 2 , x<0 x2 x 1 − cos x − x sin 2 lim− f ( x ) = lim− x x →0 x →0 x2 x sin 1 − cos x 1 1 2 = lim− − lim− = − =0 x →0 x →0 x2 x2 2 2 1 lim+ f ( x ) = lim+ x sin = 0 x →0 x →0 x lim− f ( x ) = lim+ f ( x ) = 0
极限 章节习题课

? ?
x
(含 x n)
x
x
… xN … x N
lim f ( n)
n
?Байду номын сангаас
lim f ( x )
?
2. 极限的性质 (1) 极限的唯一性. (2) 极限的局部保号性.
δ 0, 当 0 | x - x0 | 时,
有 f ( x) 0
1 ( 1)n 2 0 分析: n n 1 ( 1) n 0, 要 使 0 , n 2 即 n
2 只需要 , n
2 总 N , 证 明 : 0 , 1 ( 1) n 0 当 n N 时,就有 n
1 ( 1) n lim 0 n n
(1) 利用函数连续性求极限——代入法. (2) 用恒等变形消去零因子法求极限.
(3) 用同除一个函数的方法求 型极限.
(4) 利用两个重要极限求极限. (5) 利用无穷小性质求极限.
(6) 利用等价无穷小代换求极限.
(7) 利用极限存在的两个准则求极限. (8) 从左、右极限求分段函数在分界点处的极限. (9) * 用洛必达法则求未定式的极限.
(× )
.
(13) (14) (15) (16) (17) (18)
n
lim| a n | 0 lim a n 0
n n
(√ ) ( ×) (× ) (× ) ( √) ( ×)
lim| a n | 1 lim a n 1
n
1 1 lim xsin lim x limsin 0 x 0 x x 0 x 0 x x tanx x x lim lim 3 0 3 x 0 x 0 x x 1 cosx 1 cosx 1 lim lim 2 x 0 xsin x 0 x 2 x x sinxcosx x sin x lim lim 3 x 0 x 0 x x3
高等数学课后习题答案--第一章 函数与极限

第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由 ][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a ax a ax a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}nx 有界, 又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。
从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n 5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。
清华大学微积分习题课(Stolz定理、数列极限、函数极限)

( )求极限 . 4
lim
x→0
2 1
+ +
1
ex
4
ex
+
sin x
x
Page 1 of 3
2/3
3.求下列极限
( )求 .1
1
lim(1 + sin x)2x
x→0
( ) . x2 −1x2
3
lim
x→∞
x2
+
1
4.求下列极限
( )求 2
lim(sin 1 + cos 1 )x .
x→∞
f (x) g(x)
τ = Tf ∈Q
f (x) g(x)
x→∞
Tg
什么关系?
.证明:若 ,且 ≤ ,则 11
f (x) = a1 sin x + a2 sin 2x + ⋯ + an sin nx
| f (x) | | sin x |
≤ . a1 + 2a2 + ⋯ + nan 1
Page 2 of 3
.已知 ,求证: . 1
lim
n→∞
an
=
+∞
lim a1 + a2 + ⋯ + an = +∞
n→∞
n
.已知数列 单调,且 ,证明: . 2
{an }
lim a1 + a2 + ⋯ + an = A
n→∞
n
lim
n→∞
an
=
A
3.证明:数列
{an
}
没有收敛子列等价于
lim
n→∞
函数,极限,连续-习题课

取Nmax{9,[
]},则 0n N, 有
即
n2 n 1 lim 2 . n 2n n 9 2
例5
证
证明
lim
x 2
x 2. x 1
x x2 | 2 || | x 1 x 1 1 不妨取 | x 2 | 2 ,即 3 5 1 3 1 x | x 1 | 2. 2 2 2 2 | x 1| x2 | 2 | x 2 | | x 2 | . 则 | x 1 2 1 取 min{ , },则x:0<|x-2|<,有 2 2 x | 2 | . 证毕. x 1
f (x ) x 2 2 x 2
例3 判断下列函数的奇偶性
a x 1 ① yx x a 1
② y ln x x 2 1
(
)
1 1 ax 1 x x x x a 1 1 a a a ( x ) ( ) ( ) ( ) ( ) f x x x x 解 ① 1 a x 1 1 ax 1 ax 1 x x a a x x a 1 a 1 为偶函数。 x x f ( x) ∴函数 y x x a 1 a 1
1
x ln (1 2 x ) ~ 12 x
e
x 0
x 2x lim ( cos sin x 1 x )
1 x
e
2
复习: 若 lim u ( x) 0 , lim v( x) , 则有 x x0 x x0
x x0
lim 1 u ( x)
v( x)
lim
1 (1 x 3 ) 2 x 3 1 x 3 x 2
x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二次习题课(函数极限、无穷小比较)
一、内容提要
1.函数极限定义,验证21lim 3
=+→x x . 2.极限性质(唯一性、局部有界性、局部保号性、保不等式).
3.极限四则运算.求x
e e x
x x 230lim -→-. 4.收敛准则(迫敛准则、柯西收敛准则、归结原则).
5.无穷小与无穷大(无穷小比较、等价无穷小替换定理、渐近线的求法).
6.重要极限与常用等价无穷小.
二、客观题
1.当0→x 时,下列四个无穷小中,( )是比其它三个更高阶的无穷小.为什么?
(A )2x ; (B)x cos 1-; (C)112--x ; (D)x x sin tan -
2.已知5)(cos sin lim 0=--→b x a
e x x x ,则), (=a ) (=b . 3.的是时,当 sin 02x x x x -→( ).
)(A 低阶无穷小;)(B 高阶无穷小;)(C 等价无穷小;)(D 同阶无穷小但非等价无穷小.
4.
则它的连续区间是( ). 5.当x →0时下列变量中与x 是等价无穷小量的有 [ ].
)(A x 2
1
sin ; )(B )1ln(x +; )(C 2x ; )(D x x -22. 7.设x
x x f 11)(2-+=,则0=x 是)(x f 的间断点,其类型是.____________ 三、解答题
1利用重要极限求下列函数极限
(1)17lim 1x x x x -→∞+⎛⎫ ⎪+⎝⎭
(二重),(2)设n n n n n a x !=,求极限n n n x x 1lim +∞→,(3)求极限()210cos lim x x x →, 解:()()321cos 1cos 1010)1(cos 1lim cos lim x x x x x x x x -⋅-→→-+=211
cos lim 30--==→e e x x x
2.利用等价无穷小的性质求下列极限:
(1)()x x x sin 31ln lim 0-→; (2)bx x ax x tan sin lim 20+→,0≠b ; (3)1
1sin 1lim 20--+→x x e x x . 3.利用连续函数求下列极限:
(1)()x ax x +→1ln lim 0;(2)x e x x 1lim 0-→(提示:令1-=x e t );(3)()x x x 2cot 20tan 31lim +→.
4.利用函数极限的归结原则求数列极限
(1)n n x 2sin lim ∞→, (2)n
n n n ⎪⎭⎫ ⎝⎛++∞→2211lim . 5.设()⎪⎩⎪⎨⎧≥+<=0][0sin x x x x x ax x f ,应怎样选取数a ,才能()x f 使处处连续?
6.已知 1)1
1(l i m 23=--++∞→b ax x x x ,求常数,a 和b 。
(极限分析) 四、证明题
1.若)(x f 为周期函数,且0)(lim =∞
→x f x ,试证明) ,( ,0)(∞+-∞∈≡x x f . 2. 利用函数极限的归结原则证明x x cos lim ∞
→不存在. 3.设),)((~)(0x x x g x f →证明:))(()()(x f o x g x f =-.
4.设函数f 在),0(∞+上满足方程)()2(x f x f =,且A x f x =+∞
→)(lim ,证明:A x f ≡)(,),0(∞+∈x .
5.设函数f 在),0(∞+上满足方程)()(2x f x f =,且)1()(lim )(lim 0f x f x f x x ==+∞
→→+,证明:)1()(f x f ≡,),0(∞+∈x .。