函数与极限练习题

合集下载

高等数学 第1章 函数与极限 练习册 解答(10月19修改)

高等数学 第1章 函数与极限  练习册 解答(10月19修改)

时,就有
2. 极 限 l i m f (x ) A的 定 义 是 : 对 于 0 , 存 在 X 0 , 当 x
f x A .
时,就有
3. 对 于 任 意 的 正 数 , 存 在 正 数 =
,当
时 5x 2 12 , 因 此
lim (5x 2) 12.
x2
解答:
1、当 0 x x0 时; 2、 x X 时;
1.设
xn
n n
1 ,则当 1
n
大于 正整 数
N
时, | xn 1| 104 , 对于任意正数 ,
当 n 大于正整数 N
时,
|
xn
1|
,所以
lim
n
xn
1.
2. 对于任意正数 , 存在正整数 N
cos n
, 当 n N 时,
2 0 , 所以
n
cos n lim 2 0 . n n
3. 设 xn 为任一数列, 又设对于任意正数 , 存在正整数 N1, N2 , 当 n N1 时,
第 1 章 函数与极限
V.同步练习
第 1 章 函数、极限与连续
1.1 函数及其性质
一、填空题
1.已知 f x ax2 bx 5 且 f x 1 f x 8x 3 , 则 a
;b

2. y cos 2x 1 的周期为

3.
函数
f
(x)
sin
1 x
,
x
0;
的定义域为
; 值域为
.
解. 设圆锥的半径与高分别为r, h , 则 2 r R 2 , 即 r R 2 , 从而
2
h
R2 r2

函数与极限练习题

函数与极限练习题

函数与极限练习题----题型⼀.求下列函数的极限⼆.求下列函数的定义域、值域判断函数的连续性,以及求它的间断点的类型三.内容⼀.函数1.函数的概念2.函数的性质——有界性、单调性、周期性、奇偶性3.复合函数4.基本初等函数与初等函数5.分段函数⼆.极限(⼀)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则(⼆)函数的极限 1.函数在⽆穷⼤处的极限 2.函数在有限点处的极限3.函数极限的性质 4.极限的运算法则(三)⽆穷⼩量与⽆穷⼤量 1.⽆穷⼩量 2.⽆穷⼤量3.⽆穷⼩量的性质 4.⽆穷⼩量的⽐较 5.等价⽆穷⼩的替换原理三.函数的连续性x 处连续的定义函数在点1.0函数的间断点2. 间断点的分类 3. 连续函数的运算4. 闭区间上连续函数的性质 5.例题详解函数的概念与性质题型I II题型求函数的极限(重点讨论未定式的极限)III题型求数列的极限已知极限,求待定参数、函数、函数值IV 题型⽆穷⼩的⽐较题型V 判断函数的连续性与间断点类型VI 题型与闭区间上连续函数有关的命题证明VII 题型---------⾃测题⼀填空题⼀.选择题⼆.解答题三.3 ⽉18 ⽇函数与极限练习题⼀.填空题x,则1若函数lim f (x)______1f (x)1.x212,则lim f ( x)xf (x)2.若函数_______x1x 1u2 , v3 ,uv则复合函数为ytan x, 设=_________3.f ( x)ycos xx0设= __________4. f ( x),则f (0) 0xx0(的值为,则 f (0) 已知函数)xaxb 5.f ( x)2 x01x(A)(B)(C)1(D) 2a bb a函数的定义域是(6.)y2x3x(A)(B)[2, ](2,)(D)(C),3)(3,)((3,)[2,3)1) f ( 已知,则7.__________1f (2)x1x1其定义域为__________,8.4x y1 x2x的定义域是______119.y arcsin2x12函数___________x 1) 为考虑奇偶性,函数10. ln( xysin xx7 2)_______;(111.计算极限:()limlim______1 x x1x 1x---------2))(3;(3nlimlimx= _______= _______42xn5n2nxsin x1阶的⽆穷⼩量;计算:()当时,______是⽐x cos x1112.0x 与时,)当( 2 ______;若是等价⽆穷⼩量,则ax a sin 2 xx02,x1和,则已知函数 f ( x)13. )0(1xx1,lim limf ( x) f ( x),x0x11x 0x12(A)都存在(B)都不存在(C)第⼀个存在,第⼆个不存在(D)第⼀个不存在,第⼆个存在14. 设,则()limf (x)f ( x)3x2,x02x 02,0xx(B)(D)(C)(A)22011时,n sin是(15. 当)nn(A)⽆穷⼩量(B)(C)(D)有界变量⽆界变量⽆穷⼤量计算与应⽤题2x3x2, x2x2在点处连续,且f ( x),求a设 f ( x) 2 x a,x23x2x 112xcos x1求极限:求极限:求极限:1 x limlimlim()42xxx 0x2x2x15111c o sxx x 2x求极限:求极限:lim (1 lim (1))求极限:lim22xx4x x 0x 0 x1211求极限:求极限:求极限:x2n lim( lim(1))lim() n2xnn1n222x2ex11 0 022xx求极限:求极限:求极限) lim liml i m ( 1 12x 1xx ln xx x x 0x求极限:( l i m1 ))求极限:lim求极限:x 313 lim(1 2 x3x21 xx1 x13 x8x 1x---------4 ⽉28 ⽇函数与极限练习题⼀.基础题1, f ( x)则 1.设函数x e1x 1的第⼀类间断点都是f(x) )x=0,x=1 (A .的第⼆类间断点x=0,x=1 都是f(x) (B)的第⼆类间断点是f(x) 是f(x) 的第⼀类间断点,x=1 (C )x=0 .的第⼀类间断点f(x) f(x) 的第⼆类间断点,x=1 是(D )x=0是.)下列极限正确的(2.x sin x sin xlim .B lim1不存在A.x xx sin x x1 lim x sin C.1lim arctan x.Dx x2x10)sin x(xx0)0(x a x lim f=存在,则且f x)(设3. 1x 0xsina(x 0)x2-1 B.0C.1 D.A.x lim ( a)4. 已知a9 (,则。

函数与极限练习题

函数与极限练习题

题型一.求下列函数的极限二.求下列函数的定义域、值域三.判断函数的连续性,以及求它的间断点的类型内容一.函数1.函数的概念2.函数的性质——有界性、单调性、周期性、奇偶性3.复合函数4.基本初等函数与初等函数5.分段函数二.极限(一)数列的极限1.数列极限的定义2.收敛数列的基本性质3.数列收敛的准则(二)函数的极限1.函数在无穷大处的极限2.函数在有限点处的极限3.函数极限的性质4.极限的运算法则(三)无穷小量与无穷大量1.无穷小量2.无穷大量3.无穷小量的性质4.无穷小量的比较5.等价无穷小的替换原理三.函数的连续性x处连续的定义1.函数在点02.函数的间断点3.间断点的分类4.连续函数的运算5.闭区间上连续函数的性质例题详解题型I函数的概念与性质题型II求函数的极限(重点讨论未定式的极限)题型III求数列的极限题型IV已知极限,求待定参数、函数、函数值题型V无穷小的比较题型VI判断函数的连续性与间断点类型题型VII与闭区间上连续函数有关的命题证明自测题一一.填空题二.选择题三.解答题3月18日函数与极限练习题一.填空题1.若函数121)x (f x-⎪⎭⎫⎝⎛=,则______)x (f lim x =+∞→2.若函数1x 1x )x (f 2--=,则______)x (f lim _1x =→3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________4. 设cos 0()0xx f x x ≤⎧⎪=⎨>⎪⎩ ,则 (0)f = __________5.已知函数 20()1ax bx f x x x +<⎧=⎨+≥⎩,则(0)f 的值为 ( )(A) a b + (B) b a - (C) 1 (D) 2 6. 函数 3x 2x y --=的定义域是 ( ) (A) (2,)+∞ (B) [2,]+∞ (C) (,3)(3,)-∞+∞ (D) [2,3)(3,)+∞7. 已知 11()1f x x=- ,则 (2)f = __________8.y =+,其定义域为 __________ 9. 22x11x 1arcsin y -+-= 的定义域是 ______10. 考虑奇偶性,函数ln(y x = 为 ___________ 函数11.计算极限:(1) sin lim x xx →∞= _______;(2)711lim1x x x →-=- ______ (3)xx xx sin lim +∞→ = _______;(4)1253lim 22-+∞→n n n n = _______12.计算:(1)当 0x → 时,1cos x - 是比 x ______ 阶的无穷小量;(2)当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a = ______;13.已知函数2,()1,f x x ⎧-⎪=-⎨11001x x x ≤--<<≤<,则1lim ()x f x →- 和 0lim ()x f x →( )(A) 都存在 (B) 都不存在(C) 第一个存在,第二个不存在 (D) 第一个不存在,第二个存在14. 设 232,0()2,0x x f x x x +≤⎧=⎨->⎩ ,则 0lim ()x f x +→= ( ) (A) 2 (B) 0 (C) 1- (D) 2-15. 当 n →∞ 时,1sin n n是 ( )(A)无穷小量 (B) 无穷大量 (C) 无界变量 (D) 有界变量计算与应用题设 )(x f 在点 2x =处连续,且232,2(),x x x f x a ⎧-+⎪-⎪⎪=⎨⎪⎪⎪⎩22=≠x x ,求 a求极限:20cos 1lim 2x x x →- 求极限: 121lim()21x x x x +→∞+- 求极限: 512lim43-+-∞→x x x x求极限:x x x 10)41(lim -→ 求极限:2x x )x 211(lim -∞→- 求极限:20cos 1lim xxx -→求极限: 2111lim()222n n →∞+++求极限:22lim(1)n n n →∞- 求极限:lim()1xx x x →∞+求极限 211lim ln x x x →- 求极限:201lim x x e x x →-- 求极限:21002lim(1)x xx +→∞+求极限: lim x →- 求极限:21lim()1x x x x →∞-+ 求极限: 3131lim()11x x x →---4月28日函数与极限练习题一.基础题 1.设函数,11)(1-=-x x ex f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 2. 下列极限正确的( )A . sin lim1x x x →∞= B . sin limsin x x xx x→∞-+不存在 C . 1lim sin 1x x x →∞= D . limarctan 2x x π→∞=3. 设()1sin (0)0(0)1sin (0)x x x x f x x a x x ⎧<⎪⎪=⎪=⎨⎪+>⎪⎪⎩且()0lim x f x →存在,则a = ( )A .-1B .0C .1D .2 4. 已知9)ax a x (lim xx =-+∞→,则=a ( )。

高数第一章 练习题

高数第一章  练习题

第一章 函数、极限与连续1.下列各极限正确的是( ) A.e xx x =+→)11(lim 0B.e xx x =-→)11(lim 0C.11sin lim =∞→x x x D.11sin lim 0=→xx x 2.下列极限中,正确的是( ) A.cot 0lim(1tan )x x x e →+= B.01lim sin 1x x x→= C.sec 0lim(1cos )xx x e →+= D.1lim(1)nn n e →∞+=3.若1112()1xxe f x e-=+,则0x =是()f x 的( )A.可去间断点B.跳跃间断点C.无穷间断点D. 连续点 4.下列极限中,正确的是( )A.22sin lim =∞→x x xB.1arctan lim =∞→xx x C.∞=--→24lim22x x x D.1lim 0=+→x x x 5.若函数⎪⎪⎩⎪⎪⎨⎧<-=>=0)31ln(1020sin )(x x bx x x x axx f 为连续函数,则,a b 满足( )A.2,a b =为任何实数B.21=+b aC.32,2a b ==- D.1==b a6.当0→x 时,x x sin 2-是关于x 的 ( ) A.高阶无穷小 B.同阶但不是等价无穷小C.低阶无穷小D.等价无穷小7.若21)2(lim 0=→x xf x ,则=→)3(lim0x f xx ( ) A.21B.2C.3D.318.若2)2(lim0=→x x f x ,则=∞→)21(lim xxf x ( ) A.41 B.21C.2D.4 9.0x →时,2(1)x e ax bx -++是比2x 高阶无穷小,则( ) A. 1,12a b == B. 1,1a b == C. 1,12a b =-= D. 1,1a b =-=10.设12a ≠,则21lim ln _______(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦11.若0sin lim(cos )5xx xx b e a→-=-,则_______,______.a b == 12.已知当0x →时,123(1)1ax +-与cos 1x -时等价无穷小,则常数___.a =13.已知0→x 时,)cos 1(x a -与x x sin 是等价无穷小,则=a .14.设3214lim1x x ax x b x →---+=+,则______,______.a b == 15.设2lim()3xx x c x c→∞+=-,则________c =. 16.求下列函数的极限(1)lim x →-∞(2)01cos3limtan x xx x→- (3)201lim 1cos x x →- (4)3lim()1x x x x +→∞+ 17.求极限20lim(13)x xx x -→-18.判断函数21arctan 0()0,00ln(1)x x f x x x x x ⎧⎪<⎪⎪==⎨⎪>+⎪⎪⎩是否在0x =处连续?19.设函数10sin(),0x x x f x x x e αβ⎧>⎪=⎨≤⎪+⎩,根据α和β不同取值,讨论()f x 在0x =处的连续性?20.求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.21.求函数xxx f sin )(=的间断点,并判断其类型. 22.已知02x →=,求0lim ()x f x →. 23.设()f x 在[],a b 上连续,()()f a f b =,证明:至少存在[]0,x a b ∈,使00()()2b af x f x -=+. 24.证明:方程sin x a x b =+(其中0,0a b >>)至少有一个正根,并且它不超过a b +.。

高一数学函数与极限分析练习题及答案

高一数学函数与极限分析练习题及答案

高一数学函数与极限分析练习题及答案一、选择题1. 设函数$f(x)=\sqrt{1-x^2}$,其定义域为$[-1,1]$,关于该函数,下列说法正确的是:A. $f(x)$在$[-1,1]$上单调递增B. $f(x)$在$[-1,1]$上单调递减C. $f(x)$在$x=\frac{\pi}{4}$处取得最大值D. $f(x)$在$x=0$处取得最大值答案:D2. 设函数$f(x)=\frac{1}{x}$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:D3. 设函数$f(x)=e^x$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C4. 设函数$f(x)=\sin x$,下列说法正确的是:A. $f(x)$在$x=\frac{\pi}{2}$处连续B. $f(x)$在$x=\frac{\pi}{2}$处可导C. $f(x)$在$x=\frac{\pi}{2}$处极限存在D. $f(x)$在$x=\frac{\pi}{2}$处极限不存在答案:B、C5. 设函数$f(x)=x^3$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C二、填空题1. 函数$f(x)=\sin x$在$x=\frac{\pi}{2}$处的导数为______。

答案:12. 函数$f(x)=\frac{1}{x}$在$x=0$处的极限为______。

答案:无穷大或$+\infty$3. 函数$f(x)=e^x$在$x=0$处的连续性、可导性、极限存在性均为______。

专升本函数与极限练习题

专升本函数与极限练习题

专升本函数与极限练习题一、选择题1. 函数f(x)=x^2+3x-2在x=-1处的极限值是:A. 0B. -1C. 2D. 42. 函数f(x)=1/x在x趋近于0时的极限值是:A. 0B. 1C. 无穷大D. 不存在3. 函数f(x)=sin(x)/x在x趋近于0时的极限值是:A. 0B. 1C. 无穷大D. 不存在二、填空题4. 函数f(x)=x^3-6x^2+11x-6的零点是______。

5. 函数f(x)=x^2/(x-1)在x=1处的极限值是______。

三、解答题6. 求函数f(x)=x^3-2x^2-3x+4在x=2处的左极限和右极限,并判断该点的极限是否存在。

7. 证明函数f(x)=x^2在[0, ∞)上是无界的。

8. 利用夹逼定理证明:当x趋近于0时,sin(x)/x的极限值为1。

四、证明题9. 证明函数f(x)=ln(x)在(0, ∞)上是单调递增的。

10. 证明函数f(x)=x^2+1在R上是连续的。

五、综合题11. 已知函数f(x)=x^2-4x+3,求其在区间[1, 5]上的最大值和最小值。

12. 已知函数f(x)=x^3-6x^2+11x-6,求其导数f'(x),并利用导数判断函数的单调性。

六、应用题13. 某工厂生产的产品数量与时间的关系为f(x)=2x^2-12x+20,其中x表示时间(单位:月),求该工厂第4个月和第5个月的平均产量。

14. 某投资项目的利润函数为f(x)=-x^2+400x-40000,其中x表示投资额(单位:万元),求该项目的最大利润及对应的投资额。

七、附加题15. 考虑函数f(x)=x^2/(1+x^2),求其在区间[-1, 1]上的积分,并解释其几何意义。

八、结束语本套练习题旨在帮助学生巩固和提高对函数与极限概念的理解,以及解决相关问题的能力。

希望同学们能够认真完成,通过练习加深对函数性质和极限概念的理解。

【注】以上题目仅为示例,实际的练习题需要根据教学大纲和考试要求来设计。

函数极限练习题

函数极限练习题

函数极限练习题1.按定义证明下列极限: (1) =6 ; (2) (x 2-6x+10)=2; (3) ; (4) =0;(5) cos x = cos x 0 2.根据定义2叙述 f (x) ≠ A. 3.设 f (x) = A.,证明 f (x 0+h) = A. 4.证明:若 f (x) = A,则| f (x)| = |A|.当且仅当A 为何值时反之也成立? 5.证明定理3.16.讨论下列函数在x 0→0 时的极限或左、右极限: (1)f(x)=; (2) f(x) = [x](3) f (x)=7.设 f (x) = A,证明 f () = A +∞→x limxx 56+2lim →x +∞→x lim11522=--x x -→2lim x 24x -0lim xx →0lim xx →0lim x x →0lim →h 0lim x x →0lim xx →xx⎪⎩⎪⎨⎧<+=>.0,1.0;0.0;22x x x x x +∞→x lim 0lim x x →x18.证明:对黎曼函数R(x)有R (x) = 0 , x 0∈[0,1](当x 0=0或1时,考虑单侧极限).习 题求下列极限:(1)2(sinx -cosx -x 2); (2); (3) ; (4) ; (5) (n,m 为正整数); (6);(7)(a>0); (8) . 利用敛性求极限: (1) ; (2) 设 f(x)=A, g(x)=B.证明: (1)[f(x)±g(x)]=A ±B; (2)[f(x)g(x)]=AB; (3)=(当B ≠0时)设f(x)=, a 0≠0,b 0≠0,m ≤n,试求 f(x) 设f(x)>0, f(x)=A.证明 0lim xx →2lim π→x 0lim →x 12122---x x x 1lim →x 12122---x x x 0lim →x ()()3232311x x x x +-+-1lim →x 11--m n x x 4lim→x 2321--+x x 0lim →x xax a -+2+∞→x lim()()()902070155863--+x x x -∞→x limx x x cos -0lim →x 4sin 2-x xx 0lim x x →0lim xx →0lim xx →0lim xx →0limx x →)()(x g x f BAnn n n mm m m b x b x b x b a x a x a x a ++++++++----11101110 +∞→x lim 0lim xx →=,其中n ≥2为正整数. 6. 证明a x=1 (0<a<1) 7.设 f(x)=A, g(x)=B. (1)若在某∪0(x 0)内有f(x) < g(x),问是否必有A < B ? 为什么?(2)证明:若A>B,则在某∪0(x 0)内有f(x) > g(x). 8.求下列极限(其中n 皆为正整数): (1) ; (2) ; (3) ; (4) (5) (提示:参照例1)9.(1)证明:若 f (x 3)存在,则 f (x)= f (x 3) (2)若 f (x 2)存在,试问是否成立 f (x) = f (x 2) ? 习 题叙述函数极限f(x)的归结原则,并应用它证明cos x 不存在.设f 为定义在[a,+)上的增(减)函数.证明: = f(x)存在的充要条件是f 在[a,+)上有上(下)界. (1)叙述极限 f (x)的柯西准则; (2)根据柯西准则叙述 f (x)不存在的充要条件,并应用它证明sin x 不存在. 0limx x →nx f )(n A 0lim →x 0lim x x →0lim xx →-→0lim x nx x x+11+→0lim x nx x x+11lim →x 12--+++x nx x x n 0lim→x xx n11-+∞→x lim[]x x 0lim →x 0lim →x 0lim →x 0lim →x 0lim →x 0lim →x +∞→n lim +∞→n lim ∞+∞→n lim ∞-∞→n lim -∞→n lim -∞→n lim4. 设f 在∪(x 0)内有定义.证明:若对任何数列{x n }∪(x 0)且x n =x 0,极限f(x n )都存在,则所有这极限都相等. 提示: 参见定理3.11充分性的证明.5设f 为∪0(x 0)上的递减函数.证明:f(x 0-0)和f(x 0+0)都存在,且 f(x 0-0) =f(x), f(x 0+0)= f (x) 6.设 D(x)为狄利克雷函数,x 0∈R 证明D(x)不存在. 7.证明:若f 为周期函数,且f(x)=0,则f(x)=0 8.证明定理3.9习 题求下列极限(1) ; (2)(3) ; (4) ; (5) ; (6) ; (7) ; (8) ; (9) ; (10)求下列极限(1) ; (2) (a 为给定实数);(3) ; (4) ; ⊂∞→n lim ∞→n lim ()00supx u x -∈)(00inf x u x n∈0lim x x →+∞→x lim xx x 2sin lim 0→()230sin sin limx x x →2cos lim 2ππ-→x x x xxx tan lim 0→30sin tan lim xx x x -→x xx arctan lim 0→xx x 1sin lim +∞→a x a x a x --→22sin sin lim114sin lim-+→x xx x x x cos 1cos 1lim20--→xn x-∞→-)21(lim ()x x ax 101lim +→()xx x cot 0tan 1lim +→xx x x 1011lim ⎪⎭⎫ ⎝⎛-+→(5) ; (6) (为给定实数) 证明: 利用归结原则计算下列极限: (1) ; (2)习 题证明下列各式(1) 2x -x 2=O(x) (x →0); (2)x sin (x →0+);(3)(x →0);(4) (1+x)n = 1+ nx+o (x) (x →0) (n 为正整数) (5) 2x 3+ x 2=O(x 3) (x →∞) ;(6) o (g(x))±o(g(x)) =o(g(x))(x →x 0) (7) o(g 1(x))·0(g 2(x))=o(g 1(x)g 2(x)) (x →x 0) 应用定理3.12求下列极限:(1) (2) 证明定理3.13求下列函数所表示曲线的渐近线:(1) y = ; (2) y = arctan x ; (3) y =试确定a 的值,使下列函数与x a当x →0时为同阶无穷小量: (1) sin2x -2sinx ; (2)- (1-x); (3); (4)12)1323(lim -+∞→-+x x x x x n xβα)1(lim ++∞→βα,12cos 2cos 2cos lim lim 20=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡∞→→n n x x x x xcox nn n πsinlim∞→)(23x O x =)1(11o x =-+xx x x x cos 1arctanlim-∞→xx x cos 111lim 20--+→x 1xx x 24323-+x+11x x sin 1tan 1--+53243x x -试确定a 的值,使下列函数与x a当x →∞时为同阶无穷大量: (1); (2) x+x 2(2+sinx);(3) (1+x)(1+x 2)…(1+x n).证明:若S 为无上界数集,则存在一递增数列{x n }s ,使得x n →+∞(n →∞)证明:若f 为x →r 时的无穷大量,而函数g 在某U 0(r)上满足g(x)≥K>0,则fg 为x →r 时的无穷大量。

高数函数与极限练习题

高数函数与极限练习题

高数函数与极限练习题一、函数的基本概念1. 判断下列函数的单调性:(1) f(x) = 3x + 4(2) g(x) = 2x^2 + 5x + 1(3) h(x) = e^x x2. 求下列函数的定义域:(4) f(x) = √(x^2 9)(5) g(x) = 1 / (x 2)(6) h(x) = ln(x^2 4)3. 判断下列函数的奇偶性:(7) f(x) = x^3 3x(8) g(x) = sin(x) + cos(x)(9) h(x) = e^x e^(x)二、极限的计算4. 计算下列极限:(10) lim(x→0) (sin(x) / x)(11) lim(x→1) (x^2 1) / (x 1)(12) lim(x→+∞) (1 / x^2 1 / x)5. 讨论下列极限的存在性:(13) lim(x→0) (sin(1/x))(14) lim(x→0) (x^2 / sin(x))(15) lim(x→+∞) (x ln(x))6. 计算下列极限:(16) lim(x→0) (e^x 1) / x(17) lim(x→+∞) (x^2 + x + 1) / (2x^2 + 3x 1)(18) lim(x→∞) (x^3 + 3x^2 + 2x + 1) / (x^4 + 4x^3 + 3x^2)三、无穷小与无穷大7. 判断下列表达式的无穷小性质:(19) sin(x) x(20) 1 cos(x)(21) e^x 1 x8. 判断下列表达式的无穷大性质:(22) 1 / (x 1)(23) ln(1 / x)(24) x^2 e^x (x > 0)四、连续性与间断点9. 讨论下列函数的连续性:(25) f(x) = |x 1|(26) g(x) = { x^2, x < 0; 1, x ≥ 0 }(27) h(x) = { sin(x), x ≠ 0; 1, x = 0 }10. 求下列函数的间断点:(28) f(x) = 1 / (x^2 1)(29) g(x) = √(1 cos(x))(30) h(x) = ln|x^2 4|五、综合题11. 设函数f(x) = x^2 2x + 3,求lim(x→+∞) f(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。

[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。

[ ] 4、定义在(∞+∞-,)上的常函数是周期函数。

[ ] 5、任一周期函数必有最小正周期。

[ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。

[ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。

[ ] 8、f(x)=1+x+ 2x 是初等函数。

[ ] 二.单项选择题1、下面四个函数中,与y=|x|不同的是 (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =2、下列函数中 既是奇函数,又是单调增加的。

(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ϕϕ则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x4、若)(x f 为奇函数,则 也为奇函数。

(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。

1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。

(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设⎩⎨⎧=,,2)(x x x f 00≥<x x ,⎩⎨⎧-=,3,5)(x x x g 00≥<x x ,求)]([x g f 及)]([x f g 。

六.利用x x f sin )(=的图形作出下列函数的图形:1.|)(|x f y = 2。

|)(|x f y =3.2)(+=x f y 4。

)2(+=x f y5.)(2x f y = 6。

)2(x f y =§2 数列的极限一 是非判断题1、当n 充分大后,数列n x 与常数A 越来接近,则.lim A x n x =∞→ [ ]2、如果数列n x 发散,则n x 必是无界数列。

[ ] 3。

如果对任意,0>ε存在正整数N ,使得当n>N 时总有无穷多个n x 满足|n x ε<-|a , 则 .lim a x n n =∞→ [ ]4、如果对任意,0>ε数列n x 中只有有限项不满足|n x ε<-|a ,则.lim a x n n =∞→ [ ]5、若数列n x 收敛,列n y 发散,则数列n n y x +发散。

[ ] 二.单项选择题1、根据 a x n n =∞→lim 的定义,对任给,0>ε存在正整数N ,使得对n>N 的一切x n ,不等式ε<-a x n 都成立这里的N 。

(A )是ε的函数N(ε),且当ε减少时N (ε)增大; ( B )是由ε所唯一确定的(C )与ε有关,但ε给定时N 并不唯一确定 (D )是一个很大的常数,与ε无关。

2、⎪⎩⎪⎨⎧=-为偶数当为奇数当n n n x n ,10,17则 。

(A );0lim =∞→n n x (B );10lim 7-∞→=n n x(C );,10,,0lim 7⎩⎨⎧=-∞→为偶数为奇数n n x n n (D) 不存在n n x ∞→lim3、数列有界是数列收敛的 。

(A )充分条件; (B )必要条件;(C )充分必要条件; (D )既非充分又非必要条件。

4、下列数列n x 中,收敛的是 。

(A )n n x nn 1)1(--=(B )1+=n n x n (C )2sin πn x n =(D )nn n x )1(--= 三.根据数列极限的定义证明。

(1) 01lim 2=∞→n n (2)321312lim =++∞→n n n(3)0sin lim =∞→n n n (4)21)21(lim 222=+++∞→nn n n n四、若0lim =∞→n n x ,又数列n y 有界,则0lim =∞→n n n y x 。

五、若a x n n =∞→lim ,证明||||lim a x n n =∞→。

反过来成立吗?成立给出证明,不成立举出反例。

§3 函数的极限一 是非判断题1、如果)(0x f =5,但则,4)0()0(00=+=-x f x f )(lim 0x f x x →不存在。

[ ]2、)(lim x f x ∞→存在的充分必要条件是)(lim x f x +∞→和)(lim x f x -∞→都存在。

[ ]3、如果对某个,0>ε存在,0>δ使得当0<δ<-||0x x 时,有,|)(ε<-A x f 那末.)(lim 0A x f x x =→ [ ]4、如果在0x 的某一去心邻域内,,0)(>x f 且.0,)(lim 0>=→A A x f x x 那末 [ ] 5、如果A x f x =∞→)(lim 且,0>A 那么必有,0>X 使x 在[]X X ,-以外时.0)(>x f [ ]二.单项选择题1、从1)(lim 0=→x f x x 不能推出 。

(A )1)(lim0=+→x f x x (B )1)0(0=-x f (C )1)(0=x f (D )0]1)([lim 0=-→x f x x2、)(x f 在0x x =处有定义是)(lim 0x f x x →存在的 。

(A ) 充分条件但非必要条件; (B )必要条件但非充分条件(C ) 充分必要条件; (D )既不是充分条件也不是必要条件3、若,11)(,1)1()(22+-=--=x x x g x x x f 则 。

(A ))()(x g x f = (B ))()(lim 1x g x f x =→(C ))(lim )(lim 11x g x f x x →→= (D )以上等式都不成立4、)(lim )(lim 000x f x f x x x x +→-→=是)(lim 0x f x x →存在的 。

(A )充分条件但非必要条件; (B )必要条件但非充分条件(C )充分必要条件; (D )既不是充分条件也不是必要条件 四.根据函数极限的定义证明(1)8)13(lim 3=-→x n (2)444lim22-=+--→x x x(3)2121lim 33=+∞→x x x (4)2)4(lim 2-=--+∞→x x x x五.求xx x 0lim →六.设f(x)=⎩⎨⎧<>-1;21;13x x x x求(1))(lim 1x f x → (2))(lim 2x f x → (3))(lim 0x f x →七.设函数||35||3)(x x x x x f -+=,求(1))(lim x f x +∞→ (2))(lim x f x -∞→ (3))(lim 0x f x +→ (4))(lim 0x f x -→(5))(lim 0x f x →§4无穷小与无穷大一、是非题1、零是无穷小。

[ ]2、x1是无穷小。

[ ] 3、两个无穷小之和仍是无穷小。

[ ] 4、两个无穷小之积仍是无穷小。

[ ] 5、两个无穷大之和仍是无穷大。

[ ] 6、无界变量必是无穷大量。

[ ] 7、无穷大量必是无界变量。

[ ] 8、0,x x →是βα时的无穷小,则对任意常数A 、B 、C 、D 、E ,ββαβE Da C B Aa ++++22也是0x x →时的无穷小。

[ ]二.单项选择题1、若x 是无穷小,下面说法错误的是 。

(A )x 2是无穷小;(B )2x 是无穷小; (C )x-0.0001是无穷小;(D )-x 是无穷小。

2、在X →0时,下面说法中错误的是 。

(A )xsinx 是无穷小(B )是无穷小xx 1sin (C)x 1sin x 1是无穷大; (D)x 1是无穷大。

3、下面命题中正确的是 。

(A )无穷大是一个非常大的数; (B )有限个无穷大的和仍为无穷大; (C )无界变量必为无穷大; (D )无穷大必是无界变量。

三.下列函数在指定的变化趋势下是无穷小量还是无穷大量 (1) lnx )1(→x 及)0(+→x (2))21(sin +xx )0(→x(3) xe )(+∞→x 及)(-∞→x (4) xe 1 )0(+→x 、)0(-→x 及)0(→x四.证明函数x x y cos =在),0(+∞内无界,但当+∞→x 时,这函数不是无穷大。

§5 极限的运算法则一.是非题 1、R )()()(x Q x p x =是有理分式,且)(,0)(x T x Q ≠是多项式, 那末 []).()()()(lim 000x T x R x T x R x x +=+→ [ ]2、.0lim ...2lim 1lim ...321lim2222=+++=++++∞→∞→∞→∞→nnn n n n n n n n [ ] 3、00011lim sinlim .limsin 0x x x x x x x→→→== [ ] 4、 若则可断言且存在,0)(lim ,)()(lim 00=→→x g x g x f x x x x 0)(lim 0=→x f x x [ ]二.计算下列极限(1) 35lim 22-+→x x x (2)112lim 221-+-→x x x x(3)h x h x h 220)(lim -+→ (4)121lim 22---∞→x x x x5)13lim 2420+-+→x x x x x (6)4586lim 224+-+-→x x x x x(7))2141211(lim n n ++++∞→ (8)2)1(321lim nn n -++++∞→(9) )1311(lim 31x x x ---→ (10) 35)3)(2)(1(lim nn n n n +++∞→(11) x e xx arctan lim +∞→ (12) xx x 1sin1sin lim 0+⋅→ (13) )11(lim 22--+∞→x x x (14)12lim++++∞→x x x x x四.已知 22lim 222=--++→x x bax x x ,求常数,a 和b 。

相关文档
最新文档