高等数学函数极限练习题
(完整版)高等数学函数与极限试题

高等数学第一章函数与极限试题一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x x ex f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11C ) X1 D ) x4.下列各式正确的是 ( )A )lim 0+→x )x1+1(x=1 B )lim 0+→x )x1+1(x=eC )lim ∞→x )x11-(x=-e D )lim ∞→x )x1+1(x-=e5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1;B.∞;C.3ln ;D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( )A.1;B.∞;C.2-e ; D.2e7.极限:∞→x lim 332x x +=( ) A.1; B.∞; C.0; D.2.8.极限:xx x 11lim-+→=( ) A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0;B.∞;C.2;D. 21.10.极限: xxx x 2sin sin tan lim30-→=( )A.0;B.∞;C. 161; D.16.二. 填空题 11.极限12sinlim 2+∞→x xx x = . 12.lim→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________;14. =→xxx x 5sin lim0___________;15. =-∞→nn n)21(lim _________________;16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x x x 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合19. 无穷小量是20. 函数)(x f y =在点x0 连续,要求函数y f (x) 满足的三个条件是 三. 计算题 21.求).111(lim 0x ex xx --+-→ 22.设f(e1-x )=3x-2,求f(x)(其中x>0);23.求lim 2x →(3-x)25--x x ;()()x x x x f 25lg 12-+-+=24.求lim ∞→x (11-+x x )x; 25.求lim 0x →)3(2tan sin 22x x x x + 26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→28.求它的定义域。
(完整)高等数学极限和连续习题

极限与连续习题当x 0时,1 COSX 是X 2的 __________________ 穷小量. X 0是函数f(x)竺的 间断点.冈lim(1 -)2x __________________。
2 x X (e 1) x sin xsin x已知分段函数f(x) 〒,x 0连续,则a= ______________________x a,x 0 1由重要极限可知,lim 1+2x 〈. ‘ x 0 ---------------------------------------sin x 0 已知分段函数f(x) 去,x 0连续,则a= ______________________ .x a, x 0 由重要极限可知,lim (1丄)x . x 2x --------------------------- sin x 1知分段函数f(x) x 1 ,x 1连续,则b= ____________________________ . x b,x 1丄 由重要极限可知,Hm )(1 2x); ________________ .当X f 1时,x‘ 3x 2与x ln x 相比, ____________________ 咼阶无 穷小量.2n 51. 2. 3. 4.5. 6. 7. 8. 9. 10. 11.12. 13. 函数f(x)ar 如宀的间断点是x = lim彳1lim 1 =n2n ----------------------------------函数f(x)产長的无穷间断点是x = ------------------------------ tan2 x _ lim ------------ . x 0 3x 3n 5 1 lim 1 = n 2n ---------------------------------- 函数f(X)绘j 的可去间断点是X = ------------------------------2n 5 r 彳3 lim 1 — = n 2n -------------------------- ■ 2 函数f(x) 2x 1的可去间断点是x= __________________. x 3x 4 当x 0时,sinx 与x 3相比, __________________ 高阶无穷小量n 2 计算极限n im 1 1 = ----------------------------------------------lim f(x)x 1 (x 1)(x 1)x计算极限lim 1 1 = ________________ . X xx c设f(x) e, X 0, 要使f(x)在x 0处连续,则x a, x 0.14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. lim cosx x 设函数f x 2x 1, x a, x 0,在x 0处连续,则a 若当x 1f (x)是x 1的等价无穷小,则当X f0时,x sinx与x相比,_______________ 是高阶无穷小量.x2为使函数f(x) X 2, x 0在定义域内连续,则x a, x 0当X^O时,1 cosx与sinx相比,___________________ 咼阶无穷小量.当X—0时,4x2与sin3x相比,_________________ 高阶无穷小量.当x—1 时,x 12与sin x 1 木目比,_______________________________________________________是高阶无穷小量.x若lim 1 k e3,则k =x X函数f(x) 2x 1的无穷间断点是x= __________________x 3x 4极限x im0-x-、 2 T设 f x xsin —,求lim f x =x x设函数f(x) cosx,X 0在x 0处连续,则a= _____________________________a V x, x 0x 0是函数f(x) 护的______________ (填无穷、可去或跳跃)间l x断点.28.29.30.31.32.33.34.35.36.37.38.39.40.计算极限x im 14x 51x 1函数f(x) 2x 1的可去间断点是x=x22x 3 ---------------------- lim 1 -x二、计算题x35. 求极限 lim (12cosx)sinx x 0 x ln(1 6x)6. 求极限lim 丄尹x 0 x(e 1)1. 求极限2. 求极限3. 求极限4.求极限 cos3x cos2 x ln(1 x 2) x 2 (e 1) xln(1 6x) (e x 1) sin x xln(1 6x)x 2x 4 lim 2 x 2 x 4 x m 0 lim x 0 lim x 0。
高等数学极限经典习题及解析

dv 1 v3 v C 1
1 x2
3
2
1 x2
1
2 C.
2v
3
3
2.求
I
arctan x
x dx .
解. I 2 arctan xd x 2 x arctan x 2 xd arctan x
2
x arctan
x
1
1
x
dx
2
x arctan
条件(充分,必要,充要).
3.设 f x 的一个原函数是 x sin x ,则 f x ______ .
4.反常积分 xexdx ______ .
x dx ,于是
At
1 2
t
f
t ,故 t
1 2
是
At
在0,1 上的唯一驻点,又 t 1 时 At 0 , t 1 时 At 0 ,故 t 1 是
2
2
2
At 在0,1 上的最小值点,证毕.
4
七.(1)求解初值问题
dx
dx
dx 2u
dx 2u
2u 1 u2
du
1 dx ,解得 ln 1 u2 x
ln
x
C1 x
1 u2
C ,即
x2 y2 Cx ,代入 x 1, y 0 C 1 ,因此 x2 y2 x .
(2)设 y y x 满足 y 3y 2 y 2ex ,且图形在 0,1 处与曲线 y x2 x 1
4.对于a,b 上函数的下列性质:(1)连续,(2)有界,(3)可导,(4)可积,下面
高等数学题库第01章(函数,极限,连续).

第一章函数、极限、连续习题一一.选择题1.下列各组中的函数f(x)与g(x)表示同一个函数的是() A.f(x)=x,g(x)=x2B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2C.f(x)=xD.f(x)=x,g(x)=-x2.函数y=4-x+sinx的定义域是( )A.[0,1]B.[0,1)(1,4]C.[0,+∞)D.[0,4]3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-1323 B.y=x2 C. y=x3 D.y=x-24.函数y=x2-1单调增且有界的区间是( )A. [-1,1]B. [0,+∞)C. [1,+∞)D. [1,2]5.设y=f(x)=1+logx+32,则y=f-(x)=( )A.2x+3B. 2x-1-3C. 2x+1-3D. 2x-1+36.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=(A.-4B.-2C.-3D.6二.填空题1.f(x)=3-xx+2的定义域是2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。
3.设f(2x)=x+1,且f(a)=4,则a= 。
4.设f(x+11x)=x2+x2,则f(x)5.y=arcsin1-x2的反函数是。
6.函数y=cos2πx-sin2πx的周期T。
)⎧π⎪sinx,x<17.设f(x)=⎨则f(-)=。
4⎪⎩0,x≥12⎧⎧1,x≤12-x,x≤1⎪⎪8.设f(x)=⎨,g(x)=⎨,当x>1时,g[f(x)]= 。
x>1x>1⎪⎪⎩0⎩29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。
10.设f(x)=2x,g(x)=x2,则f[g(x)]=。
三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-33.limx→52x-1-3+2x2-14. lim x→0xx-5x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-27.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1sinx2-49. lim2 x→2x+x-6()习题二1.下列数列中,发散的是( ) 1π2n-11+(-1)n(-1)nA.xn=sinB.xn=5+C.xn=D.xn= nn3n+22n22设limf(x)=A(A为常数),则在点x0处f(x)( ) x→x0A. 一定有定义且f(x0)=AB.有定义但f(x0)可为不等于A的值B. 不能有定义 D.可以有定义,也可以没有定义f(x)=limf(x)是limf(x)存在的( ) 3.lim+-x→x0x→0x→x0A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件4.limh→0x+h-x=() hA.0 B.12x C.2x D.不存在x3(1+a)+1+bx2=-1则a,b的值为( ) 5.若limx→∞x2+1A.a=-1,b=-1B. a=1,b=-1C. a=-1,b=1D. a=1,b=16.设limf(x)=A,limg(x)=B,且A>B,则当x充分接近xo时,必有( ) x→x0x→x0A.f(x)≥g(x)B. f(x)>g(x)C. f(x)≤g(x)D. f(x)<g(x)7.数列{xn}有界是收敛的( )A.充分必要条件B. 必要而非充分条件C.充分而非必要条件D.既非充分也非必要条件8.设f(x)=1-x,g(x)=1-x,当x→1时,( )A.f(x)是比g(x)较高阶的无穷小量B. f(x)是比g(x)较低阶的无穷小量C.f(x)与g(x)同阶无穷小量D. f(x)与g(x)等价无穷小量9.当x→0时,为无穷小量的是()-1A.lnsinx B.sin C.cotx D.ex x1⎧n,n为奇数⎪10.设数列xn=⎨1,则{xn}是( ) ,n为偶数⎪⎩nA.无穷大量B. 无穷小量C.有界变量D. 无界变量二.填空题lnx= 。
《 高等数学 》函数、极限、连续单元测试题测试试卷

《 高等数学 》函数、极限、连续单元测试题(A)一、填空题1.设)(x f y =的定义域是]1,0(,x x ln )(=ϕ,则复合函数)]([x f y ϕ=的定义域为 。
2.xxx sin lim∞→= 。
3.当0→x 时,a x a -+3)0(>a 与kx 为等价无穷小,则=k a = 。
4.函数23122+--=x x x y 的间断点是 。
5. 已知函数()f x 在点0x =处连续,且当0x ≠时,函数xx x f 1sin)(=,则函数值(0)f = 。
二、选择题1.如果0lim ()x x f x →+与0lim ()x x f x →-存在,则 ( )A.0lim ()x xf x →存在且00lim ()()x xf x f x →= B.0lim ()x xf x →存在但不一定有00lim ()()x xf x f x →=C.0lim ()x xf x → 一定不存在 D.0lim ()x xf x →不一定存在2. 当+→0x 时,以下为无穷小量的是 ( )A. 1sin x xB. 1x e C. ln x D. 1sin x x3.函数()f x 在点0x 处有定义是其在0x 处极限存在的 ( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 无关条件4.已知0)(lim 3=→x f x ,且1)3(=f ,那么 ( )A. ()f x 在3=x 处连续B.()f x 在3=x 处不连续C. )(lim 3x f x →不存在 D.1)(lim3=→xx f x 5. 当-∞→x 时,x arctan 的极限为 ( ) A.2πB. ∞C. 2π-D.不存在,但有界6. 函数()cos f x x x =在(,)-∞+∞内是 ( ) A. 有界函数; B. 奇函数; C. 单调函数; D. 偶函数.7.下列说法正确的是 ( ) A. sin 2y x =的最小正周期是2π; B. 函数(),()1xf xg x x==是相等函数;C. 严格单调函数必存在反函数;D. 函数x y a =与x y a -=的图形关于x 轴对称. 8. 1lim3sin3nn n →∞= ( ) A. 0 ; B. 1 ; C.x1; D. x . 9. 当x →0时,x cos 1-是关于2x 的 ( ) A. 同阶无穷小; B. 低阶无穷小; C. 高阶无穷小; D. 等价无穷小. 10. 设223,0,()2,0x x f x x x +≤⎧=⎨+>⎩,则0lim ()x f x -→= ( ) A. 2; B. -2; C. -1; D. 3.三、判断题1. 若数列}{n x 不收敛,则数列}{n x 一定无界。
高等数学-——函数与极限.pdf

《高等数学》第一章-——函数与极限练习题(A)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1){}{}{}(,)0U a x x a x a x a x a x a δδδδ=<−<=−<<∪<<+()(2)关系式221x y −=表示y 是x 的函数()(3)关系式{}{}max ,1min ,1y x x =+−表示y 是x 的函数()(4)关系式2arccos ,2y u u x ==+表示y 是x 的函数()(5)若()sgn f x x =,则21,0,()0,0.x f x x ≠⎧=⎨=⎩()(6)若2()ln ,()2ln ,f x x g x x ==则()()f x g x =.()(7)2sin y x =是周期为π的函数.()(8)()00000lim ()()lim ()()0x x f x x f x f x x f x Δ→Δ→+Δ=⇔+Δ−=.()(9)0y =是曲线21y x =的水平渐近线.()(10)()y f x =在0x 连续的充要条件是000()()()f x f x f x −+==.()(11)收敛数列的极限不唯一.()(12)lim ()().f x A f x A α=⇔=+(其中lim 0α=).()(13)212limn nn →+∞++⋅⋅⋅+=()(14)设()f x ,()g x 在(,)−∞+∞内有定义.若()f x 连续且()0f x ≠,()g x 有间断点,则()()g x f x 必有间断点()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.2arctan limn nn →+∞=3.212lim 10n n n →+∞⎛⎞+=⎜⎟⎝⎠4.0lim x x →=5.()()220lim 11sin x x x x x →⎡⎤++−+=⎣⎦6.221lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.2lim 31nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()3sin 2limtan x x x→=9.若lim ,n n x a →∞=则lim n n x →∞=10.若lim ,n n x a →∞=则2lim n n x →∞=11.()22limh x h x h→+−=12.231lim 1x x x →∞−=+13.331lim 1x x x →∞+=−三、选择题(将正确答案的序号填写在括号内)(1)设函数()f x 的定义域为D ,数集X D ⊂,则下列命题错误的是()A :若()f x 在X 上有界,则()f x 在X 上既有上界也有下界B :若()f x 在X 上有界,则()f x 在X 上也有界C :若()f x 在X 上有界,则1()f x 在X 上必无界D :若()f x 在X 上无界,则()f x 在X 上也无界(2)下列结论错误的是()A :sin y x =在定义域上有界B :tan y x =在定义域上有界C :arctan y x =在定义域上有界D :arccos y x =在定义域上有界(3)下列结论正确的是()A :arcsin y x =的定义域是(,)−∞+∞B :arctan y x =的值域是(,)−∞+∞C :cos y x =的定义域是(,)−∞+∞D :cot y arc x =的值域是(,22ππ−(4)若lim n n x a →+∞=,则下列结论错误的是()A :{}n x 必有界B :必有11limn nx a →∞=C :必有221lim lim n n n n x x a−→∞→∞==D :必有1000lim n n x a+→∞=(5)下列结论正确的是()A :若函数()f x 在点0x 处的左右极限存在,则0lim ()x x f x →一定存在B :若函数()f x 在点0x 处无定义,则0lim ()x x f x →一定不存在C :若0lim ()x x f x →不存在,则必有0lim ()x x f x →=∞D :0lim ()x x f x →存在的充要条件是函数()f x 在点0x 处的左右极限存在且相等E :若函数()f x 在点0x 处的左右极限存在但不相等,则01lim()x x f x →一定存在(6)若lim ()0,lim ()x x f x g x →∞→∞==∞,则下列结论错误的是()A :()lim ()()x f x g x →∞±不存在B :()lim ()()x f x g x →∞不一定存在C :lim[2()]x f x →∞一定存在D :()lim()x f x g x →∞不存在(7)下列结论正确的是()A:绝对值很小的数一定是无穷小B:至少有两个常数是无穷小C:常数不可能是无穷小D:在自变量的某一变化过程中,趋向0的函数是无穷小(8)下列结论正确的是()A :有界函数与无穷大的积不一定为无穷大B :无限个无穷小的和仍为无穷小C :两个无穷大的和(积及商)仍为无穷大D :无界函数一定是无穷大(9)下列等式不成立的是()A :1lim2n n n →+∞=B :1limln(1)n n →+∞=+C :lim 2n n →+∞=+∞D:lim1n →+∞−=(10)下列结论错误的是()A :单调有界数列必收敛B :单增有上界的数列必收敛C :单调数列必收敛D :单减有下界的数列必收敛(11)下列结论正确的是()A :当0x →时,1xe −是比2x 高阶的无穷小B :当1x →时,1x −与21x −是同阶的无穷小C :当n →+∞时,21n 是比1n低阶的无穷小D :当0x →时,若sin tan ax x ∼,则2a =(12)下列结论不正确的是()A :0x =是()xf x x=的跳跃间断点B :2x π=是()tan xf x x =的可去间断点C :()cot f x x =只有一个间断点D :0x =是1()sin f x x=的第二类间断点(13)下列结论不正确的是()A :若lim ,n n x a →+∞=则10lim n n x a+→+∞=B :01lim 1tan x x e x →−=C :若10n x n<≤,则lim 0n n x →+∞=D :123lim 121x x x x +→∞+⎛⎞=⎜⎟+⎝⎠(14)下列数列收敛的是()A :11,1,1,,(1),n +−− B :2,4,8,,2,nC :123,,,,,2341n n + D :233333,,,,,2222n⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠(15)下列数列发散的是()A :1sin2n n x n π=B :1(1)nn x n=−C :215n x n=+D :(1)nn x n =−(16)下列变量在给定变化过程中,不是无穷大量的是()A :lg ,(0)x x +→B :lg ,()x x →+∞C :21,(0)x x +→D :1,(0)xe x −−→(17)下列结论错误的是()A :0(,)x ∀∈−∞+∞,00lim sin sin x x x x →=B :2lim ln sin 0x x π→=C :0(1,1)x ∀∈−,0lim arccos arccos x x x x →=D :0lim sgn sgn x x x x →=四、计算题1.)lim arcsinx x →+∞−.2.2121lim()11x x x→−−−.3.3tan sin lim1x x x x e →−−. 4.()22lim 13tan cot xx x →+.5.1lim 1x x →−.五、证明题1.证明函数,()1sin ,x f x x x ⎧⎪=⎨⎪⎩>≤x x 在点0=x 处连续.2.证明2sin ,0(),0xx xf x a x x ⎧>⎪=⎨⎪+≤⎩在定义域内连续的充要条件是1a =.3.设()f x 在[0,1]上连续,且(0)0f =,(1)1f =,证明存在(0,1)ξ∈,使得()1f ξξ=−.4.证明222111lim 012n n n n n →∞⎛⎞++⋅⋅⋅+=⎜⎟+++⎝⎠.5.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=.6.证明方程531x x −=在1与2之间至少存在一个实根.《高等数学》第一章---函数与极限练习题(B)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1)2322(1,0)(3,4)x x x −−<⇔∈−∪()(2)以1为中心,2为半径的去心邻域为{}{}(1,2)1113U x x x x =−<<∪<<()(3)关系式2arcsin(3)y x =+表示y 是x 的函数()(4)关系式{}max ,1min{,5}y x x =+表示y 是x 的函数()(5)若函数()f x 的定义域为[1,4],则函数2()f x 的定义域为[1,2]()(6)若2(1)(1)f x x x −=−,则2()(1)f x x x =−()(7)函数1,0()0,01,0x x f x x x x −<⎧⎪==⎨⎪+>⎩是偶函数()(8)函数()cos 4f x x =的反函数1()arccos 4f x x−=()(9)若()()sgn ,f x g x x ==则()()f x g x =.()(10)sin 2tan 2xy x =+是周期为π的函数.()(11)函数lg y u x ==能构成复合函数y =的充分必要条件是[1,10]x ∈()(12)曲线211x y e−−=的水平渐近线是1y =()(13)若0lim ()x x f x →不存在,则必有00()()f x f x −+≠()(14)),0()0,0,0x a x f x x x a x +>⎧⎪==⎨⎪−<⎩在0x =连续的充要条件是0a =()(15)设()f x ,()g x 在(,)−∞+∞内有定义,()f x 为连续,且()0f x ≠,若()g x 有间断点,则222()()g x f x 必有间断点()(16)1x =是函数()2sgn(1)1y x =−+的可去间断点()(17)4x π=是2tan 21y x =−的无穷间断点()(18)lim ()1()1.f x f x α=⇔=+(其中lim 0α=)()(19)2080100(1)(100)lim 1(1)n n n n →∞−+=+()(20)222212lim 0n n n →+∞++⋅⋅⋅+=()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.24arctan(1)(sin 1)lim100n n n n →+∞−+=−3.417lim 100n n n →+∞⎛⎞+=⎜⎟⎝⎠4.()1lim 1sgn(1)x x x →−−=5.22301lim (3cos )2x x x x →⎡⎤++=⎢⎥+⎣⎦6.242lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.24lim 101nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()10050sin 4lim(tan 2)x x x →=9.若lim ,n n x a →+∞=则221lim n n n x x −→+∞⎡+⎤=⎣⎦10.225lim 2x x x →−=−11.()33limh x h x h→+−=12.20010001lim1x x x →∞−=+13.2lim ln sin x x π→=14.0x →=三、选择题(将正确答案的序号填写在括号内)(1)下列结论错误的是()A :由于函数()sin f x x =在[,]22ππ−上单调递增,因此()f x 的反函数1()f x −必存在且1()fx −的定义域为[1,1]−,值域为[,]22ππ−B :在同一平面坐标系中,函数()y f x =与其反函数1()y f x −=的图形关于直线y x =对称C :由于函数()tan f x x =在,22ππ⎛⎞−⎜⎟⎝⎠上单调递增且连续,因此()f x 的反函数1()f x −在(),−∞+∞上也是单调递增且连续.D :函数()cot f x arc x =的定义域为(,)−∞+∞,值域为,22ππ⎛⎞−⎜⎟⎝⎠(2)下列数列收敛的是()A ::1,1,1,1,1,1,n x −−−B ::0,1,2,3,4,5,n xC ::0,ln 2,ln 3,ln 4,ln 5,n xD :111:0,,0,,0,,248n x(3)下列数列发散的是()A :(1)1n n ⎧⎫−+⎨⎬⎩⎭B :3110n⎧⎫+⎨⎬⎩⎭C :{}(2)n−D :1ln(1)n n ⎧⎫⎨⎬+⎩⎭(4)下列结论错误的是()A :单调有界数列必收敛B :发散的数列必无界C :数列收敛的充要条件是任意子列都收敛于同一个数D :收敛的数列必有界(5)若lim ()f x 与lim ()g x 都不存在,则()A :[]lim ()()f x g x +与[]lim ()()f x g x 都不存在B :[]lim ()()f x g x +与[]lim ()()f x g x 一定都存在C :[]lim ()()f x g x −与()lim ()f x g x ⎡⎤⎢⎥⎣⎦都不存在.D :[]lim ()()f x g x ±、[]lim ()()f x g x 与()lim ()f x g x ⎡⎤⎢⎥⎣⎦可能存在,也可能不存在(6)下列结论正确的是()A :若0lim ()lim ()x x x x f x g x →→>,则必有()()f x g x >B :若()()f x g x >,则必有0lim ()lim ()x x x x f x g x →→>C :若0lim (),x x f x A →=则()f x 必有界D :0lim ()x x f x A →=的充要条件是对任意数列00,,n n x x y x →→有lim ()lim ()n n n n x x y x f x f y A→→==(7)下列结论正确的是()A :若数列n x 无界,则数列n x 一定发散B :若lim 0,lim 1,n n n n a b →∞→∞==则lim n n nba →∞一定存在C :若lim n n x a →+∞=,则必有lim n n x a→+∞=D :若221lim lim n n n n x x a −→+∞→+∞==,则lim n n x →+∞一定不存在(8)当x →∞时,下列变量中不是无穷小量的是()A :3211x x x −++BC :221(1)sin1x x x−−D :2211sin1xx x −−(9)下列变量在给定的变化过程中为无穷大量的是()A :41sin(0)x x x→B :21sin (0)x x x →C :cos ()x x x →∞D :1cos (0)x x x→(10)当0x →时,下列变量中与2tan x 为等价无穷小量的是()AB :xC :2xD :3x(11)设当x →0时,tan sin x x −是比sin narc x 高阶的无穷小,则正整数n 等于()A :1或2B :4C :5D :3.(12)设()1,()ln(1),,mx n x ex x m n N αβ+=−=+∈,则当x →0时,下列结论正确的是()A :当m n >时,()x α必是()x β等价的无穷小B :当m n =时,()x α必是()x β高阶的无穷小C :当m n <时,()x α是()x β的低阶无穷小D :当m n <时,()x α是()x β的同阶无穷小(13)设若,,ααββ′′∼∼则下列结论可能不正确的是()A :αβαβ′′∼B :αβαβ′′±±∼C :αβαβ′′∼D :(0)C C C αα′≠∼(14)()xf x x=在0x =有()A :跳跃间断点B :可去间断点C :震荡间断点.D :无穷间断点(15)函数1(3)ln y x x=−的间断点有()A :1个;B :2个C :3个D :4个(16)当x →∞时,若2111ax bx c x ∼++−,则,,a b c 的值一定为()A :0,1,1a b c ===−B :0,1,a b c ==为任意常数C :0,,a b c =为任意常数D :,,a b c 为任意常数(17)下列极限中结果等于e 的是()A :sin 0sin 2lim 1xxx x x →⎛⎞+⎜⎟⎝⎠B :sin sin lim 1xxx x x →∞⎛⎞−⎜⎟⎝⎠C :sin sin lim 1x xx x x −→∞⎛⎞−⎜⎟⎝⎠D :()2cot 0lim 1tan xx x →+(18)函数111()01x e x f x x −−⎧⎪≠=⎨⎪=⎩在点1x =处()A :连续B :不连续,但右连续或有右极限C :不连续,但左连续或有左极限D :左、右都不连续(19)下列结论正确的是()A :若函数()f x 在(,)a b 内连续,则()f x 在(,)a b 内一定有界B :若函数()f x 在[,]a b 内有间断点,则()f x 在[,]a b 上一定没有最值C :若函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,而函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处也是连续的D :一切初等函数在其定义域内都是连续的四、计算题1.设()0.10x e x f x x ⎧≤=⎨>⎩求)(x f 在0x =的极限2.求lim x →+∞3.求3211lim()11x x x x →−−−4.求)21sin limtan x arc xx →− 5.求lim ln(1)ln(1)n n nn n →∞⎛⎞−⎜⎟−+⎝⎠五、讨论题1.讨论2sin ,0;()1,0.xx x f x x x ⎧≠⎪=⎨⎪+=⎩在定义域内的连续性2.讨论a 取何值可使1sin arccos ,0;()0,0;ln(1),0.x x x f x x x a x ⎧>⎪⎪==⎨⎪−+<⎪⎩在定义域内连续.六、证明题1.设()f x 在[0,1]上连续,且(1)0f >,证明存在(0,1)ξ∈,使()1f ξξξ=−2.证明lim 1n →∞⎛⎞+⋅⋅⋅+=3.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=4.证明曲线423710y x x x =−+−在1x =与2x =之间至少存在与x 轴有一个交点5.证明0p >时,函数1sin ,0()0,px x f x xx ⎧≠⎪=⎨⎪=⎩0>≤x x 在点0=x 处连续.6.证明:0lim ()()x x f x A f x A α→=⇔=+,其中0lim 0x x α→=.《高等数学》第一章-——函数与极限自测题(A)题号一二三四五六总分得分一.判断题(判断下列各题是否正确,正确的划√,错误的划×。
高等数学:函数 、极限与连续习题含答案
1第一章函数、极限与连续一、选择题1.函数)(x f 的定义域为[]10,,则函数51()51(-++x f x f 的定义域是().A.⎥⎦⎤⎢⎣⎡-54,51B.⎥⎦⎤⎢⎣⎡56,51C.⎦⎤⎢⎣⎡54,51D.[]1,02.已知函数()62+x f 的定义域为[)4,3-,则函数)(x f 的定义域是().A.[)4,3-B.[)14,0C.[]14,0D.⎪⎭⎫⎢⎣⎡--1,293.函数211ln ++-=x xy 的定义域是().A.1≠x B.2-≥x C.2-≥x 且1≠x D.[)1,2-4.下列函数)(x f 与)(x g 是相同函数的是().A.11)(+⋅-=x x x f ,1)(2-=x x g B.2)(π=x f ,x x x g arccos arcsin )(+=C.x x x f 22tan sec )(-=,1)(=x g D.1)(=x f ,x x x g 22cos sin )(+=5.下列函数)(x f 与)(x g 是相同函数的是().A.x x g x x f lg 2)(,lg )(2==B.2)(,)(x x g x x f ==C.33341)(,)(-=-=x x x g x x x f D.xx x g x f 22tan sec )(,1)(-==6.若1)1(2-=-x x f ,则)(x f =().A.2)1(+x x B.2)1(-x x C.)2(+x x D.)1(2-x x 7.设xx f cos 2)(=,xx g sin 21)(⎪⎭⎫⎝⎛=,在区间⎪⎭⎫ ⎝⎛20π,内成立().A.)(x f 是增函数,)(x g 是减函数B.)(x f 是减函数,)(x g 是增函数C.)(x f 和)(x g 都是减函数D.)(x f 和)(x g 都是增函数28.函数)1lg()1lg(22x x x x y -++++=().A.是奇函数B.是偶函数C.是非奇非偶函数D.既是偶函数,也是奇函数9.下列函数中()是奇函数.A.1cos sin +-=x x y B.2xx a a y -+=C.2211x x y +-=D.)1)(1(+-=x x x y 10.函数x x x f sin )(2=的图形().A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x y =对称11.下列函数中,()是奇函数.A.2ln(1)x +B.)x C.sin x x D.x xe e-+12.若()f x 是奇函数,且对任意实数x ,有(2)()f x f x +=,则必有(1)f =().A.1-B.0C.1D.213.偶函数的定义域一定是().A.包含原点的区间B.关于原点对称 C.),(+∞-∞D.以上三种说法都不对14.若)(x f 是奇函数,)(x ϕ是偶函数,且)]([x f ϕ有意义,则)]([x f ϕ是().A.偶函数B.奇函数C.非奇非偶函数D.奇函数或偶函数15.函数xx f 1sin )(=是其定义域内的什么函数().A.周期函数B.单调函数C.有界函数D.无界函数16.若()f x 在(,)-∞+∞内单调增加,()x ϕ是单调减少,则[()]f x ϕ在(,)-∞+∞内().A.单调增加B.单调减少C.不是单调函数D.无法判定单调性17.函数xxe e y -+=的图形对称于直线().A.y x=B.y x=-C.0x =D.0y =318.下列函数中周期为π的是().A.xy 2sin =B.xy 4cos = C.xy πsin 1+= D.()2cos -=x y 19.下列函数是周期函数的是().A.)sin()(2x x f =B.xx f 1cos)(=C.xx f πcos )(=D.xx f 1sin)(=20.设1cos )(-=x x f 的定义域和周期分别为().A.πππ2,,22=∈+=T Z k k x B.ππ2,,2=∈=T Z k k x C.ππ=∈=T Z k k x ,,D.πππ=∈+=T Z k k x ,,221.下列结论不正确的是().A.基本初等函数在其定义域内是连续的B.基本初等函数在其定义区间内是连续的C.初等函数在其定义域内是连续的D.初等函数在其定义区间内是连续的22.下列说法正确的是().A.无穷小的和仍为无穷小B.无穷大的和仍为无穷大C.有界函数与无穷大的乘积仍为无穷大D.收敛数列必有界23.下列说法不正确的是().A.两个无穷小的积仍为无穷小B.两个无穷小的商仍为无穷小C.有界函数与无穷小的乘积仍为无穷小D.在同一变化过程中,无穷大的倒数为无穷小24.若无穷小量α与β是等价的无穷小,则αβ-是()无穷小.A.与β同阶不等价的B.与β等价的C.比β低阶的D.比β高阶的25.当0→x 时,4x x +是32x x +的().A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小26.当0→x 时,x x sin 2-是x 的().A.高阶无穷小B.低阶无穷小C.同阶无穷小但不等价D.等价无穷小27.设232)(-+=xxx f ,则当0=x 时,有().4A.)(x f 与x 是等价无穷小B.)(x f 是x 同阶但非等价无穷小C.)(x f 是比x 高阶的无穷小D.)(x f 是比x 低阶的无穷小28.设x x f -=1)(,31)(x x g -=,则当1→x 时().A.)(x f 是比)(x g 高阶的无穷小B.)(x f 是比)(x g 低阶的无穷小C.)(x f 与)(x g 是同阶但不等价的无穷小D.)(x f 与)(x g 是等价无穷小29.当0→x 时,与x 不是等价无穷小量的是().A.2sin xx -B.xx 2sin -C.3tan x x -D.xx -sin 30.当0→x 时,下列函数为无穷小量的是().A.x x sin B.xx sin 2+C.)1ln(1x x+D.12-x 31.当0→x 时,是无穷大量的有().A.xx 1sin 1B.xx sin C.2xD.xx 21-32.当0→x 时,下列函数不是无穷小量的是().A.x x x x tan cos 2-B.21sin xx C.x x x sin 3+D.xx )1ln(2+33.下列等式正确的是().A.1sin lim=∞→x xx B.11sinlim =∞→xx C.11sinlim =∞→xx x D.11sin lim=∞→xx x 34.设函数()f x 在闭区间[1,1]-上连续,则下列说法正确的是().A.1lim ()x f x →+必存在B.1lim ()x f x →必存在C.1lim ()x f x →-必存在D.1lim ()x f x →-必存在35.=→xx 102lim ().A.0B.∞+C.∞D.不存在36.下列各式中正确的是().A.0cos lim0=→xxx B.1cos lim0=→xxx C.0cos lim=∞→xxx D.1cos lim=∞→xxx537.若(sin )3cos 2f x x =-,则(cos )f x =().A.3sin 2x+B.32sin 2x-C.3cos 2x+D.3cos 2x -38.设21()arcsin 3lim ()1x x f x f x x x→∞=++,则lim ()x f x →∞等于().A.2B.21C.2-D.21-39.设x xx f )31()2(-=-,则=∞→)(lim x f x ().A.1e-B.2e-C.3e-D.3e40.极限lim sinx x xπ→∞=().A.1B.πC.2eD.不存在41.当0x →时,1xe 的极限是().A.0B.+∞C.-∞D.不存在42.当5x →时,5()5x f x x -=-的极限是().A.0B.∞C.1D.不存在43.设x x x f 21)(-=,则=→)(lim 0x f x ().A.1B.不存在C.2eD.2e-44.若0→x 时,kx x x ~2sin sin 2-,则=k ().A.1B.2C.3D.445.若52lim22=-++→x bax x x ,则().A.1=a ,6=b B.1-=a ,6-=b C.1=a ,6-=b D.1-=a ,6=b 46.=+-∞→x x xx arctan 1lim ().A.2πB.2π-C.1D.不存在647.=+→xx x )1ln(lim0().A.1-B.1C.∞D.不存在但非∞48.已知22lim 222=--++→x x bax x x ,则b a ,的值是().A.8,2-==b a B.b a ,2=为任意值C.2,8=-=b a D.b a ,均为任意值49.=-+-+++∞→11)2(3)2(3lim n n nn n ().A.31B.31-C.∞D.050.xx x x 1011lim ⎪⎭⎫⎝⎛+-→的值等于().A.2eB.2e-C.1D.∞51.设xx g x3e 1)(2-=,当0≠x 时,)()(x g x f =,若)(x f 在0=x 处连续,则)0(f 的值是().A.0B.32-C.1D.3152.设函数⎪⎪⎩⎪⎪⎨⎧<+=>-=0,1sin 0,10,1e )(2x a x x x x x x f x 在点0=x 处连续,则常数=a ().A.1-B.1C.2-D.253.若)(x f 在点0x 点连续,则=+→)2(sin lim 00h x f h ().A.)2(sin 0h x f +B.)(sin 0x f C.)(sin 0x f D.不存在54.函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点有().7A.3个B.1个C.0个D.2个55.设0=x 是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0,1sin 0,00,11)(1x x x x x ex f x 的().A.跳跃间断点B.可去间断点C.第二类间断点D.连续点56.11)(11+-=xxe e xf ,则0=x 是)(x f 的().A.可去间断点B.跳跃间断点C.第二类间断点D.连续点二、填空题57.函数xxx f -+=11ln21)(的定义域是_________.58.函数2ln arcsin +=x xy 的定义域为_________.59.函数xx y 1arctan3+-=的定义域是_________.60.设)(x f 的定义域[]1,0=D ,则)(sin x f 的定义域_________.61.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为_________.62.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为_________.63.设2(1)32f x x x +=-+,则f =_________.64.函数nn x a y 12)(-=的反函数是_________.65.函数)0(≠-++=bc ad dcx bax y 的反函数是_________.66.函数x y 3sin 2=⎪⎭⎫ ⎝⎛≤≤-66ππx 的反函数是_________.867.函数3arccos2xy =的反函数是_________.68.______28153lim 233=+-++∞→n n n n n n .69._______43867lim 22=+-+∞→n n n n .70.⎪⎭⎫⎝⎛++++∞→n n 21...41211lim =_________.71.2)1(...321limnn n -++++∞→=_________.72.35)3)(2)(1(limn n n n n +++∞→=_________.73._______lim 2210=+→x x x e.74._______1lim432=-+++∞→nn n n n n .75._______43...21lim 2=++++∞→nn nn .76._______1!!sin lim=+∞→n n n .77.=⎪⎭⎫⎝⎛++++++∞→πππn n n n n n 222...221lim _________.78.设012lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x x ,则=a _________,=b _________.79._______4421lim 22=⎪⎭⎫ ⎝⎛---→x x x .80._______2)2sin(lim22=---→x x x x .81._______63sin lim=∞→xxx .982.m n x x x )(sin )sin(lim 0→(m n ,为正整数,且m n >)=.83._______1cos 1lim 20=--→x e x x .84._______4tan 8arcsin lim0=→xxx .85._______81221lim 32=⎪⎭⎫ ⎝⎛---→x x x .86.xxx x 30sin sin tan lim-→=.87.)1(lim 2x x x x -++∞→=.88.)1sin 1)(11(tan sin lim32-+-+-→x x xx x =.89.若2)1sin(1lim 21=--+→x ax x x ,则_________=a .90.若0x →时函数tan sin x x -与nmx 是等价无穷小,则=m ,n =.91.当∞→x 时,函数)(x f 与21x是等价无穷小,则_______)(3lim 2=∞→x f x x .92.当0→x 时,函数112-+ax 与x 2sin 是等价无穷小,则_______=a .93.当∞→x 时,函数)(x f 与x4是等价无穷小,则_______)(2lim =∞→x xf x .94.若1x →时,2(1)1mx x --是比1x -高阶的无穷小,则m 的取值范围是.95.11232lim +∞→⎪⎭⎫⎝⎛++x x x x =_________.96.40)21(lim -→=-e x x kx ,则_________=k .1097.nn n x x f ⎪⎭⎫⎝⎛+=∞→sin 1lim )(,则=')(x f .98.4lim e a x a x xx =⎪⎭⎫ ⎝⎛+-+∞→,则_______=a .99._______1lim 23=⎪⎭⎫ ⎝⎛++∞→x x x x .100.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.101.设函数⎪⎩⎪⎨⎧≥<<+≤+=1,10,0,2)(2x bx x a x x x x f 在),(+∞-∞内连续,则___________,==b a .102.)(lim 2)sin 21()(031x f x x f x x→++=,求()=x f .103.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.104.设2211xx x x f +=⎪⎭⎫ ⎝⎛-,则=)(x f .105.函数⎪⎩⎪⎨⎧=≠+=010,1sin 1)(x x xx x f 的连续区间是.106.若函数()⎪⎩⎪⎨⎧>+≤+=0,21ln 0,)(12x x x x a x f x 在0=x 处连续,则=a .107.极限02sin 3lim[sin]x x x x x→+=.108.极限3sin 2lim[sin ]x xx x x→∞+=.109.若⎪⎩⎪⎨⎧=≠-+=-0,0,316sin )(3x a x x e x x f ax 在0=x 连续,则_______=a .110.函数⎪⎩⎪⎨⎧><<-±===2,420,42,0,2)(2x x x x x x f 的间断点有_________个.111.函数653)(2+--=x x x x f 的第二类间断点是_________.112.函数)5)(32(86)(22-----=x x x x x x f 的间断点是.113.设⎪⎩⎪⎨⎧≤+>=,0,,0,1sin )(2x x a x x x x f 要使)(x f 在),(+∞-∞内连续,则=a .114.设⎪⎩⎪⎨⎧<+=>+=0,20,0,)(2x b x x a x e x x f 在点0=x 处连续,则=a ,=b .115.设⎪⎩⎪⎨⎧≤>=0,0,3sin )(x x x x x x f ,则点0=x 是)(x f 的第类间断点.116.设⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 则点0=x 是)(x f 的第类间断点;点1=x 是)(x f 的第类间断点.117.若函数=)(x ϕ,则函数)(x f 为奇函数这里⎪⎪⎩⎪⎪⎨⎧<=>++=0, )( 0, 0 0 ),1ln()(2x x x x x x x f ϕ118.⎩⎨⎧<-≥=00 )(22x x x x x f ,则)(x f 是(奇/偶)函数.119.⎩⎨⎧>+≤-=0 10 1)(x x x x x f ,则)(x f 是(奇/偶)函数.三、计算题120.设函数1)1(2++=x x x f 0>x ,求)(x f .121.设函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求)(x f .122.设xx f -=11)(,求))((x f f .123.设23)1(2+-=+x x x f ,求)(x f .124.已知x x g xx f -==1)(,1)(,求))((x g f .125.设x x x f 2)1(2-=-,求)1(+x f .126.求函数321)(2-+=x x x f 的连续区间.127.设函数)(x f 的定义域为)0,1(-,求函数)1(2-x f 的定义域.128.设x xx f +=12arccos )(,求其定义域.129.设)(x f 的定义域为[]1,0,求)(cos x f 的定义域.130.已知⎩⎨⎧≤<≤≤=+21,210,)1(2x x x x x ϕ,求)(x ϕ.131.设⎩⎨⎧<+≥+=0,40,12)(2x x x x x f ,求)1(-x f .132.判断函数x x x f 32(32()(-++=的奇偶性.133.判断11-+=x x a a x y 的奇偶性.134.设)21121)(()(-+=x x f x F ,已知)(x f 为奇函数,判断)(x F 的奇偶性.135.求函数x x y 44sin cos -=的周期.136.求函数2cos sin x x y +=的周期.137.求函数x y 3sin 2=)66(ππ<<-x 的反函数.138.求函数)1ln(2-+=x x y 的反函数.139.xx x 3113sin lim +-∞→.140.633lim 6--+→x x x .141.2203)1ln(lim x x x +→.142.x xx 4cos 12sin 1lim 4-+→π.143.2321lim 4--+→x x x .144.123lim 221-+-→x x x x .145.25273lim 33+-++∞→x x x x x .146.)cos 3(11lim 32x x x x +++∞→.147.2021cos lim x x x -→.148.2021lim x ex x -→.149.3222......21lim nn n +++∞→.150.)3(lim 2x x x x -++∞→.151.xx x ln 1lim 21-→.152.20cos 1lim x x x -→.153.38231lim x x x +---→.154.⎪⎪⎭⎫ ⎝⎛+-++⨯+⨯∞→)12)(12(1...531311lim n n n .155.n n 11lim +∞→.156.114sin lim 0-+→x xx .157.)(lim 22x x x x x --++∞→.158.156223lim 22+-++∞→n n n n n .159.nx mxx sin sin lim 0→.160.⎪⎭⎫ ⎝⎛-→x x x x ln ln 1lim 1.161.145lim 1---→x xx x .162.⎪⎪⎭⎫ ⎝⎛--→11lim 31x x x .163.xx x --→πππ1cos )(lim .164.20cos 1lim x mx x -→.165.11sinlim -+∞→x x x x x .166.)15(lim 323x x x x -+-∞→.167.)cos 1(cos 1lim 0x x x x --+→.168.28lim 38--→x x x .169.n n n 31...9131121...41211lim ++++++++∞→.170.xx x x x 6sin 4cos lim ++∞→.171.)1(lim 2x x x x -+∞→.172.⎪⎪⎭⎫⎝⎛-+→114sin lim 0x x x .173.174lim 22++→x x x .174.2220)1()41ln(lim x x e x -+→.175.115)2(5)2(lim ++∞→+-+-n n nn n .176.xx e 1011lim +→.177.若123lim 22=-+-→x ax x x ,求a .178.已知01lim 2=⎪⎪⎭⎫ ⎝⎛--+∞→b ax x x x ,其中a ,b 是常数,求a ,b .179.已知),0()1(lim 2017∞≠≠=--∞→A n n n k k n ,求k 的值.180.计算⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim .181.已知5312)(22+++-=bx x ax x f ,当∞→x 时,求a 和b 的值使)(x f 为无穷小量.182.当0→x ,比较函数22)(-+=x x e x f 与x 是否为同阶无穷小.183.已知82lim 3=⎪⎭⎫ ⎝⎛-+∞→x x a x a x ,求a .184.()xx x sec 32cos 1lim +→π.185.11212lim +∞→⎪⎭⎫⎝⎛-+x x x x .186.26311lim -∞→⎪⎭⎫ ⎝⎛+x x x 187.xx x x 311lim ⎪⎭⎫ ⎝⎛+-∞→.188.21232lim +∞→⎪⎭⎫ ⎝⎛++x x x x .189.xx x tan 2)(sin lim π→.190.已知⎪⎪⎩⎪⎪⎨⎧<=>+=0,sin 10,0,1sin )(x x x x p x q x x x f 在点0=x 处极限存在,求p 和q 的值.191.求函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点的个数.192.判断函数111)(--=x x ex f 的间断点及其类型.193.判断函数xx x f 1cos)(=的间断点及其类型.194.设)(x f 在点0=x 处连续,且⎪⎩⎪⎨⎧=≠-=0,0,cos 1)(2x a x x x x f ,求a .195.求函数xxy sin =的间断点及类型.196.求函数)1()(22--=x x xx x f 的间断点.197.证明方程019323=+--x x x 至少有一个小于1的正根.198.判断函数122+=x y 的单调性.199.已知⎪⎪⎪⎩⎪⎪⎪⎨⎧<⎪⎭⎫ ⎝⎛-=>+--=0,110,0,1)1(2sin )(2x x x b x a e e x f x x x 在点0=x 处连续,求a 和b 的值.200.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在),(+∞-∞内连续,求a .201.设⎪⎪⎩⎪⎪⎨⎧<≤---+=>+=01,110,00,)1ln()(x x xx x x x x x f ,判断其间断点及类型.202.设xe xf x 1)(-=,判断其间断点及类型.203.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0)(,11x x x e x f x ,判断)(x f 的间断点及其类型.204.求曲线65222+-=x x x y 的渐近线.205.求xex f -+=1111)(的间断点并判断其类型.206.设⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=<=0,)21ln(0,0,sin 1sin )(2x a xx x b x x x x x f ,求b a ,的值使其在),(+∞-∞内连续.207.设⎪⎪⎩⎪⎪⎨⎧≤<=<<-=-21,1,210,1ln )(1x e x x x xx f x ,(1)求)(x f 的定义域(2)判断间断点1=x 的类型,如何改变定义使)(x f 在这点连续?208.判断函数x x y ln +=在区间),0(+∞内的单调性.第一章函数、极限与连续1..54,51:15101510⎥⎦⎤⎢⎣⎡⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤D x x 选C2.43<≤-x ,826<≤-x ,14620<+≤x 。
高等数学 第一章 第三节 函数极限
第一章 第三节 函数极限A 组 一、选择题:1.下列说法正确的是()(A )()()()p x R x Q x =是有理分式,()0Q x ≠,则[]).()()()(lim 000x T x R x T x R x x +=+→(B )2222123...12lim lim lim ...lim 0.n n n n n nn n n n →∞→∞→∞→∞++++=+++= (C )00011lim sinlim .limsin 0x x x x x x x→→→== (D )若则可断言且存在,0)(lim ,)()(lim 00=→→x g x g x f x x x x 0)(lim 0=→x f x x2.下列极限中,极限值不为0的是 。
(A )arctan lim ;x x x →∞ (B )xx x x cos 3sin 2lim +∞→ (C )x x x 1sin lim 02→ (D )242lim x x x x +→ο3、若且),()(x x f ϕ>则必有bx ax B x A x f →→==,)(lim ,)(lim ϕ 。
(A )A>B (B)A ≥B (C)|A|>B (D)|A|≥|B| 4、1000)11(lim +∞→+n x n的值是 。
(A)e (B)e 1000 (C)e ·e 1000 (D)其它值 5、tan limsin x xxπ→= 。
(A)1 (B) -1 (C)0 (D)∞ 6、=-→)sin 11sin(lim 0x xx x x 。
(A)-1 (B)1 (C)0 (D)不存在7.若极限0)(lim 0u x x x =→ϕ,且A u f u u =→)(lim 0,则( ).(A ) )]([lim 0x f x x ϕ→存在; (B ) A x f x x =→)]([lim 0ϕ;(C ) )]([lim 0x f x x ϕ→不存在; (D ) 以上选项均不对.8. 下列极限正确的( ) A . sin lim1x x x →∞= B . sin limsin x x xx x→∞-+不存在C . 1lim sin1x x x →∞= D . lim arctan 2x x π→∞=9. 下列极限正确的是( )A . 1lim 0xx e -→= B . 1lim 0xx e +→= C . sec 0lim(1cos )xx x e →+= D . 1lim(1)xx x e →∞+=10. 若()0lim x x f x →=∞,()0lim x x g x →=∞,则下列正确的是 ( )A . ()()0lim x x f x g x →+=∞⎡⎤⎣⎦B . ()()0lim x x f x g x →-=∞⎡⎤⎣⎦C . ()()1limx x f x g x →=+D . ()()0lim 0x x kf x k →=∞≠11.若()02lim2x f x x→=,则()0lim3x xf x →= ( ) A .3 B .13 C .2 D .1212、设函数)()()(x v x u x f +=,)()()(x v x u x g -=,又极限)(lim 0x u x x →与)(lim 0x v x x →都不存在,则下列结论中正确的是( ). (A ) 若极限)(lim 0x f x x →不存在,则极限)(lim 0x g x x →必定不存在;(B ) 若极限)(lim 0x f x x →不存在,则极限)(lim 0x g x x →必定存在;(C ) 若极限)(lim 0x f x x →存在,则极限)(lim 0x g x x →必定存在;(D ) 若极限)(lim 0x f x x →存在,则极限)(lim 0x g x x →必定不存在.13、从1)(lim 0=→x f x x 不能推出 。
高职专科高等数学练习题
高职专科高等数学练习题一、函数与极限1. 判断下列函数的单调性:(1) f(x) = 2x + 3(2) g(x) = x^2 + 4x + 12. 求下列极限:(1) lim(x→0) (sinx / x)(2) lim(x→1) (x^2 1) / (x 1)3. 讨论函数f(x) = |x 2|在x = 2处的连续性。
二、导数与微分1. 求下列函数的导数:(1) y = x^3 3x + 2(2) y = (3x + 1)^22. 求下列函数的微分:(1) y = ln(x)(2) y = e^x3. 已知f(x) = x^2 + 2x,求f'(x)在x = 1处的值。
三、积分与定积分1. 计算不定积分:(1) ∫(3x^2 + 2x)dx(2) ∫(e^x + sinx)dx2. 计算定积分:(1) ∫_{0}^{1} (x^2 + 1)dx(2) ∫_{π/2}^{π/2} (cosx)dx3. 求曲线y = x^2在x = 0到x = 2之间的弧长。
四、多元函数微分学1. 求函数z = x^2 + y^2的偏导数。
2. 计算二重积分:(1) ∬D (x + y)dxdy,其中D为x^2 + y^2 ≤ 1的区域。
(2) ∬D (e^(x+y))dxdy,其中D为0 ≤ x ≤ 1,0 ≤ y ≤ 2的区域。
五、线性代数1. 解下列线性方程组:(1) x + 2y z = 32x y + 3z = 7x + y + 2z = 4(2) 3x + 4y 2z = 12x y + z = 0x + 2y 3z = 52. 计算矩阵A的行列式,其中A为:A = | 1 2 3 || 4 5 6 || 7 8 9 |3. 求矩阵B的逆矩阵,其中B为:B = | 2 1 || 1 3 |六、概率论与数理统计1. 抛掷一枚硬币三次,求恰好出现两次正面的概率。
2. 已知随机变量X服从正态分布N(μ, σ^2),μ = 50,σ = 5,求P(45 < X < 55)。
专升本极限练习题高数一
专升本极限练习题高数一### 专升本极限练习题高数一极限的概念是高等数学中的基础,它描述了函数在某一点附近的行为。
以下是几个专升本高数一的极限练习题,旨在帮助学生掌握极限的计算方法。
#### 练习题1:求极限设函数 \( f(x) = \frac{x^2 - 4}{x - 2} \),求 \( \lim_{x \to 2} f(x) \)。
#### 练习题2:使用洛必达法则计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \)。
#### 练习题3:无穷小量的比较已知 \( \lim_{x \to 0} \frac{f(x)}{x^2} = 3 \),求 \( \lim_{x \to 0} \frac{f(x)}{x^3} \)。
#### 练习题4:函数极限的运算设 \( \lim_{x \to 2} g(x) = 5 \) 和 \( \lim_{x \to 2} h(x) =3 \),求 \( \lim_{x \to 2} [g(x) + h(x)] \) 和 \( \lim_{x \to 2} [g(x) \cdot h(x)] \)。
#### 练习题5:复合函数的极限设 \( \lim_{x \to 1} f(x) = 2 \) 和 \( \lim_{y \to 2} g(y) =3 \),求 \( \lim_{x \to 1} g(f(x)) \)。
#### 练习题6:极限的连续性判断函数 \( f(x) = \begin{cases} x^2, & x \leq 1 \\ 2x, & x > 1 \end{cases} \) 在 \( x = 1 \) 处是否连续,并说明理由。
#### 练习题7:极限与无穷大计算 \( \lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 + 1} \)。
#### 练习题8:极限的夹逼定理已知 \( -2 < \sin x < 2 \) 对所有 \( x \) 成立,求 \( \lim_{x \to 0} \frac{\sin x}{x} \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设xxx f +=12)(,求)(x f 的定义域及值域。
,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。
定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。
在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。
若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。
的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。
)()(x I x x -=ϕ的奇偶性。
判定函数)1ln()1()(x x ex f xx -+⋅-=+ [)设,问在,上是否有界?f x e x f x x ()sin ()=+∞0函数的图形是图中所示的折线,写出的表达式。
y f x OBA y f x ==()()⎩⎨⎧≤≤-<≤=ϕ⎩⎨⎧≤≤+<≤=.,;,.,;, 设64240)(42220)(2x x x x x x x x x x f [][].及求)()(x f x f ϕϕ[][]设,;,.,求及.f x x x x x f x f x ()()()()=-≤>⎧⎨⎩=-101021ϕϕϕ⎩⎨⎧>-≤=ϕ⎩⎨⎧>≤-=.,;,., ;,设000)(00)(2x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ϕ []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥⎧⎨⎩12002ϕϕ[]设,;, .求.f x x x x f f x ()()=+<≥⎧⎨⎩2020.求.,;,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ϕ+⎩⎨⎧≥<+=ϕ⎩⎨⎧≥<=设, ;,;, 4.求的反函数.f x e x x x x x f x x x ()()()=-∞<<+≤≤-<<+∞⎧⎨⎪⎩⎪01041ϕ设,;,;,.求的反函数.f x x x x x x f x x x ()()()=-∞<<≤≤<<+∞⎧⎨⎪⎩⎪114242φ求:.,;,设⎪⎩⎪⎨⎧≥-<-=001)(2x x x x x f。
为常数.及的定义域;)()()2()2()()1(2a a f f x f设,;, ;, .求.f x x x x x f x f x f x x ()()(sin )()=-<-≤>⎧⎨⎪⎩⎪+⋅---11111354622设,;,.求.f x x x x x f x ()()=+≥+<⎧⎨⎩-2104012设,;,.,求及.f x x x x x f f ()log (cos )(sec )=≤>⎧⎨⎩221144ππ:试作出下列函数的图形., ;, ;,设⎪⎩⎪⎨⎧>-=<≤-+=0200012)(x x x x x x f.;;2)()()3()()2()()1(x f x f y x f y x f y +-===:试作出下列函数的图形,,;,设⎪⎩⎪⎨⎧≤<+-=<≤--=2020102)(x x x x x x f.;;2)()()3()()2()()1(x f x f y x f y x f y -+=-==的图形。
,试画出.,;设.)(),()( 2111,1)(2x f y x f y x f y x x x x x f =-==⎪⎩⎪⎨⎧≤<+-≤-= []上是偶函数。
,在,使求.,,,设11)()(1001)()(2-ϕ⎪⎩⎪⎨⎧≤≤-<≤-ϕ=x f x x x x x x x f⎪⎪⎩⎪⎪⎨⎧>-=<ϕ=时.,当时,, 当时,,当设01000)()(x x x x x x x f是奇函数。
,在,使求;求)()()()2()cos 2()1(∞+-∞ϕ+x f x x f,., ;, ;, 设)21()(21210010)(x f x F x x x x x x f -=⎪⎩⎪⎨⎧<≤-<≤<≤-= 的图形。
画出的表达式和定义域;求)()2()()1(x F x F设, , ;, .求的定义域及值域。
f x x x x x x f x ();()=-≤<+≤<-≤<⎧⎨⎪⎩⎪010101212设,;,求、及的值。
f x x x x f f f x ().()()()=+≤>⎧⎨⎩-1020202设,;,求,其中.f x x x x x x x f a f a a ()()()=-+≤->⎧⎨⎪⎩⎪++->221121110 求函数的反函数,并作出这两个函数的图形。
y x =+ln 1求函数的反函数,并作出这两个函数的图形(草图)。
y x y x =+=sin()()πϕ4求函数的反函数,并作出这两个函数的图形(草图)。
y x y x =-=tan()()1ϕ 利用图形的叠加作出函数的图形。
y x x =+sin利用图形的叠加作出函数的图形。
y x x=+1作函数的图形(草图)y x =-11。
作函数的图形(草图)y x =-ln()1。
作函数的图形。
(草图)y x =-arcsin()1(草图)作出下列函数的图形: .;;222)1()3()2(1)1(-=-=+=x y x y x y 设函数,就和时,分别作出其草图。
y ax a a ===-lg 12列函数的图形(草图)的图形(如图)作出下利用x y 2=:.;x x y y 231)2(12)1(=+=)列函数的图形:(草图的图形(如图)作出下利用x y sin =。
;)4sin()2(2sin )1(π-==x y x y利用的图形(如图)作出下列函数的图形:(草图);y x y x y x ===+sin ()sin ()sin 11221212ππ-义域。
的反函数,并指出其定,求函数)(3ln∞+-∞=xy 义域。
的反函数,并指出其定求函数)( 3+∞<<-∞=x xch y义域。
的反函数,并指出其定求函数)( 3+∞<<-∞=x xSh y义域。
的反函数,并指出其定求函数,1122+-=x x e e y 验证1122-=-cth x sh x 。
验证1122-=th x ch x。
验证Ch Ch Ch Sh Sh ()αβαβαβ-=-。
验证Ch Ch Ch Sh Sh ()αβαβαβ+=+。
验证Sh Sh Ch Ch Sh ()αβαβαβ-=-。
验证Sh Sh Ch Ch Sh ()αβαβαβ+=+。
验证。
22Shx Chx Sh x ⋅=证明Sh x Ch x Ch x 222+=。
,,设axax x x x x f +-=ϕ+∞<<-∞=1)()( arctan )([]。
,验证:,)()()()11(a f x f x f x a -=ϕ<< []设,,求f x x x x f x ()ln ()()=+=+11ϕϕ。
[]设,,求f x x xx x f x ()()()=+=112ϕϕ。
[][][]设,,求、及。
f x x x f x f x f f x x ()sin ()()()()==ϕϕϕ2[][]设,,求及。
f x x x x f x f x ()()()()=+=+1112ϕϕϕ ()[]{}设,,求及f x xx x x f f x f f f x ()()()=-≠≠⎡⎣⎢⎤⎦⎥1011。
[]设,,求及其定义域。
f x x x x x f x ()()()=+=+-111122ϕϕ[]已知,,且,求,并指出其定义域。
f x e f x x x x x ()()()()==-≥210ϕϕϕ[][]设,,求及。
f x x x x f x f ()ln ()()()==-ϕϕϕ102[]设,,求及其定义域。
f x x x x f x ()arcsin ()lg ()==ϕϕ 求函数的反函数,并指出反函数的定义域。
y x x =-≤-211()求函数的反函数,并指出其定义域。
y x x =-≤<lgarccos ()311的反函数求函数xxy +-=11arctg。
求函数的反函数,并指出其定义域。
y e e xx =--12() 求函数的反函数的形式。
y a xa x a =-+>ln ()0求函数的反函数,并指出其定义域。
y e e xx=+1求函数的反函数y x x x =+4。
的定义域。
,并指出的反函数求函数)()()1(1111)(x x x xxx f φφ≤-+--=求函数的反函数式中,。
f x x x x a a a ()log ()()()=++>≠1012φ设,求的反函数,并指出其定义域f x e e e e f x x x xx x()()().=-+-ϕ 设,试讨论的单调性和有界性。
f x xxx f x ()()()=+≤<+∞10讨论函数在区间,和,内的单调性。
f x x x ()()()=++∞1011讨论函数的有界性。
f x xx ()=+12讨论函数,当,,时的有界性。
f x x x()()()=+∈-∞+∞132001讨论函数在,上的单调性。
f x x ()()=-∞+∞2讨论函数在,上的单调性。
f x x a a x ()()()=->-∞+∞-1讨论函数在,内的单调性f x x ()ln ()=-+∞10。
b x a f x x x x x x f ++=⎩⎨⎧≤<-<≤-+=)()(311112)(φ,,,设为奇函数。
除外的值,使,试求)0)((=x x b a φ判断的奇偶性f x e e xxx x x ()ln ()=+--+-<<111111。
证明是奇函数f x x x ()()()=+--2323。
判定在其定义域,上的奇偶性。
f x x arc x ()cot ()=+-∞+∞判定 的奇偶性。
f x x x x ()()()()=--+-∞<<+∞13132323的奇偶性。