插值计算与插值多项式
第四章-多项式与插值

a0 a1 x0 a0 a1 x1
an x0n an x1n
y0 y1
a0 a1 xn an xnn yn
方程组系数矩阵取行列式
1 x0 x0n
| A | 1 x1 x1n ( xi x j ) 0
ni j0
1 xn xnn
故方程组有唯一解. 从而插值多项式P(x)存在而且是唯一旳.
yi = interp1(x,y,xi,’ linear’ )
线性插值(缺省)
yi = interp1(x,y,xi,’ spline’ )
三次样条
yi = interp1(x,y,xi,’ cubic’ )
三次插值
例3 已知数据表如下,分别求 y=0.9,0.7,0.6,0.5
处 x 旳值。
x
y
注:多项式求值还有一种函数是polyvalm,其调用 格式与polyval相同,但含义不同。polyvalm函数要
求x为方阵,它以方阵为自变量求多项式旳值。
3. 多项式旳四则运算 (1)多项式旳加减法
function p3 = poly_add(p1,p2)
n1=length(p1); n2 = length(p2);
yp=zeros(size(xp));
a(:,j)=a(:,j+1).*x;
for k=1:n+1
end
பைடு நூலகம்
yp=yp + coeff(k)*xp.^(n+1-k);
coeff=a\y;
end
plot(xp,yp, x,y, ' ro')
三、Lagrange插值多项式
1.插值基函数
定义:若n 1个n次多项式 l k (x) (k 1, 2,..., n 1)
插值的概念和各种基本方法

插值的概念和各种基本方法插值是一种基于已知数据点的函数关系来估计未知数据点的方法。
在实际应用中,由于各种原因,我们经常只能通过有限的数据点来描述一个函数关系,而无法得到函数的精确表达式。
因此,通过插值方法,我们可以根据已知数据点推断出未知数据点的值,从而进行进一步的分析和预测。
插值的基本方法可以分为两类:多项式插值和非多项式插值。
1.多项式插值方法多项式插值是通过已知数据点构造一个多项式函数,使得该函数经过这些数据点,并且在插值区间内的其他位置也能够比较好地拟合实际数据。
常用的多项式插值方法包括拉格朗日插值和牛顿插值。
- 拉格朗日插值:拉格朗日插值是利用拉格朗日多项式来进行插值的方法。
给定 n+1 个已知数据点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值函数可以表示为:L(x) = Σ(yi * li(x))其中,li(x) = Π(x - xj) / Π(xi - xj),i ≠ j,函数 L(x)即为插值函数。
-牛顿插值:牛顿插值是通过对已知数据点进行差商运算来构造插值多项式的方法。
牛顿插值多项式可以表示为:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * (x - x0) * (x - x1)* ... * (x - xi-1))其中,f[x0, x1, ..., xi]表示 x0, x1, ..., xi 对应的差商。
2.非多项式插值方法非多项式插值方法是通过其他函数形式进行插值的方法,常用的非多项式插值方法包括分段线性插值和样条插值。
-分段线性插值:分段线性插值是将插值区间划分为多个小区间,然后在每个小区间内用线性函数来逼近实际数据。
具体地,给定相邻的两个已知数据点(x0,y0)和(x1,y1),分段线性插值函数可以表示为:L(x)=(y1-y0)/(x1-x0)*(x-x0)+y0-样条插值:样条插值是利用分段多项式函数来进行插值的方法。
高中数学中的插值与多项式逼近

高中数学中的插值与多项式逼近在高中数学中,插值和多项式逼近是两个重要的概念和技巧。
它们在数学和工程领域中具有广泛的应用,可以用来解决实际问题,提高计算精度和效率。
本文将对插值和多项式逼近进行介绍和探讨。
一、插值的概念和应用1. 插值的概念插值是指通过已知数据点构造一个函数,使得这个函数在已知数据点上与已知函数或数据完全一致。
插值的目的是为了通过已知的离散数据点来估计未知的数据点,从而实现对数据的预测和补充。
2. 插值的应用插值在实际应用中非常广泛,例如地理信息系统中的地图绘制、图像处理中的图像重建、金融领域中的股票价格预测等。
通过插值方法,可以根据已知数据点的特征和规律,推断出未知数据点的值,从而提供更准确的预测和分析。
二、插值方法1. 拉格朗日插值法拉格朗日插值法是一种常用的插值方法,它通过构造一个多项式函数来逼近已知数据点。
这个多项式函数通过已知数据点的横纵坐标来确定,从而实现对未知数据点的估计。
2. 牛顿插值法牛顿插值法是另一种常用的插值方法,它利用差商的概念来构造一个多项式函数。
差商是指已知数据点之间的差值与对应函数值之间的比值,通过差商的递归计算,可以得到一个多项式函数,从而实现对未知数据点的估计。
三、多项式逼近的概念和方法1. 多项式逼近的概念多项式逼近是指通过一个多项式函数来逼近已知函数或数据,使得这个多项式函数在已知数据点上与已知函数或数据最接近。
多项式逼近的目的是为了简化计算和分析,提高计算效率和精度。
2. 最小二乘法最小二乘法是一种常用的多项式逼近方法,它通过最小化已知数据点与多项式函数之间的误差平方和,来确定最优的多项式函数。
最小二乘法可以用来解决数据拟合、曲线拟合等问题,广泛应用于统计学、信号处理等领域。
四、插值与多项式逼近的比较1. 精度比较插值方法可以通过已知数据点完全重构已知函数或数据,因此在已知数据点上的精度非常高。
而多项式逼近方法则是通过一个多项式函数来逼近已知函数或数据,因此在已知数据点上的精度可能会有一定的误差。
各种插值法的对比研究

各种插值法的对比研究插值法是指通过已知数据点来估计两个数据点之间的未知数值。
在实际生活和科学研究中,经常会遇到需要插值的情况,例如气象预测、金融分析、图像处理等。
本文将对比介绍几种常见的插值方法,包括线性插值、多项式插值、样条插值和逆距离加权插值。
1.线性插值:线性插值是最简单的插值方法,假设两个数据点之间的值变化是线性的。
根据已知数据点的坐标和对应的值,通过线性方程推断两个数据点之间的值。
优点是计算简单快速,但缺点是对数据变化较快的情况下估计效果较差。
2.多项式插值:多项式插值假设两个数据点之间的值变化是一个多项式函数。
通过已知数据点的坐标和对应的值,使用多项式拟合方法求解多项式函数的系数,再根据该多项式求解两个数据点之间的值。
多项式插值可以准确拟合已知数据点,但在插值点较多时容易出现振荡现象,且对数据点分布敏感。
3.样条插值:样条插值是一种平滑的插值方法,通过构建分段连续的多项式函数来逼近整个数据集。
根据已知数据点的坐标和对应的值,通过求解一组多项式函数的系数,使得在相邻区间之间函数值连续,导数连续。
样条插值可以减少振荡现象,对于插值点密集的情况能更好地逼近原始数据。
4.逆距离加权插值:逆距离加权插值是一种基于距离的加权插值方法,根据已知数据点与插值点之间的距离,对每个已知数据点进行加权平均得到插值点的值。
该方法认为距离较近的数据点对插值结果的影响更大。
逆距离加权插值简单易用,对数据点的分布不敏感,但对于距离较远的数据点容易受到较大的干扰。
在实际应用中,选择合适的插值方法需要根据数据的特点和要求来决定。
若数据变化较简单、平滑,可以选择线性插值或多项式插值;若数据变化复杂,存在振荡现象,可以选择样条插值;若数据点分布较稀疏,可以选择逆距离加权插值。
此外,还有一些其他的插值方法,如Kriging插值、径向基函数插值等,它们根据不同的假设和模型进行插值,具有一定的特点和适用范围。
综上所述,对于选择合适的插值方法,需要根据具体问题和数据特点来综合考虑,结合不同方法的优缺点进行比较研究,以得到更准确和可靠的插值结果。
几种常用的插值方法

几种常用的插值方法常用的插值方法包括线性插值、多项式插值、样条插值和径向基函数插值等,下面将依次介绍这些方法。
1.线性插值:线性插值是最简单的插值方法之一,它假设函数在两个已知点之间的变化是线性的。
对于给定的两个点(x0,y0)和(x1,y1),线性插值公式为:y=y0+(x-x0)*(y1-y0)/(x1-x0)其中,y是需要插值的点对应的函数值,x是插值点的横坐标。
2.多项式插值:多项式插值方法通过在给定的一组点上构建一个多项式函数来进行插值。
常用的多项式插值方法包括拉格朗日插值和牛顿插值。
- 拉格朗日插值通过构建一个n次多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值公式为:y = Σ(yk * lk(x))其中,lk(x)是拉格朗日基函数,计算公式为:lk(x) = Π((x - xj) / (xi - xj)),(j ≠ i)- 牛顿插值通过构建一个n次插值多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),牛顿插值公式为:y = Σ(Π(x - xj) / Π(xi - xj) * finDiff(yj))其中,finDiff(yj)是每个节点的差商,计算公式为:finDiff(yj) = (ΣΠ(xj - xi) * yj) / ΣΠ(xi - xj),(i ≠ j) 3.样条插值:样条插值方法通过使用分段函数来逼近给定的一组点。
常用的样条插值方法有线性样条插值和三次样条插值。
-线性样条插值在每两个相邻点之间使用线性函数进行插值,保证了插值函数的一阶导数是连续的。
-三次样条插值在每两个相邻点之间使用三次多项式进行插值,保证了插值函数的一阶和二阶导数都是连续的。
三次样条插值具有良好的平滑性和精度。
4.径向基函数插值:径向基函数插值是一种基于局部函数的插值方法,它假设函数值仅取决于与插值点的距离。
多项式的插值多项式与Lagrange插值知识点

多项式的插值多项式与Lagrange插值知识点多项式的插值多项式是数值分析中的重要概念,用于逼近给定数据点集合的函数。
通过插值,我们可以通过已知的数据点,构造出一个多项式函数,从而对未知数据点进行预测和估计。
Lagrange插值是一种常用的插值方法,具有简单易懂的形式和计算方法。
1. 插值多项式的定义插值多项式是指通过已知数据点集合,构造一个多项式函数,该函数在已知数据点上与原函数完全相等。
插值多项式在数值计算、信号处理、图像处理等领域都有广泛的应用。
2. Lagrange插值的原理Lagrange插值是一种基于多项式插值的方法,它通过构造一个满足一定条件的插值多项式来逼近原函数。
Lagrange插值的思想是,通过构造一系列的基函数,使得插值多项式在每个数据点上的取值等于对应数据点的函数值,并且在其他数据点上的取值为0。
3. Lagrange插值的公式Lagrange插值的公式非常简洁明了。
设已知的数据点集合为{(x0, y0), (x1, y1), ...,(xn, yn)},其中xi和yi分别代表数据点的横坐标和纵坐标。
插值多项式的公式可以表示为:P(x) = ∑(i=0 t o n) [yi * Li(x)]其中,Li(x)为Lagrange基函数,其公式为:Li(x) = ∏(j=0 to n, j!=i) [(x - xj) / (xi - xj)]4. Lagrange插值的优点Lagrange插值具有以下几个优点:(1) 简单易懂:Lagrange插值的公式非常简洁明了,易于理解和计算。
(2) 泛用性强:Lagrange插值适用于任意数量的数据点,能够满足不同场景的需求。
(3) 高精度:在数据点较为密集的情况下,Lagrange插值能够提供较高的插值精度。
5. Lagrange插值的局限性尽管Lagrange插值具有许多优点,但也存在一些局限性:(1) 数据点过于离散:当数据点过于离散时,Lagrange插值可能会导致插值多项式的震荡现象,从而影响插值结果的准确性。
插值公式与插值定理

插值公式与插值定理插值公式与插值定理是数值分析中的重要概念,用于近似计算函数在给定节点上的值。
本文将介绍插值公式与插值定理的基本原理和应用。
一、插值公式的基本原理在插值问题中,我们希望根据已知节点上函数的取值,推导出该函数在其他节点上的近似值。
插值公式是一种通过已知节点上的函数值,以及插值节点与已知节点之间的关系,来计算待插值节点上函数值的方法。
插值公式一般可以写为:\[f(x) = \sum_{i=0}^{n}L_i(x)f(x_i)\]其中,$f(x)$是待插值函数,$x_i$是已知节点,$f(x_i)$是已知节点上的函数值,$L_i(x)$是拉格朗日插值基函数。
拉格朗日插值基函数的表达式为:\[L_i(x) = \prod_{j=0, j\neq i}^{n}\frac{x-x_j}{x_i-x_j}\]它具有性质:在节点$x_i$处,$L_i(x_i)=1$;在其他节点$x_j(j\neq i)$处,$L_i(x_j)=0$。
利用插值公式可以在给定节点上计算函数的近似值,从而实现对函数的插值。
二、插值定理的基本原理插值定理是插值公式的理论基础,它指出了插值问题的存在唯一性,并提供了误差估计的方法。
插值定理的基本表达式为:\[f[x_0,x_1,...,x_k] = \frac{f^{(k)}(c)}{k!}\]其中,$[x_0,x_1,...,x_k]$是插值节点$x_0,x_1,...,x_k$上的差商,$f^{(k)}(c)$是函数$f(x)$在节点$x_0,x_1,...,x_k$之间某一点$c$的$k$阶导数。
根据插值定理,如果函数$f(x)$在插值节点$x_0,x_1,...,x_k$处的值已知,并且函数的$k$阶导数存在,则可以通过差商的计算求得$f^{(k)}(c)$的值,从而得到插值多项式。
插值定理还提供了误差估计的方法。
在一般情况下,插值多项式与原函数之间存在误差。
可以通过插值定理的结果来估计这个误差。
多项式的插值多项式与Newton插值知识点

多项式的插值多项式与Newton插值知识点多项式的插值多项式是数值分析中的一个重要概念,它用于将给定的一组数据点拟合为一个多项式函数。
在多项式的插值问题中,给定n + 1个数据点(x0, y0), (x1, y1), ... , (xn, yn),其中xi不相等,yi可以是任意实数,要求找到一个n次多项式P(x),使得P(xi) = yi,i = 0, 1, ..., n。
插值多项式的目的是通过已知的数据点,找到一个多项式函数,从而能够在这些数据点上精确地插值。
Newton插值是一种常用的插值方法,它采用了差商的概念。
差商是一种用于表示多项式系数的方法,通过递推关系可以快速计算出插值多项式的系数。
为了使用Newton插值,首先需要计算出差商表。
差商表的第一列是给定的数据点的纵坐标值,第二列是相邻数据点的差商,第三列是相邻差商的差商,以此类推。
差商表的对角线上的元素即为插值多项式的系数。
插值多项式的计算过程可以通过以下步骤来完成:1. 根据给定的数据点,构建差商表。
2. 根据差商表的对角线上的元素,计算插值多项式的系数。
3. 根据插值多项式的系数,构建插值多项式。
在实际应用中,多项式的插值多项式可以用于数据的拟合和插值计算。
通过插值多项式,我们可以通过已知数据点推断出未知数据点的值,从而实现对数据的预测和估计。
总结起来,多项式的插值多项式与Newton插值是数值分析中常用的方法。
它们通过利用已知的数据点,构建插值多项式来拟合数据,从而实现数据的预测和插值计算。
在实际应用中,我们可以根据具体的问题和数据特点选择适合的插值方法,并利用插值多项式进行数据的分析和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式,求 7
p2(x) = +
(x–x1)(x–x2) (x0–x1)(x0–x2) (x–x0)(x–x1) (x2–x0)(x2–x1)
y0 + y2
(x–x0)(x–x2) (x1–x0)(x1–x2)
y1
x0=1, x1=4, x2=9
y0=1, y1=2, y2=3
(7–4)(7–9)
(7–1)(7–9)
i=0, 1, 2
解: 用待定系数法, 将各节点值依次代入所求多项式, 得
解上述方程, 将求出的a0, a1, a2 代入 p(x) = a0 + a1x + a2x2 即得所求二次多项式
6.2.2 拉格朗日插值多项式
❖ 我们看到,两个插值点可求出一次插值多项式
p1(x),而三个插值点可求出二次插值多项式p2(x) 。 当 插 值 点 增 加 到 n+1 个 时 , 我 们 可 以 利 用
6.1 插值法的数学描述
设函数y=f(x) 在区间[a, b]上连续, x0 , x1 , , xn 是 [a, b]上取定的n+1个互异节点,且在这些点处的函数值 为已知 f (x0 ), f (x1), , f (xn ) ,即 yi f (xi ) 若存在一个 f(x)的近似函数 (x),满足
x1
(给定的三个点在一条直线上)
例6.6 已知f (x)的观测数据
x 0124
f (x) 1 9 23 3
构造Lagrange插值多项式
解 四个点可构造三次Lagrange插值多项式:基函数为
l0
(x)
(x (0
1)( x 1)(0
2)( x 2)(0
4) 4)
1 8
1 3
3 1
2
f (1.5) p(1.5) 1.25
(2) 抛物插值
抛物插值又称二次插值,它也是常用的代数插值之
一。设已知f(x)在三个互异点x0,x1,x2的函数值y0 ,y1,y2,要构造次数不超过二次的多项式
P(x) a2 x2 a1x a0
使满足二次插值条件:
P(xi ) yi (i 0,1,2)
为了构造满足插值条件 p(xi ) f (xi ) (i=0,1,2,…,n ) 的便于使用的插值多项式P(x),先考察几种简单情形, 然后再推广到一般形式。 6.2.1 线性插值与抛物插值 (1)线性插值
线性插值是代数插值的最简单形式。假设给定了函数 f(x)在两个互异的点 x0 ,x1 的值,y0 f (x0 ), y1 f (x1)
y1
的线性组合得到,其系数分别为 y0,y1
称 l0 (x),l1(x)为节点 x0 , x1的线性插值基函数
线性插值基函数 l0 (x),l1(x) 满足下述条件
xi
x0
x1
l0 (x)
1
0
l1 ( x)
0
1
并且他们都是一次函数。
注意他们的特点对下面的推广很重要 于是线性插值函数可以表示为与基函数的线性组合
x3
7 8
x2
7 4
x
1
l1 ( x)
(x 0)(x 2)(x 4) (1 0)(1 2)(1 4)
1 3
x3
2x2
8 3
x
l2
(x)
(x (2
0)( x 0)(2
1)( x 1)( 2
即:
lk
(xi
)
ki
1 0
(i k) (i k)
由条件 lk (xi ) 0 ( i k )知, x0 , x1, , xk1, xk1, , xn 都是n次 lk (x) 的零点,故可设
lk (x) Ak (x x0 )( x x1 ) (x xk1 )( x xk1 ) (x xn )
,现要求用线性函数 p(x) ax b 近似地代替f(x)。选
择参数a和b, 使 p(xi ) f (xi )(i 0,1) 。称这样的线性函数 P(x)为f(x)的线性插值函数 。
线性插值
线性插值多项式
由直线两点式可知,通过A,B的直线方程为
p(x)
y0
y1 x1
y0 x0
l0 (x) c(x x1)( x x2 )
1
再由另一条件 l0 (x0 ) 1
确定系数 c (x0 x1)(x0 x2 )
从而导出
l0
(x)
(x (x0
x1)( x x2 ) x1)( x0 x2 )
P(x)的参数 a0 , a1, a2 直接由插值条件决定,
jk
j0
jk
称 lk (x) 为关于基点 xi 的n次插值基函数(i=0,1,…,n)
以n+1个n次基本插值多项式lk (x)(k 0,1, , n) 为基础,就能直接写出满足插值条件
P(xi ) f (xi ) (i 0,1,2, , n) 的n次代数插值多项式。
P(x) l0 (x) y0 l1(x) y1 ln (x) yn 事实上,由于每个插值基函数 lk (x)(k 0,1, , n) 都是n次值多项式,所以他们的线性组合
方程组的解唯一。
类似地可以构造出满足条件:l1(x1) 1, l1(x0 ) 0, l1(x2 ) 0
的插值多项式
l1 (x)
(x ( x1
x0 )( x x2 ) x0 )( x1 x2 )
及满足条件:l2 (x2 ) 1, l2 (x0 ) 0, l2 (x1) 0 的插值多项式
(x
x0 )
p1 ( x)
它也可变形为
l0 (x)
x x1 x0 x1
,
l1 (x)
x x0 x1 x0
显然有:
记
l0 (x)
x x1 x0 x1
l1 ( x)
x x0 x1 x0
可以看出
L1 ( x)
x x1 x0 x1
y0
x x0 x1 x0
p(xi ) f (xi ) (i 1,2, , n)
则称 p(x) 为f(x)的一个插值函数, f(x)为被插函数, 点 xi为插值节点, R(x)= f (x) p(x) 称为插值余项, 区间 [a, b]称为插值区间, 插值点在插值区间内的称为内插, 否则称外插
插值的几何意义
6.2 拉格朗日(Lagrange)插值
)
y0
(x (x1
x0 x0
)( )(
x x2) x1 x2 )
y1
(x (x2
x0 x0
)( )(
x x1) x2 x1
)
y2
p(x) (x 1)(x 2) 1 (x 0)(x 2) 2 (x 0)(x 1) 3 (0 1)(0 2) (1 0)(1 2) (2 0)(2 1)
这就是二次插值问题。其几何意义是用经过3个点
(x0, y0 ), (x1, y1), (x2, y2 ) 的抛物线 y P(x) 近似代替曲线
y f (x) , 如下图所示。因此也称之为抛物插值。
抛物插值函数
y
y0
y1
y=L2(x) y1
y=f(x)
O
x0
x1
x2
x
因过三点的二次曲线为抛物线,故称为抛物插值。
x x0 x1 y y0 y1
xn1 xn yn1 yn
• 插值问题:根据这些已知数据来构造函数 y f (x) 的一种
简单的近似表达式,以便于计算点 x xi ,i 0,1,L , n 的函 数值 f (x),或计算函数的一阶、二阶导数值。
y=p(x) y=f(x)
简单的说,插值的目的就是根据给定的数据表,寻 找一个解析形式的函数p(x),近似代替f(x)
y 115 p(115) 10.714
例6.2 已知y=f(x)的函数表
X1 3
y12
求线性插值多项式, 并计算x=1.5 的值
解: 由线性插值多项式公式得
p(x)
x x1 x0 x1
y0
x x0 x1 x0
y1
x 3 1 x 1 2 1 (x 1)
p2(7) =
(1–4)(1–9)
*1 + (4–1)(4–9)
*2
(7–1)(7–4)
+ (9–1)(9–4) * 3
= 2.7
例6.4 已知函数y=f(x)在节点上满足
x x0 x1 x2
y y0 y1 y2 求二次多项式 p(x) = a0 + a1x + a2x2
使之满足 p(xi) = yi
x1 x1
)( )(
x x2) x0 x2
)
y0
(x (x1
x0 x0
)( )(
x x2) x1 x2 )
y1
(x (x2
x0 x0
)( )(
x x1) x2 x1
)
y2
容易看出,P(x)满足条件 P(xi ) yi (i 0,1,2)
例6.3 已知x=1, 4, 9 的平方根值, 用抛物插值