人教版八年级下册数学期末质量检测
最新人教版数学八年级下学期《期末检测卷》有答案解析

C.菱形的对角线互相垂直D.矩形的对角线互相垂直
【答案】D
【解析】
【分析】
根据几种四边形的性质进行判断即可.
【详解】解:矩形对角线一定相等,但不一定相互垂直,选D说法错误.
其它三个选项说法均正确.
故选:D.
【点睛】本题考查了平行四边形以及三种特殊平行四边形的性质,掌握这几种四边形的性质是解题的键.
27.如图1,在正方形A B C D中,P是对角线B D上的一点,点E在A D的延长线上,且PA=PE,PE交C D于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形A B C D改为菱形A B C D,其他条件不变,当∠A B C=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】13或
【解析】
【分析】
分情况讨论当 的木棒为直角边时以及当 的木棒为斜边时,利用勾股定理解答即可.
【详解】解:当 的木棒为直角边时,第三根木棒的长度为 ;
当 的木棒为斜边时,第三根木棒的长度为 ;
A. B. C. D.
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为A×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解】2.3μm=2.3×0.000001m=2.3×10-6m,
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为A×10-n,其中1≤|A|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22.在一次函数 中,随 的 增大而增大,则 ________.
人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。
数学人教版八年级下册期末素养测评卷试卷及答案1

数学人教版8年级下册期末素养测评卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各组中的两个式子,不属于同类二次根式的是()AB C 与D2.实数a ,b b a --的结果是()A .2a b -B .2a b -+C .aD .a-3.如图,在平面直角坐标系中,平行四边形OABC 的边OA 在x 轴的正半轴上,A 、C 两点的坐标分别为()()2,01,2、,点B 在第一象限,将直线2y x =-沿y 轴向上平移m ()0m >个单位.若平移后的直线与边BC 有交点,则m 的取值范围是()A .08m <<B .04m <<C .28m <<D .48m ≤≤4.如图,某蓄水池的横断面示意图,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h 和时间t 之间的关系()A .B .C .D .5.一个样本的极差是52,样本容量不超过100.若取组距为10,则画频数分布直方图应把数据分成()A .5组B .6组C .10组D .11组6.某校生物兴趣小组11人到野外捕捉蝴蝶制作标本.其中有2人每人捉到6只,有4人每人捉到3只,其余5人每人捉到4只,则这个兴趣小组平均每人捉到蝴蝶只数为()A .3B .4C .5D .67.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,1BD BE ==.沿直线将BDE ∆翻折,点B 落在点B '处.则点B '的坐标为()A .()1,1B .()2,1C .()1.5,1D .()1.5,1.58.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点D 作DH BC ⊥于点H ,连接OH ,若8OA =,96ABCD S =菱形,则OH 的长为()A .6B .8C .485D .109.用四个完全一样的直角三角板拼成如图所示的图形,其中每个直角三角板的斜边长都为c ,两直角边长分别为a ,()b b a >,下列结论中正确的是()A .()22c a b =+B .222c a b =+C .222c a ab b =++D .222c a ab b =-+10.如图,直角ABC 中,7AC =,25AB =,则内部五个小直角三角形的周长为().A .32B .56C .31D .55二、填空题11.已知0x >,0y >且150x y --=,则=____.12.已知△ABC 的三边分别为a 、b 、c ,化简:=___________.13.已知一次函数y kx b =+,当02x ≤≤时,对应的函数值y 的取值范围是24y -≤≤,则kb 的值为________.14.在直角坐标系中,等腰直角三角形112213321,,,,n n n A B O A B B A B B A B B -⋯按如图所示的方式放置,其中点123,,,,n A A A A ⋯均在一次函数y kx b =+的图象上,点123,,,,n B B B B ⋯均在x 轴上.若点1B 的坐标为(1,0),点2B 的坐标为(3,0),则点2023A 的坐标为________.15.已知a 、b 、c 、d 、e 的平均数是x ,则5a +、12b +、22c +、9d +、2e +的平均数是________.16.小明同学在德,智,体,美,劳五项评价的成绩分别为:10分,9分,8分,9分,8分.已知这5项成绩的比例依次为2:3:2:2:1,则小明同学5项评价的平均成绩________分.17.如图,四边形ABCD 中,AD BC ∥,90C ∠︒=,AB AD =,连接BD ,作BAD ∠角平分线AE 交BD 、BC 于点F 、E .若3EC =,4CD =,那么AE 长为_____.18.如图,在Rt ABC △中,90,1C AC BC ∠=︒=,D 在AC 上,将ADB △沿直线BD 翻折后,点A 落在点E 处,如果AD ED ⊥,那么ABE △的面积是___________.三、解答题19.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(231+=,善于思考的小明进行了以下探索:若设(22222a m m n +=+=++a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似a +方法,请你仿照小明的方法探索并解决下列问题:(1)若(2a m +=+,当a、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:=a ______,b =______;(2)若(2a m +=+,且a、m 、n 均为正整数,求a 的值;(3)化简下列各式:20.在某风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,此时船距离岸边多少m?(结果保留根号)2111,请回答以下问题:的小数部分是________,5________.(2)若ab 1a b +的平方根.(3)若7x y =+,其中x 是整数,且01y <<,求x y -的值.22.如图,直线AB 与x 轴、y 轴分别交于点(3,0)A 、点(0,2)B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,90BAC ∠=︒.(1)请直接写出直线AB 的表达式;(2)请直接写出ABC 的面积为;(3)点P 是坐标系中的一个动点,当ABC 与ABP 全等时,请直接写出点P 的坐标.23.如图,直线OC 、BC 的函数关系式分别为y x =和2y x b =-+,且交点C 的横坐标为2,动点()0P x ,在线段OB 上移动(03x <<).(1)求点C 的坐标和b ;(2)若点()01A ,,当x 为何值时,AP CP +的值最小;(3)过点P 作直线EF x ⊥轴,分别交直线OC 、BC 于点E 、F .①若3EF =,求点P 的坐标.②设OBC △中位于直线EF 左侧部分的面积为s ,请写出s 与x 之间的函数关系式,并写出自变量的取值范围.24.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):甲班乙班1分钟投篮测试成绩统计表甲班乙班平均数 6.5a中位数b6方差 3.45 4.65优秀率30%c根据以上信息,解答下列问题:(1)直接写出a,b,c的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.25.某商店3,4月份销售同一品牌各种规格空调的情况如表所示:1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?26.如图,已知在Rt ABC∠=︒,816ACB△中,90,,D是AC上的一点,==AC BCCD=,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点3P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当ABP 为等腰三角形时,求t 的值;(3)过点D 作DE AP ⊥于点E ,连接PD ,在点P 的运动过程中,当PD 平分APC ∠时,直接写出t 的值.27.已知:如图,在ABC 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E(1)求证:四边形ADCE 为矩形;(2)当ABC 满足时(添加一个条件),四边形ADCE 是正方形,并证明当90BAC ∠=︒时,四边形ADCE 是一个正方形28.如图,在ABC 中,点O 是边AC 上一个动点,过O 作直线MN BC ∥,设MN 交ACB ∠的平分线于点E ,交ABC 的外角ACD ∠的平分线于点F .(1)探究线段EF 与OC 的数量关系,并说明理由;(2)当O 运动到何处,且ABC 满足什么条件时,四边形AECF 是正方形?请说明理由;(3)当点O 在边AC 上运动时,四边形BCFE _______________是菱形填“可能”或“不可能”,请说明理由.参考答案1.C2.D3.D4.C5.B6.B7.B8.A9.B10.B11.212.4c13.6-或12-/12-或6-14.()2022202221,2-15.ˆ10x+/10x +16.8.917.18.119.(1)设(22272a m m n +=+=++a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为:227m n +,2mn ;(2)∵62mn =,∴3mn =,∵a 、m 、n 均为正整数,∴1m =,3n =或3m =,1n =,当1m =,3n =时,2222313328a m n =+=+⨯=;当3m =,1n =时,2222333112a m n =+=+⨯=;即a 的值为12或28;(32==+2==t =,则244t =++8=+8=+)821=+6=+)21=+,∴1t =.20.解:∵在Rt ABC △中,90CAB ∠=︒,13m BC =,5m AC =,∴()12m AB ==,∵此人以0.5m/s 的速度收绳,10s 后船移动到点D 的位置,∴()130.5108m CD =-⨯=,∴)m AD ===,.21.(1)解:∵34<<,的整数部分为3,3,∵34<<,∴34--,∴534--即12,∴51,∴54,3-,4;(2)解:∵910,a ∴a =9,∵12<<,1,∵b∴1b =,∴19119a b +=+-=∵9的平方根等于3±,∴1a b +的平方根等于3±;(3)解:∵23<<,∴72773+<+<+即9710<<,∵7x y =+,其中x 是整数,且01y <<,∴x =9,y =792-=,∴)9211x y --+.22.(1)解:设直线AB 所在的表达式为:y kx b =+,则302k b b +=⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩,故直线l 的表达式为:223y x =-+,故答案为:223y x =-+;(2)解:在Rt ABC 中,由勾股定理得:222223213AB OA OB =+=+=,ABC 为等腰直角三角形,211322ABC S AB ∴== ,故答案为:132;(3)解:①90ABP ∠=︒时,如图,过点P 作PE y ⊥轴于E,90BOA ∠=︒ ,90ABP ∠=︒,BOA PEB ∴∠=∠,90PBE ABO BAO ABO ∠+∠=∠+∠=︒,PBE BAO ∴∠=∠,ABP BAC ≌,BP AC AB ∴==,(AAS)PBE BAO ∴ ≌,2PE OB ∴==,3==BE OA ,321OE ∴=-=,∴点P 的坐标为(21)--,;同理:点P '的坐标为(25),;②90BAP ∠=︒时,如图,过点P 作PF x ⊥轴于F ,90BOA ∠=︒ ,90BAP ∠=︒,BOA AFP ∴∠=∠,90PAF BAO ABO BAO ∠+∠=∠+∠=︒,PAF ABO ∴∠=∠,ABP BAC ≌,AP AC AB ∴==,(AAS)PAF ABO ∴ ≌,2AF OB ∴==,3PF OA ==,321OF ∴=-=,∴点P 的坐标为(1)3-,;综上,点P 的坐标为(21)--,或(25),或(1)3-,.故答案为:(21)--,或(25),或(1)3-,.23.(1)∵点C 在直线OC :y x =上,且点C 的横坐标为2∴点()22C ,,∵点C 在直线BC :2y x b =-+上,∴222b -⨯+=,∴6b =(2)如图1,作点C 关于x 轴的对称点C ',连接AC '交x 轴于点P ,此时AP CP AP PC AC ''+=+=最小,第14页共20页∵()22C ,,∴()22C '-,,∵点()01A ,,∴直线AC '的解析式为312y x =-+,令0y =,解得:23x =∴点P 的坐标为2,03⎛⎫⎪⎝⎭(3)①由(1)知,6b =,∴直线BC 的解析式为26y x =-+,∵EF x ⊥轴于P ,∴()26,F x x -+,∵点E 在直线OC 上,∴(),E x x ,∴2636EF x x x =-+-=-,∵3EF =,∴363x -=,∴3x =(舍)或1x =,∴()10P ,;②当02x <≤时,如图2,点(),E x x ,∴OP x =,PE x =,∴21122OPE s S OP PE x === △,当23x <<时,如图3,由(2)知,直线BC 的解析式为26y x =-+,∴()30B ,,∵(),0P x ,∴()26,F x x -+,∴3BP x =-,26PF x =-+,∴()()()211323263322OBC BPF s S S x x x =-=⨯⨯---+=--+△△,即:221(02)2(3)3(23)x x s x x ⎧<≤⎪=⎨⎪--+<<⎩.24.解:(1)由统计表可知:甲班进球数平均数为6.5,因此甲班共进球数为6.5×10=65(个),所以甲班的3号同学进球的个数为:65﹣3﹣5﹣6﹣6﹣7﹣7﹣8﹣8﹣10=5(个),由统计图可知,乙班3号同学进球个数也是5个,所以a =110(3+4+5+6×3+7+9×2+10)=6.5,将甲班10名同学进球的个数从小到大排列为:3,5,5,6,6,7,7,8,8,10;处在中间位置的两个数的平均数为672+=6.5,故中位数是6.5,即b =6.5,因为乙班进球8个及以上的人数为3人,∴c =3÷10=30%,故a =6.5,b =6.5,c =30%;(2)甲班的比赛成绩要好一些;理由:两个班的平均数相同,甲班的中位数略高于乙班,方差小于乙班.25.(1)561220841630148562x +++++++==(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.26.(1)解:根据题意,得2BP t =,∴162162310PC t =-=-⨯=,在Rt APC △中,8AC =,由勾股定理,得AP ===故答案为:(2)解:在Rt ABC △中,816AC BC ==,,由勾股定理,得AB ==若BP BA =,则2t =,解得t =若AP AB =,则21632BP =⨯=,232t =,解得16t =;若PB PA =,则()()22221628t t =-+,解得5t =.答:当ABP 为等腰三角形时,t 的值为16、5;(3)解:①点P 在线段BC 上时,过点D 作DE AP ⊥于E ,如图1所示:则90AED PED ∠=∠=︒,∴90PED ACB ∠=∠=︒,∵PD 平分APC ∠,∴EPD CPD ∠=∠,又∵PD PD =,∴()AAS PDE PDC ≌△△,∴3ED CD ==,162PE PC t ==-,∴835AD AC CD =-=-=,∴4AE ===,∴4162202AP AE PE t t =+=+-=-,在Rt APC △中,由勾股定理得:()()2228162202t t +-=-,解得:5t =;②点P 在线段BC 的延长线上时,过点D 作DE AP ⊥于E ,如图2所示:同①得:()AAS PDE PDC ≌△△,∴3ED CD ==,216PE PC t ==-,∴835AD AC CD =-=-=,∴4AE ===,∴4216212AP AE PE t t =+=+-=-,在Rt APC △中,由勾股定理得:()()2228216212t t +-=-,解得:11t =;综上所述,在点P 的运动过程中,当t 的值为5或11时,PD 平分APC ∠.27.(1)证明:在ABC 中,AB AC =,AD BC ⊥,12BAD CAD BAC ∴∠=∠=∠,AN 是CAM ∠的平分线,12MAE CA CA E M ∴∠∠=∠=,()111809022DAE CAD CAE BAC CAM ∴∠=∠+∠=∠+∠=⨯︒=︒,AD BC ⊥ ,CE AN ⊥,90ADC CEA ∴∠=∠=︒,∴四边形ADCE 为矩形.(2)当ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形,理由如下:AB AC = ,45ACB B ∴∠=∠=︒,AD BC ⊥ ,45CAD ACD ∴∠=∠=︒,DC AD ∴=,四边形ADCE 为矩形,∴矩形ADCE 是正方形,故当90BAC ∠=︒时,四边形ADCE 是一个正方形.28.(1)2EF OC =.理由如下:CE 是ACB ∠的角平分线,ACE BCE ∴∠=∠,又∵MN BC ∥,NEC ECB ∴∠=∠,NEC ACE ∴∠=∠,OE OC ∴=,同理可得:OF OC =,OE OF OC ∴==;2EF OC ∴=.(2)当点O 运动到AC 的中点,且ABC 满足ACB ∠为直角的直角三角形时,四边形AECF 是正方形.理由如下:当点O 运动到AC 的中点时,AO CO =,又EO FO = ,∴四边形AECF 是平行四边形,FO CO = ,AO CO EO FO ∴===,AO CO EO FO ∴+=+,即AC EF =,∴四边形AECF 是矩形.已知MN BC ∥,当90ACB ∠=︒,则90AOF COE COF AOE ∠=∠=∠=∠=︒,AC EF ∴⊥,∴四边形AECF 是正方形;(3)不可能.理由如下:如图,CE 平分ACB ∠,CF 平分ACD ∠,111()90222ECF ACB ACD ACB ACD ∴∠=∠+∠=∠+∠=︒,若四边形BCFE 是菱形,则BF EC ⊥,但在GFC 中,不可能存在两个角为90︒,所以不存在其为菱形.故答案为:不可能.。
【人教版】数学八年级下册《期末检测试题》附答案

A. B. C. D.
【答案】D
【解析】
【分析】
根据正方形的判定,画出正方形即可解决问题;
【详解】解:如图所示:一共有11个正方形.故选D.
【点睛】本题考查正方形的判定和性质,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
22.小慧根据学习函数的经验,对函数 的图像与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是;
(2)列表,找出 与 的几组对应值.
-1
0
1
2
3
1
0
1
2
其中, ;
(3)在平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,解决下列问题.
2020-2021学年第二学期期末测试
人教版数学八年级试题
学校________班级________姓名________成绩________
一、选择题
1.下列格式中,属于最简二次根式的是()
A. B. C. D.
2.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()
A. B.
C. D.
16.如图,过点A(2,0)的两条直线 , 分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB= .
(1)求点B 坐标;
(2)若△ABC的面积为4,求 的解析式.
17.如图,矩形ABCD中,点E为边CD上的一点,将矩形ABCD沿BE翻折,点A,D分别落在 处, 与 相交于点P,请用无刻度的直尺分别按下列要求画图(保留画图痕迹)
数学人教版八年级下册期末素养卷试卷及答案

数学人教版8年级下册期末素养卷02一选择题1.下列计算正确的是()A +=B .=C 4=D .3=-2.已知实数x ,y 满足()()=2008,则3x 2-2y 2+3x-3y-2007的值为()A .-2008B .2008C .-1D .13.下列线段组成的三角形中,不能构成直角三角形的是().A.a =9,b =41,c =40B.a =b =5,c =52C.a :b :c =3:4:5D.a =11,b =12,c =154.若等边△ABC 的边长为4,那么△ABC 的面积为().A.32 B.34 C.8D.45.如果正方形ABCD 的面积为92,则对角线AC 的长度为().A.32 B.94 C.32 D.926.在ABC △中,::1:1:2A B C ÐÐÐ=,则下列说法错误的是().A.90C Ð=B .222c a=C .222a b c=-D .a b=7.下面几组条件中,能判断一个四边形是平行四边形的是()A.一组对边相等B.两条对角线互相平分C.一组对边平行D.两条对角线互相垂直8.若一次函数y=ax +b 的图象经过第一、二、四象限,则下列不等式中总是成立的是()A .ab >0B .a -b >0C .a 2+b >0D .a +b >09.在平面直角坐标系中,若直线y=kx +b 经过第一、三、四象限,则直线y=bx +k 不经过...的象限是()A .第一象限B .第二象限C .第三象限D .第四象限10.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是().A .2B .1.5C .2.5D .-6二填空题11.某人开车旅行100km ,在前60km 内,时速为90km ,在后40km 内,时速为120km ,则此人的平均速度为_________.12.将5个整数从大到小排列,中位数是4;如果这个样本中的唯一众数是6, 则这5个整数可能的最大的和是_____.13.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为.14.若△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是.15.在Rt D ABC 中,90ACB Ð=°,且9,4c a c a +=-=,则b =.16.若直线y=kx+b (k≠0)的图象经过点(0,2),且与坐标轴所围成的三角形面积是2,则k 的值为17.一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是.18.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,6,7. 则这名学生射击环数的极差是_________.三解答题19.在ABC Rt D 中,∠C =90°,a 、b 、c 分别表示A Ð、B Ð、C Ð的对边.(1)已知c =25,b =15,求a ;(2)已知6=a ,A Ð=60°,求b 、c.20.为表彰学习进步的同学,某班生活委员到文具店买文具作为奖品.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求每个笔记本和每支钢笔的售价.(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受八折优惠,若买x(x>0)支钢笔需要花y元,求y与x的函数关系式.21.为了了解某小区居民的用水情况,随机抽查了该小区10 户家庭的月用水量,结果如下:月用水量(吨)1013141718户数22321(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?22.为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B 两贫困村的计划.现决定从某地运送152箱鱼苗到A,B两村养殖.若用大、小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大、小货车的载货能力分别为12箱/辆和8箱/辆,其运往A.B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)这15辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A.B 两村总费用为y元,试求出y与x的函数表达式;(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.答案:一、选择题1.B 2.D 3.D 4.B 5.A 6.C 7.B 8.C 9.C 10.B 二、填空题11.100km/h 12.2113.344或14.4或1415.616.±117.2->m 18.6三、解答题19.(1)由勾股定理得:a =20.(2)b=2c=22.20.(1)解:设每个笔记本x 元,每支钢笔y 元îíì=+=+5738624y x y x îíì==1514y x 解得:答:每个笔记本14元,每支钢笔15元(2)îíì+=301215x xy ()()10100><x x £21.(1)x 1210213314217118=10´+´+´+´+´=14(吨);(2)500´14=7000吨.22.解:(1)设大货车用x 辆,小货车用y 辆,根据题意得:îíì=+=+15281215y x y x îíì==78y x 解得答:大货车用8辆,小货车用7辆.(2)y=800x+900(8-x )+400(10-x )+600[7-(10-x )]=100x+9400.(3≤x≤8,且x 为整数).(3)由题意得12x+8(10-x )≥100,解得x≥5,又∵3≤x≤8,∴5≤x≤8且为整数.∵y=100x+9400,k=100>0,y 随x 的增大而增大,∴当x=5时,y 最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A 村;3辆大货车、2辆小货车前往B 村,最少运费为9900元.。
人教版八年级数学下册期末测试卷含答案

人教版八年级数学下册期末测试卷含答案人教版八年级数学下册期末测试卷02一、选择题(每小题3分,共30分)1.在函数y=(x+2)/(x-1)中,自变量x的取值范围是()A。
x≥-2且x≠1B。
x≤2且x≠1C。
x≠1D。
x≤-22.下列各组二次根式中,可以进行合并的一组是()A。
12与72B。
63与78C。
8√3与22√xD。
18与63.下列命题中,正确的是()A。
梯形的对角线相等B。
菱形的对角线不相等C。
矩形的对角线不能互相垂直D。
平行四边形的对角线可以互相垂直4.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A。
20B。
24C。
28D。
405.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A。
AE=CFB。
BE=FDC。
BF=DED。
∠1=∠26.已知一次函数y=kx+b(k≠0)的图象经过两点,则它不经过(2,-1)的象限是()A。
第一象限B。
第二象限C。
第三象限D。
第四象限7.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据。
若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是()A。
20B。
28C。
30D。
318.园林队在某公园进行绿化,中间休息了一段时间已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A。
40平方米B。
50平方米C。
80平方米D。
100平方米9.如图,在△ABC中,AC=BC,D、E分别是边AB、AC 的中点,△ADE≌△CFE,则四边形ADCF一定是()A。
矩形B。
菱形C。
正方形D。
梯形10.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合XXX行驶情况的大致图象是()无法提供图象)二、填空题(每小题3分,共30分)11.计算:(48-327)÷3=_________.12.一次函数y = (m+2)x + 1,若y随x的增大而增大,则m的取值范围为什么?答案:m。
人教版八年级下册数学期末试题(附答案)

2021——2022学年第二学期数学期末检测卷一、选择题(每小题3分,共30分)1.代数式11x -有意义,则x 的取值范围是( ) A . x ≥0 B . x ≠1 C . x >0 D . x ≥0且x ≠12.如果一次函数 y =x +k 的图象经过第一、三、四象限,那么 k 的取值范围是 ( ) k >0 B . k <0 C . k >1 D . k <13.如图,在平行四边形 ABCD 中,∠A =140∘,则 ∠B 的度数是 ( )A. 40∘B . 70∘C . 110∘D . 140∘ 书名 《西游记》 《水浒传》 《三国演义》 《红楼梦》销量量/本 180120 125 85 些《西游记》,你认为最影响该书店决策的统计量是( )A .平均数B .众数C .中位数D .方差5.已知点(-3,y 1)、(2,y 2)都在直线y =-2x +1上,则y 1、y 2的大小关系是( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . 不能比较6.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A .22︒B .68︒C .96︒D .112︒7.如图,一圆柱高8cm ,底面半径为cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm8.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .C .D .79.实数a ,b 在数轴上的位置如图所示,则化简√(a -2)2-√(a +b)2的结果是( )A.-b-2 B.b+2 C.b-2 D.-2a-b-210.如图,在平行四边形ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF;④EA平分∠GEF.其中正确的是( )A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共12分)11.在二次根式√7,√14,√21,√28,√35,√42,√49中,属于最简二次根式的有个12.某校举办广播体操比赛,评分项目包括精神面貌,整齐程度,动作规范这三项,总评成绩按以上三项得分2:3:5的比例计算,已知八(1)班在比赛中三项得分依次是8分,9分,10分,则八(1)班这次比赛的总成绩为__________分.13.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________14.关于自变量x的函数y=(k-3)x+2k,下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(-2,6);③若函数经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是k<3.其中结论正确的序号是__________.三、解答题(本大题共5小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.计算2132)4882-16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.17.如图,在平面直角坐标系中,直线y=-12x -1与直线y =-2x +2相交于点P . (1)求交点P 的坐标; (2)请把图象中直线y =-2x +2在直线y =-12x -1上方的 部分描黑加粗,并写出不等式-2x +2>-12x -1的解集.18.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为 ;(2)条形统计图中存在错误的是 (填A 、B 、C 中的一个),并在图中加以正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人19.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题: x yO A BP y =-2x +2 y =-12x -1(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.20.天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.答案:一、选择题1.B2.B C3.A4.B5.C6.B7.C8.C9.B 10.B二、填空题11.5 12.9.3 13. 20,99,101 14.②③三、解答题15.716.证明:∵BE ∥AC ,CE ∥DB ,∴四边形OBEC 是平行四边形,又∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠AOB=90°,∴平行四边形OBEC 是矩形.17. (1)(2,-2) (2)x<218. (1)200 (2)C (3)略(4)36019.解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.20.解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为()20x -元. 依题意得2000120020x x =-,解得50x =, 经检验50x =是原方程的解且符合题意当50x =时,2030x -=.答:A 种商品每件的进价为50元,B 种商品每件的进价为30元;(2)设购进A 种商品a 件,购进B 种商品()40a -件, 依题意得5030(40)15601(40)2a a a a +-⎧⎪⎨-⎪⎩ 解得40183a , ∵a 为整数∴14,15,16,17,18a =.∴该商店有5种进货方案;(3)设销售A 、B 两种商品总获利y 元,则()()()()805045304015600y m a a m a =--+--=-+.①当15m =时,150m -=,y 与a 的取值无关,即(2)中的五种方案都获利600元; ②当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即在(2)的条件下,购进A 种商品18件,购进B 种商品22件,获利最大;③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,∴在(2)的条件下,购进A 种商品14件,购进B 种商品26件,获利最大.。
【人教版】数学八年级下册《期末检测试题》含答案

17.用圆规和直尺作图,不写作法,保留作图痕迹
已知 及其边 上一点 .在 内部求作点 ,使点 到 两边的距离相等,且到点 , 的距离相等.
四、解答题(本题满分68分,共8道小题)
18.计算:
(1) ;
(2) ;
(3)先化简再求值 ,其中 , .
19.如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
23.问题:将边长为 的正三角形的三条边分别 等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
3.下列事件中是必然事件是()
A. 明天太阳从西边升起
B. 篮球队员在罚球线投篮一次,未投中
C. 实心铁球投入水中会沉入水底
D. 抛出一枚硬币,落地后正面向上
【答案】C
【解析】
【分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
A、添加 可利用SAS定理判定 ,故此选项不合题意;
B、添加 可利用AAS定理判定 ,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加 不能判定 ,故此选项符合题意;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学习质量检测卷(期末)
一.选择题
1.下列各式中正确的是()
A.=﹣7 B.=±3 C.(﹣)2=4 D.﹣=3 2.下列式子为最简二次根式的是()
A.B.C.D.
3.若函数y=2x+(﹣3﹣m)是正比例函数,则m的值是()
A.﹣3 B.1 C.﹣7 D.3
4.如图,在▱ABCD中,用直尺和圆规作得AE,若BF=6,AB=5,则AE的长为()
A.4 B.6 C.8 D.10
5.顺次连接四边形各边中点所构成的四边形是正方形,则原四边形可能是()A.平行四边形B.矩形C.菱形D.正方形
6.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3
7.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.
C.D.
8.若一次函数y=2x﹣3的图象平移后经过点(3,1),则下列叙述正确的是()A.沿x轴向右平移3个单位长度
B.沿x轴向右平移1个单位长度
C.沿x轴向左平移3个单位长度
D.沿x轴向左平移1个单位长度
9.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
10.如图,某公司举行周年庆典,准备在门口长25米,高7米的台阶上铺设红地毯,已知台阶的宽为3米,则共需购买()m2的红地毯.
A.21 B.75 C.93 D.96
11.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()
A.B.
C.D.
12.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C最多有()
A.1个B.2个C.3个D.4个
二.填空题
13.已知y=++x+3,求=.
14.一组数据2,4,2,3,4的方差s2=.
15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.
16.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.
18.计算:
(1)×(+3﹣);
(2)(﹣1)2+×(﹣)+.
19.如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.
(1)求证:AD=BF;
(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.
20.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD,求证:CD=2EC.
21.将一副三角尺如图所示叠放在一起∠ABC=30°,若AB=12cm,求阴影部分△ACF的面积.
22.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.
根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是米.
(2)小明在书店停留了分钟.
(3)本次上学途中,小明一共行驶了米.一共用了分钟.
(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.
五.解答题
23.某中学为了解七年级400名学生读书情况,随机调查了七年级50名学生读书的册数.统计数据如下表所示:
册数0 1 2 3 4
人数 3 13 16 17 1
(1)求这50个样本数据的平均救,众数和中位数;
(2)根据样本数据,估计该校七年级400名学生在本次活动中读书多于3册的人数.
24.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B 的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,求直线BC的解析式.
七.解答题
25.正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD于E,连接EO,AE.
(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);
(2)用等式表示线段AE与BP之间的数量关系,并证明.
参考答案一.选择题
1. D.
2. A.
3. A.
4.C.
5. D.
6. D.
7. B.
8. B.
9. D.
10. C.
11. C.
12. D.
二.填空题
13. 3.
14. 0.8.
15. 5.
16..
三.解答题
18.解:(1)×(+3﹣
=×(5)
=12;
(2)(﹣1)2+×(﹣)+
=2﹣2+1+3﹣3+2
=6﹣3.
19.解:(1)∵E是AB边上的中点,
∴AE=BE.
∵AD∥BC,
∴∠ADE=∠F.
在△ADE和△BFE中,∠ADE=∠F,∠DEA=∠FEB,AE=BE,
∴△ADE≌△BFE.
∴AD=BF.
(2)过点D作DM⊥AB于M,则DM同时也是平行四边形ABCD的高.
=•AB•DM=AB•DM=×32=8,
∴S
△AED
=32﹣8=24.
∴S
四边形EBCD
20.证明:取AC的中点F,连接BF,
∵AB=AC,点E,F分别是AB,AC的中点,
∴AE=AF,
∵∠A=∠A,AB=AC,
∴△ABF≌△ACE(SAS),
∴BF=CE,
∵BD=AB,AF=CF,
∴DC=2BF,
∴DC=2CE.
21.解:∵∠ACB=∠AED=90°,
∴CF∥ED,
∴∠AFC=∠D=45°,
∴AC=CF,
在Rt△ABC中,∠ABC=30°,
∴AC=AB=×12=6(cm),
=AC•CF=×6×6=18(cm2),
∴S
△ACF
即阴影部分△ACF的面积为18cm2.
四.解答题
22.解:(1)∵y轴表示路程,起点是家,终点是学校,
∴小明家到学校的路程是1500米.
(2)由图象可知:小明在书店停留了4分钟.
(3)1500+600×2=2700(米)
即:本次上学途中,小明一共行驶了 2700米.一共用了 14分钟.
(4)折回之前的速度=1200÷6=200(米/分)
折回书店时的速度=(1200﹣600)÷2=300(米/分),
从书店到学校的速度=(1500﹣600)÷2=450(米/分)
经过比较可知:小明在从书店到学校的时候速度最快
即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是 450 米/分
五.解答题
23.解:(1)平均数为:=2册;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3册.
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2册;
(2)∵在50名学生中,读书多于3册的学生有1名,有400×=8.
∴根据样本数据,可以估计该校八年级400名学生在本次活动中读书多于3册的约有8名.
六.解答题
24.解:∵A(0,4),B(3,0),
∴OA=4,OB=3,
在Rt△OAB中,AB==5.
∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,
∴OA′=BA′﹣OB=5﹣3=2.
设OC=t,则CA=CA′=4﹣t,
在Rt△OA′C中,∵OC2+OA′2=CA′2,
∴t2+22=(4﹣t)2,解得t=,
∴C点坐标为(0,),
设直线BC的解析式为y=kx+b,
把B(3,0)、C(0,)代入
得,解得,
∴直线BC的解析式为y=﹣x+.
七.解答题
25.解:(1)在正方形ABCD中,BC=DC,∠C=90°,∴∠DBC=∠CDB=45°,
∵∠PBC=α,
∴∠DBP=45°﹣α,
∵PE⊥BD,且O为BP的中点,
∴EO=BO,
∴∠EBO=∠BEO,
∴∠EOP=∠EBO+∠BEO=90°﹣2 α;
(2)连接OC,EC,
在正方形ABCD中,AB=BC,∠ABD=∠CBD,BE=BE,
∴△ABE≌△CBE,
∴AE=CE,
在Rt△BPC中,O为BP的中点,
∴CO=BO =,
∴∠OBC=∠OCB,
∴∠COP=2 α,
由(1)知∠EOP=90°﹣2α,
∴∠EOC=∠COP+∠EOP=90°,
又由(1)知BO=EO,
∴EO=CO.
∴△EOC是等腰直角三角形,
∴EO2+OC2=EC2,
∴EC =OC =,
即BP =,
∴BP =.
11。