生存分析
生存状况的统计分析方法

生存状况的统计分析方法生存分析,又称事件史分析或存活分析,是研究生物学、医学、社会学等领域中特定事件发生对个体影响的统计方法。
它用来处理时间至事件发生的间隔,并预测一组有序事件的可能性。
生存分析适用于各种类型的数据,如不完全和故障事件时间数据。
这种方法可以用来评估特定事件发生的概率、探究个体或群体在某些情况下的生存策略等方面。
1. Kaplan-Meier 曲线Kaplan-Meier 曲线是生存分析中最常见的方法之一。
基本思想是维护受试者组中未经历事件的数量,在经过若干个时间段后,绘制一个生存曲线。
生存曲线是当所有个体未经历事件时,所呈现的生存概率曲线。
使用 Kaplan-Meier 曲线进行统计分析时,需要首先确定观察对象。
然后根据泊松分布,计算发生特定事件的时间间隔,如关键事件的发生时间、重新入院时间或死亡时间等。
在这个过程中,观察到的所有事件都应该用统一的时间标尺来表示。
然后,利用Kaplan-Meier 方法估算生存概率和信赖区间,并进行相关分析。
2. Cox 比例风险模型Cox 比例风险模型是另一种常见的生存分析方法。
Cox 比例风险模型用于研究哪些因素与事件的发生有关,例如:在研究医疗发展的过程中,是否采用了更好的医疗技术、是否使用了更好的药物等。
比例风险集中于影响时间至事件对象出现的概率,模型的一般形式如下:$ Hazard = h(t) = h_0(t) * e^{X_ β} $其中,h(t) 是在时刻 t 处的危险率;h0(t) 是在时刻 t 处的基础危险率;X 代表解释变量向量。
(例如,发病风险、月经周期等)当 Cox 比例风险模型应用于生存数据时,观察对象通常是人群、社区、患者队列等等。
3. 计算生存指数计算生存指数是研究特定问题时应用的一种方法。
计算生存指数可以帮助你理解分析结果,并向其他人阐释研究发现。
生存指数用于表示某一集团受实验干扰的影响效应。
一般,生存指数是指在实验和对照组中,观察到的某个时间段内的患病率的比值。
临床研究中的生存分析与生命表计算

临床研究中的生存分析与生命表计算生存分析和生命表计算是临床研究中常用的统计方法,旨在探究患者的生存状况和预测其生存期。
本文将对生存分析和生命表计算两个方法进行详细介绍,并探讨其在临床研究中的应用。
一、生存分析生存分析是考察个体是否发生某一事件(如死亡、复发、治愈等)的统计方法,适用于无法精确测量时间的患者,如癌症患者的死亡时间。
生存分析常用的统计方法包括生存曲线、生存率、风险比等。
1. 生存曲线生存曲线是反映患者存活时间的统计图形,通常采用Kaplan-Meier 法来估计。
该方法基于观察到的患者生存时间数据,可绘制出生存曲线,展示出不同时间点的生存率。
通过观察曲线的下降情况,可以初步判断治疗效果是否显著。
2. 生存率生存率是指在一定时间段内存活下来的个体占总体的比例,可以通过生存曲线估计得出。
常见的生存率有1年生存率、3年生存率等,可以提供一定时间点上的患者存活情况,对治疗效果进行评估。
3. 风险比风险比是比较两组或多组患者生存时间的指标,用来评估不同治疗方法的效果。
通常采用Cox回归模型来计算,得出的风险比越大,说明在某一组患者中发生事件的风险越高,治疗效果越差。
二、生命表计算生命表计算是用来评估某一特定人群的生存概率和预测其实际寿命的方法。
生命表常用于人口学研究和流行病学研究中,可提供人群的整体生存情况和相应的死亡风险。
1. 准备数据生命表计算需要搜集大量的人口统计学数据,如人口年龄分布、死亡人数等。
根据这些数据,可以绘制出一个人口的年龄-死亡情况表。
2. 表格内容生命表中通常包含每个年龄组的人口数量、死亡数量、生存人数、死亡率、存活比率等。
通过统计和计算,可以得出各个年龄组的生存概率和死亡风险。
3. 应用和意义生命表计算可用于评估人口的整体生存情况和预测特定年龄组的死亡风险。
在临床研究中,生命表计算可以帮助医生预测患者的存活期,从而指导治疗方案的制定。
结语生存分析和生命表计算是临床研究中常用的统计方法,它们对于评估患者的生存情况和预测生存期具有重要意义。
统计学中的生存分析方法

统计学中的生存分析方法统计学是一门研究数据收集、分析和解释的学科,而生存分析是统计学中的一种重要方法。
生存分析是研究个体从某一特定事件(如诊断、治疗、手术等)发生到另一特定事件(如死亡、复发、康复等)的时间间隔的方法。
它可以帮助我们了解和预测事件发生的概率和时间。
一、生存分析的基本概念生存分析的基本概念包括生存时间、生存函数和生存率。
生存时间是指从特定事件发生到另一特定事件发生的时间间隔,可以是天、月、年等。
生存函数是描述个体在给定时间点存活下来的概率,通常用Kaplan-Meier曲线表示。
生存率是指在给定时间点存活下来的比例,可以通过生存函数计算得出。
二、生存分析的方法1. Kaplan-Meier方法Kaplan-Meier方法是最常用的生存分析方法之一。
它基于观测数据估计生存函数,考虑到了个体在不同时间点的观测情况。
Kaplan-Meier曲线可以用来比较不同组别之间的生存情况,例如治疗组和对照组之间的生存率差异。
2. Cox比例风险模型Cox比例风险模型是一种常用的多变量生存分析方法。
它可以同时考虑多个危险因素对生存时间的影响,并估计各个因素的风险比。
Cox模型的优势在于可以控制其他危险因素的影响,从而更准确地评估某个因素对生存时间的影响。
3. Log-rank检验Log-rank检验是用来比较两个或多个组别之间生存曲线差异的统计方法。
它基于Kaplan-Meier曲线,通过计算观测到的死亡事件数与期望死亡事件数的比值来判断组别之间的差异是否显著。
Log-rank检验广泛应用于生物医学研究中,帮助研究人员评估不同治疗方法或风险因素对生存时间的影响。
三、生存分析的应用领域生存分析方法在多个领域有广泛的应用,例如医学、流行病学、经济学等。
在医学领域,生存分析可以用来评估不同治疗方法对患者存活时间的影响,帮助医生制定更合理的治疗方案。
在流行病学研究中,生存分析可以用来评估某种疾病的发病率和死亡率,从而帮助制定预防和控制策略。
生存分析在统计学中的重要性与应用

生存分析在统计学中的重要性与应用生存分析是统计学中的一项重要分析方法,它被广泛应用于医学研究、生物学、经济学等领域。
生存分析旨在研究个体或群体的生存时间,并对其生存几率和生存函数进行估计与预测。
本文将介绍生存分析的基本概念与方法,并探讨其在统计学中的重要性与应用。
一、生存分析的基本概念生存分析的核心目标是对个体或群体的生存时间进行研究和分析。
其基本概念包括以下几个方面:1. 生存时间(Survival Time):指个体或群体从某一起始时间到达终止事件(如死亡、失效等)所经历的时间。
2. 生存状态(Survival Status):用来描述个体在某一时刻之前是否发生了终止事件,通常用1表示发生,用0表示未发生。
3. 生存函数(Survival Function):记为S(t),可用来描述个体在某一时刻之前生存下来的概率。
生存函数一般是一个递减函数,在开始时为1,随着时间的推移逐渐减小。
4. 风险函数(Hazard Function):记为h(t),用来描述在给定时刻t 生存下来的个体在下一时刻会发生终止事件的概率。
风险函数的大小与时间t有关,通常会随着时间的推移逐渐增大。
二、生存分析的方法与技巧生存分析采用的方法包括Kaplan-Meier法、Cox回归模型等。
下面将介绍这些方法的基本原理与应用技巧:1. Kaplan-Meier法(K-M法):该方法用于估计生存函数,相比其他方法更适合用于分析数据中存在截断或缺失的情况。
K-M法将生存时间按照不同的时间点进行分组,并计算每个时间点的生存几率。
2. Cox回归模型:该模型用于研究生存时间与多个危险因素之间的关系。
通过对危险因素的调整,可以得到更准确的生存预测。
Cox回归模型广泛应用于生物医学研究中,如癌症预后、药物疗效评价等领域。
三、生存分析在统计学中的重要性生存分析在统计学中具有重要的意义,主要体现在以下几个方面:1. 生存率研究:生存分析可以用来研究各种事件的生存率,如疾病的治疗效果、产品的使用寿命、经济市场的生存周期等。
生存分析概述及实例分析高教书苑

可以看出,大约在200天时两种治疗方法的生存
传统治疗方法。可以判断试验方法
函数相交,在200天以前传统治疗方法的存活率较高, 而在200天以后试验方法的治疗效果明显优于传统治
的疗效相比传统治疗方法有所提高。
疗方法。
高级教育
29
用K-M方法对数据进行处理,结果如下:
生存函数分布和生命表分析的结果相似。 K-M方法可以记录删失数据,且由于分段较多 整体呈现密集的锯齿,而生命表分析的分布则 较为平缓。
高级教育
25
原始数据如下:
高级教育
26
首先用生命表分析方法对数据进行处理:
1.输入数据
2.选择生命表分析
高级教育
27
3.设置参数
高级教育
28
4.输出结果
中位数生存时间是生存率为
50%时,生存时间的平均水平。
从中位数生存时间来看,传统
治疗方法的中位数为241天,试验
方法的中位数为266天,明显高于
[31,65) :个体1在31小时死亡,故本区 间 S(t)=1×4/5=0.8
[65,150) :个体2在65小时退出实验, 本区间无个体死亡, S(t)=0.8×4/4=0.8.
[150,220) :个体3在150小时死亡,S (t)=0.8×2/3=0.53.
[220,300) :个体4在220小时退出实验, 本区间无个体死亡, S(t)=0.53×2/2=0.53.
病发等等。例如病人的死亡,产品的失效,疾病的发生,职
员被解雇。
寿命:从记录开始到事件发生的时间。
高级教育
3
特点
生存分析的优点在于其能够处理删失数据。 生存分析的统计资料以生存时间为反应变量,此类资料的 生存时间变量大多不服从正态分布,且由于删失值的存在, 不适合用传统的分析方法处理。此时就应选用生存分析的方 法。
生存分析(survivalanalysis)

⽣存分析(survivalanalysis)⼀、⽣存分析(survival analysis)的定义 ⽣存分析:对⼀个或多个⾮负随机变量进⾏统计推断,研究⽣存现象和响应时间数据及其统计规律的⼀门学科。
⽣存分析:既考虑结果⼜考虑⽣存时间的⼀种统计⽅法,并可充分利⽤截尾数据所提供的不完全信息,对⽣存时间的分布特征进⾏描述,对影响⽣存时间的主要因素进⾏分析。
⽣存分析不同于其它多因素分析的主要区别点:⽣存分析考虑了每个观测出现某⼀结局的时间长短。
应⽤场景 什么是⽣存?⽣存的意义很⼴泛,它可以指⼈或动物的存活(相对于死亡),可以是患者的病情正处于缓解状态(相对于再次复发或恶化),还可以是某个系统或产品正常⼯作(相对于失效或故障),甚⾄可是是客户的流失与否等。
在⽣存分析中,研究的主要对象是寿命超过某⼀时间的概率。
还可以描述其他⼀些事情发⽣的概率,例如产品的失效、出狱犯⼈第⼀次犯罪、失业⼈员第⼀次找到⼯作等等。
在某些领域的分析中,常常⽤追踪的⽅式来研究事物的发展规律,⽐如研究某种药物的疗效,⼿术后的存活时间,某件机器的使⽤寿命等。
在医学研究中,常常⽤追踪的⽅式来研究事物发展的规律。
如,了解某药物的疗效,了解⼿术的存活时间,了解某医疗仪器设备使⽤寿命等等。
对⽣存资料的分析称为⽣存分析。
所谓⽣存资料就是描述寿命或者⼀个发⽣时间的数据。
更详细的说⼀个⼈的⽣存时间的长短与许多因素有联系的,研究因素与⽣存时间的联系有⽆及程度⼤⼩,称为⽣存分析。
例如研究病⼈感染了病毒后,多长时间会死亡;⼯作的机器多长时间会发⽣崩溃等。
这⾥“个体的存活”可以推⼴抽象成某些关注的事件。
所以SA就成了研究某⼀事件与它的发⽣时间的联系的⽅法。
这个⽅法⼴泛的⽤在医学、⽣物学等学科上,近年来也越来越多⼈⽤在互联⽹数据挖掘中,例如⽤survival analysis去预测信息在社交⽹络的传播程度,或者去预测⽤户流失的概率。
⽣存分析研究的内容 1.描述⽣存过程 研究⽣存时间的分布特点,估计⽣存率及平均存活时间,绘制⽣存曲线等,根据⽣存时间的长短,可以估算出各个时点的⽣存率,并根据⽣存率来估计中位⽣存时间,也可以根据⽣存曲线分析其⽣存特点,⼀般使⽤Kaplan-Meier法和寿命表法。
生存分析

0 indicates loss to follow-up
X
o
O
X X X
1994
1995
1996 年份
1997
1998
1999
生存时间图示
X
X indicates event
0 indicates loss to follow-up
X X o X X 0 12 24 36 48 生存时间(月) 60 72
生存分析
Survival Analysis
吴静 公共卫生学院流行病与卫生统计学系
前
言
生存分析(survival analysis)是将事件的 结果和出现这一结果所经历的时间结合起来 分析的一类统计分析方法 生存分析是队列研究和临床试验的重要分析 方法之一 生存分析不同于其它多因素分析的主要区别 点就是生存分析考虑了每个观测出现某一结 局的时间长短
1995.06.04 死亡 1998.08.25 死亡 1994.03.18 失访 2000.12.30 存活 1995.03.17 死亡 1996.08.16 死于其它
1476 2417 876+ 2250+ 265 985+
生存时间的类型
完全数据(complete data) 是指从观察的起 始事件一直达到观察的终点事件,即观察对象 完整的生存时间,是生存分析最重要的资料。 不完全数据(incomplete data)在随访研究中, 由于某种原因未能观察到随访对象发生事先定 义的终点事件(为其他终点事件或生存结局), 无法得知随访对象的确切生存时间,这种现象 称为删失(censoring),也称截尾或终检。包 含删失的数据即为不完全数据,它所提供关于 生存时间的信息是不完全的。
统计学中的生存分析方法

统计学中的生存分析方法统计学是一门研究数据的收集、整理、分析和解释的学科,而生存分析方法则是其中一个重要的分析工具。
生存分析方法主要用于探索和评估个体在特定时间段内存活或事件发生的概率。
在医学、生物学、社会科学等领域中,生存分析方法被广泛应用于研究疾病发展、生物进化、人口统计等诸多问题。
本文将介绍生存分析的基本概念、常用的统计方法和其在不同领域中的应用。
1. 生存分析的基本概念生存分析也被称为时间至事件分析、事件史分析或等待时间分析,它关注的是从某个特定时刻开始,个体直至其面临感兴趣事件发生或结束时的时间间隔。
常见的感兴趣事件包括死亡、疾病复发、失业等。
生存分析方法所研究的主要目标是估计特定时间内个体发生事件的概率,同时还可以探究和比较不同因素对个体生存时间的影响。
2. 常用统计方法生存分析方法包括半参数模型和非参数模型两大类。
2.1 半参数模型半参数模型是指同时利用参数和非参数方法进行估计和推断的模型。
其中最常用的是Cox比例风险模型,它是解释和预测时间发生的概率的一种方法。
Cox比例风险模型不需对生存时间分布做出假设,且可以容纳多个解释变量,对于解释个体生存时间的影响非常有用。
2.2 非参数模型非参数模型则是不对生存时间分布做出任何先验假设的模型。
其中最常用的是Kaplan-Meier曲线和Nelson-Aalen累积风险曲线。
Kaplan-Meier曲线是一种描述生存函数的非参数方法,用于估计给定时间点上的存活概率。
而Nelson-Aalen累积风险曲线则是用于估计事件累积风险的方法,尤其适用于研究罕见事件或数据缺失较多的情况。
3. 生存分析方法的应用生存分析方法在各个领域中都有广泛的应用。
3.1 医学领域在医学研究中,生存分析方法用于评估治疗方法的效果、预测患者的生存时间、研究疾病的进展等。
通过生存分析,医生可以了解不同治疗方法对患者生存时间的影响,从而指导临床决策,并优化治疗方案。
3.2 生物学领域生存分析方法在生物学领域中广泛应用于研究物种的存活和繁殖方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.1 寿命表法(life table method)
例21-1 收集374名某恶性肿瘤患者的随访资料,取时间区 间均为1年,整理结果见下午表,试估计各年生存率。
解析:
该生存资料为大样本,生存时间粗略且含有删失数据。
方法原理:
寿命表法
1. 计算期初有效例数,注意删失数据
期初有效例数=期初病例数-期内删失数/2
表19-2 30例膀胱肿瘤患者生存资料的原始记录表
编 号
1 2 3
年龄 肿瘤 肿瘤大 是否 (岁) 分级 小/cm 复发
62 64 52 I I II ≤3.0 ≤3.0 ≤3.0 0 0 1
手术日期
02/10/1996 03/05/1996 04/09/1996
终止观 察日期
12/30/2000 12/03/1999
期间死亡人数:k 初人口数:n 末人口数:n-k
⑴ 死亡概率(probability of death):表示某单位时
段开始存活的个体,在该时段内死亡的可能性;
如年死亡概率。
某年内死亡人数 死亡概率(q) 某年年初人口数
注意:如果年内有删失,则分母用校正人口数: 校正人口数 = 年初人口数—删失例数/2
19 生存分析
常用的回归分析:
回归分析
1个因变量Y Y是数值 变量
两个因变量 (结局分类变量+时间)
④
生存分析
Cox回归
Y是分类 型变量
① 一元回归
1个自变量X
② 多重回归
2个以上自变量X
③ Logistic 回归
Logistic regression
Simple regression
Multiple regression
若资料中有删失数据,则须分段计算生存概率,再应用
概率乘法定理将分时段的生存概率相乘得到生存率:
ˆ (t ) P(T t ) p p ...... p S ˆ (t ) p S k k 1 2 k k 1 k
区分:生存率——生存概率
生存概率是针对单位时间而言的;
生存率是针对某个较长时段的,是生存概率的累计结果。
中位生存期
生存分析—Kaplan-Meier
【电脑实现】 —SPSS
1.数据录入
【 Group 】 1: <3.0cm;2: 3.0cm 【 dtime 】 生存时间(月) 【 Status 】0:删失数据
1:完全数据(结局事件)
2. SPSS过程
3. 结果及结果输出:
group <3.0cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ti me 14.00 0 19.00 0 26.00 0 28.00 0 29.00 0 32.00 0 36.00 0 40.00 0 42.00 0 44.00 0 45.00 0 53.00 0 54.00 0 59.00 0 6.000 7.000 9.000 10.00 0 11.00 0 12.00 0 13.00 0 20.00 0 23.00 0 25.00 0 27.00 0 30.00 0 34.00 0 37.00 0 43.00 0 50.00 0 St atus 完全 完全 完全 完全 完全 完全 完全 完全 完全 删失 完全 删失 完全 删失 完全 完全 完全 完全 完全 完全 完全 完全 完全 完全 完全 完全 完全 完全 完全 完全
随访研究:
生存时间
终点事件:死于膀胱肿瘤
死亡 失访
死于冠心病
删 失
死亡
到截止时间事件尚未发生
死亡 死亡
研究截止时点 2000/12/30
时间
2. 生存数据类型:
完全数据:在规定的观察期内,对某些观察对象观察 到了终点事件发生,从起点到终点事件所经历的时间, 称为生存时间的完全数据(complete data)。用符号 “ t ”表示。
错误1:只考虑确切数据,丢弃截尾数据(损失信息); 错误2:将截尾数据当作确切数据处理(低估了生存时间的 平均水平)。
在处理正偏态分布数据时两种错误的做法:
错误1:采用平均生存时间而不是采用中位生存时
间来表示生存时间的平均水平。
错误2:采用常规 t 检验或方差分析进行组间比较。
(应采用log-rank检验比较几组生存时间 )
19.1 生存分析的概述
生存分析中的基本概念:
1. 生存时间(survival time) —— 从规定的观察起点到某一特定终点事 件出现的时间长短。
三要素:
观察起点
生存时间
终点事件
随机对照临床试验研究:观察起点通常是随机化
分组的时间。
观察性研究:观察起点可以是发病时间、第一次 确诊时间或接受正规治疗的时间;终点事件可以 是某种疾病发生、某种处理的反应、疾病的复发 或死亡等。
线性回归
曲线回归
生存分析(survival analysis) —— 将终点事件和出现终点时间所经历的时间结
合起来分析的一类统计分析。
主要特点:考虑到了每个研究对象出现某一结局
所经历的时间长短。
例:某医院泌尿外科医师对可能影响膀胱肿瘤术生生 存的因素进行了调查,选择1996-2000年间手术治疗的 膀胱肿瘤患者30例,随访截止日期2000年12月30日:
2. 计算死亡概率、生存概率
死亡概率=期内死亡数/期初有效例数 生存概率=1-死亡概率
3. 计算生存率。 4. 作生存曲线。
①
②
③
④
寿命表法
寿命表法曲线为折线。 该法只估计时段右端点的生存率,省略了时段内的生存率估计。
中位生存期
恶性肿瘤患者确诊后5 年内生存率下降较快,5 年后下 降较平缓,说明确诊5年内该恶性肿瘤患者的死亡威胁较大。
2. 3年生存率
S(3)=P(T≥3)=(50–30)/50= 0.4 = p1 × p2 × p3
故生存率又称为累积生存概率(cumulative probability of survival ),它是随着时间的变化而变化 着的,是关于时间的函数,称为生存函数(survival function)。
结局
存活 失访
生存时 间/月
59 54 44
08/12/2000 死于膀胱瘤
4
5
60
59
I
II
≤3.0
>3.0
0
0
06/06/1996
07/20/1996
10/27/2000 死于冠心病
06/21/1998 死于膀胱瘤Biblioteka 53236
…
59
I
>3.0
1
08/19/1996
09/10/1999 死于膀胱瘤
37
观察性研究:
观察起点
⑴ 疾病确诊
生存时间
终点事件
死亡 痊愈
死亡 复发 痊愈
⑵ 治疗开始 ⑶ 症状缓解
⑷ 接触毒物 ⑸ 接触危险因素
疾病恶化
出现毒性反映 发病
随机对象的临床试验研究:
试验组 合格的 研究对象 对照组 伴随因素 干扰因素
出现结果
尚未出现结果 失访、脱落
随访研究(follow-up study)示意图
生存资料特点:
生存时间分布不正态—非负且右偏; 可能含有删失数据(censor)。
同时考虑结局和生存时间两个因变量;
生存分析特点:
可处理生存时间分布不正态的问题; 可处理删失数据。
生 存 分 析
19.1 概 述 。
19.2 生存率的估计
。
19.3 生存曲线的比较 。 19.4 Cox比例风险回归模型
失访; 死于其它原因; 由于严重药物反应而终止观察或改变治疗措施。
生存分析的特点:
同时考虑生存结局和生存时间
生存资料
可能含有删失数据(censor); 生存时间分布不正态—非负且右偏。
特点:
生存分析
可处理删失数据; 可处理生存时间分布不正态的问题。
处理删失/截尾数据时两种错误的做法:
期间死亡人数:k 初人口数:n 末人口数:n-k
⑵ 生存概率(probability of survival) :单位时段开始 时存活的个体,到该时段结束时仍然存活的可能性。
某年活满一年人数 生存概率(p) 1 q 某年年初人口数
注意:若年内有删失,分母用校正人口数。
⑶ 生存率(survival rate) :0 时刻存活的个体经历 tk 时个单位时间段后仍存活的可能性。
是反映离散程度大小的指标。
⑸ 风险函数(hazard function) : t 时刻存活的个体在t 时刻的瞬时死亡率。
h(t ) lim
t 0
Pt T t t T t t
h(t)近似地等于t 时刻存活的个体在此后一个单位时
段内的死亡概率。
生存分析的基本步骤: 估计生存率(生存函数) 估计生存曲线 生存时间分布的组间比较
生存分析—寿命表法
【电脑实现】 —SPSS
1.数据录入:频数形式
【Time 】 生存时间(年) 【 Status 】0:删失数据 1:完全数据(死亡) 【 Freq 】频数
2. 加权
3. SPSS过程
4. 结果及结果输出:
期初 有效 例数 期内 死亡 数 生存 率标 准误 风 险 率 风险 率标 准误
Logistic分析的缺陷:
只考虑终点事件的出现与否。
但在研究中,还需要考察对象到达终点时所经历 时间的长短,也就是说研究者对医学事件发生、发展 所经历的时间感兴趣。 如恶性肿瘤、慢性病等各个观察对象随访各时间 点的发生情况,以评价临床疗效和控制的好坏。