高中数学必修二第六章第2节《平面向量的运算》解答题 (19)(含答案解析)
高中数学必修二第六章平面向量及其应用知识点梳理(带答案)

高中数学必修二第六章平面向量及其应用知识点梳理单选题1、如图,四边形ABCD 是平行四边形,则12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =( )A .AB ⃑⃑⃑⃑⃑ B .CD ⃑⃑⃑⃑⃑C .CB ⃑⃑⃑⃑⃑D .AD ⃑⃑⃑⃑⃑ 答案:D分析:由平面向量的加减法法则进行计算. 由题意得AC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ ,BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB⃑⃑⃑⃑⃑ , 所以12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ )=AD ⃑⃑⃑⃑⃑ . 故选:D.2、若|AB ⃑⃑⃑⃑⃑ |=5,|AC ⃑⃑⃑⃑⃑ |=8,则|BC ⃑⃑⃑⃑⃑ |的取值范围是( ) A .[3,8]B .(3,8) C .[3,13]D .(3,13) 答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑ |的取值范围. 因为|BC ⃑⃑⃑⃑⃑ |=|AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ |,所以,||AC ⃑⃑⃑⃑⃑ |−|AB ⃑⃑⃑⃑⃑ ||≤|BC ⃑⃑⃑⃑⃑ |≤|AC ⃑⃑⃑⃑⃑ |+|AB ⃑⃑⃑⃑⃑ |,即3≤|BC ⃑⃑⃑⃑⃑ |≤13. 故选:C.3、已知在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2=a (a +c ),则asinAbcosA−acosB 的取值范围是( ) A .(0,√22)B .(0,√32)C .(12,√22)D .(12,√32) 答案:C分析:由b 2=a(a +c)利用余弦定理,可得c −a =2acosB ,正弦定理边化角,在消去C ,可得sin(B −A)=sinA ,利用三角形ABC 是锐角三角形,结合三角函数的有界限,可得asinAbcosA−acosB 的取值范围. 由b 2=a(a +c)及余弦定理,可得c −a =2acosB正弦定理边化角,得sinC −sinA =2sinAcosB∵A +B +C =π∴sin(B +A)−sinA =2sinAcosB∴sin(B −A)=sinA∵ABC 是锐角三角形, ∴B −A =A ,即B =2A . ∵0<B <π2,π2<A +B <π, 那么:π6<A <π4则asinAbcosA−acosB =sin 2Asin(B−A)=sinA ∈(12,√22) 故选:C小提示:方法点睛:解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化变;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.4、在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP ⃑⃑⃑⃑⃑ =23AB ⃑⃑⃑⃑⃑ +λAC ⃑⃑⃑⃑⃑ ,则|AP ⃑⃑⃑⃑⃑ |的最大值为( ) A .2√73B .83C .2√193D .2√133答案:D分析:以A 为原点,以AB 所在的直线为x 轴,建立坐标系,设点P 为(x,y),根据向量的坐标运算可得y =√3(x −2),当直线y =√3(x −2)与直线BC 相交时|AP⃑⃑⃑⃑⃑ |最大,问题得以解决 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A(0,0),B(3,0),C(1,√3),设点P 为(x,y),0⩽x ⩽3,0⩽y ⩽√3, ∵ AP ⃑⃑⃑⃑⃑ =23AB ⃑⃑⃑⃑⃑ +λAC ⃑⃑⃑⃑⃑ , ∴(x ,y)=23(3,0)+λ(1,√3)=(2+λ,√3λ), ∴ {x =2+λy =√3λ , ∴y =√3(x −2),① 直线BC 的方程为y =−√32(x −3),②,联立①②,解得{x =73y =√33 , 此时|AP ⃑⃑⃑⃑⃑ |最大, ∴|AP|=√499+13=2√133, 故选:D .小提示:本题考查了向量在几何中的应用,考查了向量的坐标运算,解题的关键是建立直角坐标系将几何运算转化为坐标运算,同时考查了学生的数形结合的能力,属于中档题5、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a +b )2−c 2=4,C =120°,则△ABC 的面积为( )A .√33B .2√33C .√3D .2√3答案:C解析:利用余弦定理可求ab 的值,从而可求三角形的面积. 因为C =120°,故c 2=a 2+b 2−2abcos120°=a 2+b 2+ab , 而(a +b )2−c 2=4,故c 2=a 2+b 2+2ab −4=a 2+b 2+ab , 故ab =4,故三角形的面积为12×ab ×sin120°=√34×4=√3,故选:C.6、在△ABC 中,若AB ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ 2=0,则△ABC 的形状一定是( ) A .等边三角形B .直角三角形 C .等腰三角形D .等腰直角三角形 答案:B分析:先利用数量积运算化简得到accosB =c 2,再利用余弦定理化简得解. 因为AB ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ 2=0,所以accos(π−B)+c 2=0, 所以accosB =c 2,所以ac ×a 2+c 2−b 22ac =c 2,所以b 2+c 2=a 2,所以三角形是直角三角形. 故选:B7、2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ′,B ′,C ′满足∠A′C′B′=45°,∠A′B ′C ′=60°.由C 点测得B 点的仰角为15°,BB ′与CC ′的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A ′B ′C ′的高度差AA ′−CC ′约为(√3≈1.732)( )A.346B.373C.446D.473答案:B分析:通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得A′B′,进而得到答案.过C作CH⊥BB′,过B作BD⊥AA′,故AA′−CC′=AA′−(BB′−BH)=AA′−BB′+100=AD+100,由题,易知△ADB为等腰直角三角形,所以AD=DB.所以AA′−CC′=DB+100=A′B′+100.因为∠BCH=15°,所以CH=C′B′=100tan15°在△A′B′C′中,由正弦定理得:A′B′sin45°=C′B′sin75°=100tan15°cos15°=100sin15°,而sin15°=sin(45°−30°)=sin45°cos30°−cos45°sin30°=√6−√24,所以A′B′=100×4×√2 2√6−√2=100(√3+1)≈273,所以AA′−CC′=A′B′+100≈373. 故选:B .小提示:本题关键点在于如何正确将AA′−CC′的长度通过作辅助线的方式转化为A′B′+100.8、已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB ⃑⃑⃑⃑⃑ ⋅PC ⃑⃑⃑⃑⃑ 的最大值为( )A .16+16√55B .16+8√55C .165D .565答案:D分析:建立如图所示的坐标系,根据PB ⃑⃑⃑⃑⃑ ·PC ⃑⃑⃑⃑⃑ =|PD ⃑⃑⃑⃑⃑ |2−5可求其最大值. 以A 为原点建系,B (0,2),C (4,0),BC:x4+y2=1,即x +2y −4=0,故圆的半径为r =√5∴圆A:x 2+y 2=165,设BC 中点为D (2,1),PB ⃑⃑⃑⃑⃑ ·PC⃑⃑⃑⃑⃑ =PD ⃑⃑⃑⃑⃑ 2−14BC ⃑⃑⃑⃑⃑ 2=|PD ⃑⃑⃑⃑⃑ |2−14×20=|PD ⃑⃑⃑⃑⃑ |2−5, |PD |max =|AD |+r =√5+√5=√5,∴(PB ⃑⃑⃑⃑⃑ ·PC ⃑⃑⃑⃑⃑ )max =815−5=565,故选:D. 多选题9、下列说法正确的有( )A .若a //b ⃑ ,b ⃑ //c ,则a //cB .若a =b ⃑ ,b ⃑ =c ,则a =cC .若a //b ⃑ ,则a 与b ⃑ 的方向相同或相反D .若AB ⃑⃑⃑⃑⃑ 、BC ⃑⃑⃑⃑⃑ 共线,则A 、B 、C 三点共线 答案:BD分析:取b ⃑ =0⃑ 可判断AC 选项的正误;利用向量相等的定义可判断B 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,若b ⃑ =0⃑ ,a 、c 均为非零向量,则a //b ⃑ ,b ⃑ //c 成立,但a //c 不一定成立,A 错; 对于B 选项,若a =b ⃑ ,b ⃑ =c ,则a =c ,B 对; 对于C 选项,若b ⃑ =0⃑ ,a ≠0⃑ ,则b ⃑ 的方向任意,C 错; 对于D 选项,若AB ⃑⃑⃑⃑⃑ 、BC ⃑⃑⃑⃑⃑ 共线且AB 、BC 共点B ,则A 、B 、C 三点共线,D 对. 故选:BD.10、(多选)已知向量a ⃗,b ⃑⃗,在下列命题中正确的是( ) A .若|a ⃗|>|b ⃑⃗|,则a ⃗>b ⃑⃗B .若|a ⃗|=|b ⃑⃗|,则a ⃗=b ⃑⃗ C .若a ⃗=b ⃑⃗,则a ⃗//b ⃑⃗D .若|a ⃗|=0,则a ⃗=0 答案:CD分析:根据向量相等和模值相等的区别分析四个选项便可得出答案. 解:向量的模值可以比较大小,但是向量不能比较大小,故A 错; 向量的模值相等,只能证明大小相等并不能说明方向也相同,故B 错; 两个向量相等,这两个向量平行,所以C 正确;模值为零的向量为零向量,故D 正确 故选:CD11、如图所示,四边形ABCD 为梯形,其中AB ∥CD ,AB =2CD ,M ,N 分别为AB ,CD 的中点,则下列结论正确的是( )A .AC ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +12AB⃑⃑⃑⃑⃑ B .MC ⃑⃑⃑⃑⃑⃑ =12AC ⃑⃑⃑⃑⃑ +12BC ⃑⃑⃑⃑⃑ C .MN ⃑⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +14AB ⃑⃑⃑⃑⃑ D .BC ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −12AB ⃑⃑⃑⃑⃑ 答案:ABD解析:根据向量运算法则依次计算每个选项得到答案.AC ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +12AB⃑⃑⃑⃑⃑ ,A 正确; MC ⃑⃑⃑⃑⃑⃑ =MA ⃑⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ =12BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ =12(BC ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ )+AC ⃑⃑⃑⃑⃑ =12AC ⃑⃑⃑⃑⃑ +12BC ⃑⃑⃑⃑⃑ ,B 正确; MN ⃑⃑⃑⃑⃑⃑⃑ =MA ⃑⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +DN ⃑⃑⃑⃑⃑⃑ =−12AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +14AB ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −14AB⃑⃑⃑⃑⃑ ,C 错误; BC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ =−AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −12AB⃑⃑⃑⃑⃑ ,D 正确. 故选:ABD .小提示:本题考查了向量的运算,意在考查学生的计算能力. 填空题12、已知|OA⃑⃑⃑⃑⃑⃗|=|OB ⃑⃑⃑⃑⃑⃗|=1,若存在m,n ∈R ,使得mAB ⃑⃑⃑⃑⃑⃗+OA ⃑⃑⃑⃑⃑⃗与nAB ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗夹角为60∘,且|(mAB ⃑⃑⃑⃑⃑⃗+OA ⃑⃑⃑⃑⃑⃗)−(nAB ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗)|=12,则|AB ⃑⃑⃑⃑⃑⃗|的最小值为___________. 答案:√132分析:设a ⃗=OA ′⃑⃑⃑⃑⃑⃑⃑⃗=mAB ⃑⃑⃑⃑⃑⃗+OA ⃑⃑⃑⃑⃑⃗,b ⃑⃗=OB ′⃑⃑⃑⃑⃑⃑⃑⃗=nAB ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗可得A,A ′,B,B ′共线,又|a ⃗−b⃑⃗|=|B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑⃗|=12,当|B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑⃗|=12为最小时|AB ⃑⃑⃑⃑⃑⃗|最小,而此时A ′、B ′关于y 轴对称,结合已知即可求|AB ⃑⃑⃑⃑⃑⃗|的最小值. 由题意,AB⃑⃑⃑⃑⃑⃗=OB ⃑⃑⃑⃑⃑⃗−OA ⃑⃑⃑⃑⃑⃗,∴令a ⃗=OA ′⃑⃑⃑⃑⃑⃑⃑⃗=mAB ⃑⃑⃑⃑⃑⃗+OA ⃑⃑⃑⃑⃑⃗=(1−m)OA⃑⃑⃑⃑⃑⃗+mOB ⃑⃑⃑⃑⃑⃗,b ⃑⃗=OB ′⃑⃑⃑⃑⃑⃑⃑⃗=nAB ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗=(1+n)OB ⃑⃑⃑⃑⃑⃗−nOA ⃑⃑⃑⃑⃑⃗,故有A,A ′,B,B ′共线,∵|a →−b →|=|B ′A ′→|=12,故当且仅当|B′A ′⃑⃑⃑⃑⃑⃑⃑⃑⃗|=12为最小时,|AB ⃑⃑⃑⃑⃑⃗|最小, ∴有A ′、B ′关于y 轴对称时,|AB ⃑⃑⃑⃑⃑⃗|最小,此时O 到AB 的距离为√3⋅|B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑⃑⃗|2=√34, ∴|AB ⃑⃑⃑⃑⃑⃗|2=√1−316=√134,即|AB⃑⃑⃑⃑⃑⃗|=√132.所以答案是:√132. 小提示:关键点点睛:应用向量的线性关系及共线性质,可知a ⃗=OA ′⃑⃑⃑⃑⃑⃑⃑⃗=mAB ⃑⃑⃑⃑⃑⃗+OA ⃑⃑⃑⃑⃑⃗,b ⃑⃗=OB ′⃑⃑⃑⃑⃑⃑⃑⃗=nAB ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗、OA ⃑⃑⃑⃑⃑⃗、OB ⃑⃑⃑⃑⃑⃗的终点共线,且|a ⃗−b⃑⃗|=|B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑⃗|=12可分析得A ′、B ′关于y 轴对称时,|AB ⃑⃑⃑⃑⃑⃗|最小,进而求最小值即可. 13、设向量m ⃑⃑ =2a −3b ⃑ ,n ⃑ =4a −2b ⃑ ,p =3a +2b ⃑ ,若用m ⃑⃑ ,n ⃑ 表示p ,则p =________. 答案:−74m ⃑⃑ +138n ⃑分析:根据平面向量基本定理进行求解即可.设p⃗=xm⃑⃑⃗+yn⃑⃗,则有p⃗=3a⃗+2b⃑⃗=x(2a⃗−3b⃑⃗)+y(4a⃗−2b⃑⃗)=(2x+4y)a⃗+(−3x−2y)b⃑⃗,得{2x+4y=3−3x−2y=2⇒{x=−74,y=138.,所以p⃗=−74m⃑⃑⃗+138n⃑⃗,所以答案是:−74m⃑⃑⃗+138n⃑⃗14、海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD=45m,∠ADB=135°,∠BDC=∠DCA=15°,∠ACB=120°,则AB两点的距离为______m.答案:45√5分析:先将实际问题转化为解三角形的问题,再利用正、余弦定理求解。
高中数学必修二 6 平面向量的基本定理及坐标表示(精练)(含答案)

6.3 平面向量的基本定理及坐标表示(精练)【题组一 向量基底的选择】1.(2021·全国·高一课时练习)下列说法错误的是( )A .一条直线上的所有向量均可以用与其共线的某个非零向量表示B .平面内的所有向量均可以用此平面内的任意两个向量表示C .平面上向量的基底不唯一D .平面内的任意向量在给定基底下的分解式唯一【答案】B【解析】由共线向量的性质可知选项A 正确;根据平面向量基本定理可知:平面内的所有向量均可以用此平面内的任意两个不共线的向量表示,所以选项B 不正确;根据平面向量基本定理可知中:选项C 、D 都正确,故选:B2.(2021·浙江·宁波咸祥中学高一期中)(多选)下列两个向量,不能作为基底向量的是( )A .12(0,0),(1,2)e e ==B .12(2,1),(1,2)e e =-=C .12(1,2),(1,2)e e =--=D .12(1,1),(1,2)e e ==【答案】AC【解析】A 选项,零向量和任意向量平行,所以12,e e 不能作为基底.B 选项,12,e e 不平行,可以作为基底.C 选项,12e e =-,所以12,e e 平行,不能作为基底.D 选项,12,e e 不平行,可以作为基底.故选:AC3.(2021·福建省德化第一中学高一月考)(多选)下列各组向量中,可以作为基底的是( )A .12(0,0),(1,2)e e ==-B .12(1,2),(5,7)e e =-=C .12(3,5),(6,10)e e ==D .1213(2,3),,24e e ⎛⎫==- ⎪⎝⎭ 【答案】BD【解析】A .由于10e =,因为零向量与任意向量共线,因此12,e e 共线,不能作基底,B .因为1725-⨯≠⨯,所以两向量不共线,可以作基底,C .因为212e e =,所以两向量共线,不能作基底,D .因为312342⎛⎫⨯≠⨯- ⎪⎝⎭,所以两向量不共线,可以作基底, 故选:BD.4.(2021·湖北孝感·高一期中)(多选)在下列各组向量中,不能作为基底的是( )A .()1e 0,0→=,()2e 1,2→=-B .()1e 1,2→=-,()2e 5,7→=C .()1e 3,5→=,()2e 6,10→=D .()1e 2,3→=-,()2e 3,2→= 【答案】AC【解析】对A ,1e →∥2e →,不能作为基底;对B ,17250-⨯-⨯≠,1e →与2e →不平行,可以作为基底;对C ,21e 2e →→=,1e →∥2e →,不能作为基底;对D ,22+330⨯⨯≠,1e →与2e →不平行,可以作为基底.故选:AC.5.(2021·全国·高一课时练习)已知1e 与2e 不共线,12122,a e e b e e λ=+=+,且a 与b 是一组基,则实数λ的取值范围是___________. 【答案】11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ 【解析】因为1e 与2e 不共线,12122,a e e b e e λ=+=+,若a 与b 共线,则a b μ=,即()12122a e e e e μλ=+=+, 所以12λμμ=⎧⎨=⎩,解得122λμ⎧=⎪⎨⎪=⎩, 因为a 与b 是一组基底,所以若a 与b 不共线,所以实数λ的取值范围是11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故答案为:11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【题组二 向量的基本定理】1.(2021·广东·汕头市潮南区陈店实验学校高一月考)已知△ABC 的边BC 上有一点D 满足3BD DC =,则AD 可表示为( )A .1344AD AB AC =+ B .3144AD AB AC =+ C .2133AD AB AC =+ D .1233AD AB AC =+ 【答案】A【解析】由3BD DC =,可得3()AD AB AC AD -=-,整理可得43AD AB AC =+, 所以1344AD AB AC =+, 故选:A2.(2021·四川·成都外国语学校高一月考(文))我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =( )A .1292525a b +B .16122525a b + C .4355a b + D .3455a b + 【答案】B【解析】因为此图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =, 所以34BF BC CF BC EA =+=+3()4BC EB BA =++ 33()44BC BF BA =+-+ 93164BC BF BA =-+, 解得16122525BF BC BA =+,即16122525BF a b =+, 故选:B3.(2021·陕西·西安电子科技大学附中高一月考)平面内有三个向量,,OA OB OC ,其中OAOB ,的夹角为120,,OA OC 的夹角为30,且32,,2OA OB ==23OC =,(R)OC OA OB λμλμ=+∈,则( ) A .42λμ==,B .322λμ==,C .423λμ==, D .3423λμ==, 【答案】C 【解析】如图所示:过点C 作//CD OB ,交直线OA 于点D ,因为OAOB ,的夹角为120,,OA OC 的夹角为30,所以90OCD =∠,在Rt OCD △中,tan 30232DC OC ===,24sin 30OD ==, 由OC OA OB OD DC λμ=+=+, 可得OD OA λ=,DC OB μ= 所以OD OA λ=,DC OB μ=,所以42λ=,322μ=,所以42,3λμ==. 故选:C.4.(2021·全国·高一课时练习)若1(3,0)e =,2(0,1)e =-,12a e e =-,(1,)b x y =-,且a b =,则实数x ,y 的值分别是( )A .1x =,4y =B .2x =,1y =-C .4x =,1y =D .1x =-,2y =【答案】C 【解析】由题意,12(3,1)a e e =-=,又a b =13411x x y y -==⎧⎧∴⎨⎨==⎩⎩故选:C5.(2021·江苏南京·高一期末)在Rt ABC 中,90BAC ∠=︒,1AB =,2AC =,D 是ABC 内一点,且45DAB ∠=︒设(,)AD AB AC R λμλμ=+∈,则( )A .20λμ+=B .20λμ-=C .2λμ=D .2μλ= 【答案】B【解析】如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系则B 点的坐标为(1,0),C 点的坐标为(0,2)∵∠DAB =45°,所以设D 点的坐标为(m , m )(m ≠0)(,)(1,0)(0,2)(,2)AD m m AB AC λμλμλμ==+=+=则λ=m ,且μ=12m , ∴2λμ=,即20λμ-= 故选:B6.(2021·山西临汾·高一期末)在ABC 中,已知AB AC ⊥,2AB =,3AC =,D 是ABC 内一点,且45DAB ∠=,若(),AD AB AC λμλμ=+∈R ,则λμ=( ) A .32B .23C .34D .43 【答案】A 【解析】以A 为原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立平面直角坐标系,则()2,0B 、()0,3C ,由于45DAB ∠=,可设(),D m m ,因为AD AB AC λμ=+,所以()()(),2,00,3m m λμ=+,所以23m λμ==, 因此,32λμ=. 故选:A.7.(2021·安徽宣城·高一期中)如图,在长方形ABCD 中,2AB AD =,点M 在线段BD 上运动,若AM x AB y AC =+,则2x y +=( )A .1B .32C .2D .43【答案】A 【解析】解:由题可得,设22AB AD ==,因为ABCD 是长方形,所以以点A 为坐标原点,AB 方向为x 轴正方向,AD 方向为y 轴正方向建立平面直角坐标系,则()2,0B 、()0,1D ,则()()2,0,2,1AB AC ==,()2,1BD =-,因为AM x AB y AC =+,所以()22,AM x y y =+,所以()()()222,222,,0y B A x y y x y M B AM =+==-+++-,因为点M 在BD 上运动,所以有//BM BD ,所以()12222x y y ⨯+-=-,整理得21x y +=,故选:A.8(2021·上海·高一课时练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3 【解析】根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.9.(2021·黑龙江·大庆中学高一月考)如图,经过OAB 的重心G 的直线与,OA OB 分别交于点P ,Q ,设,OP mOA OQ nOB →→→→==,,m n R ∈,则11n m+的值为________.【答案】3【解析】设,OA a OB b →→→→==,由题意知211()()323OG OA OB a b →→→→→=⨯+=+, 11,33PQ OQ OP n b m a PG OG OP m a b →→→→→→→→→→⎛⎫=-=-=-=-+ ⎪⎝⎭, 由P ,G ,Q 三点共线,得存在实数λ使得PQ PG λ→→=, 即1133n b m a m a b λλ→→→→⎛⎫-=-+ ⎪⎝⎭, 从而1,31,3m m n λλ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩消去λ,得113n m +=. 故答案为:310.(2021·河北大名·高一期中)已知平面内三个向量()7,5a =,()3,4b =-,()1,2c =.(1)求23a b c -+; (2)求满足a mb nc =-的实数m ,n ;(3)若()()//ka c b c -+,求实数k .【答案】(2)943,1010m n =-=-;(3)526k =. 【解析】(1)∵()()()()237,523,431,216,3a b c -+=--+=,∴22316a b c -+=+=(2)由a mb nc =-得()()7,53,42m n m n =---,∴3,42 5.7m m n n ⎧⎨-=--=⎩解得9,1043.10m n ⎧=-⎪⎪⎨⎪=-⎪⎩(3)()71,52ka c k k -=--,()2,6b c +=-.∵()()//ka c b c -+,∴()()6712520k k -+-=,解得526k =. 11.(2021·福建·莆田第七中学高一期中)已知两向量()2,0a =,()3,2b =.(1)当k 为何值时,ka b -与2a b +共线?(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)()()()2,03,223,2ka b k k -=-=--,()()()22,06,48,4a b +=+=.当ka b -与2a b +共线时,()()423280k ---⨯=, 解得12k =-. (2)由已知可得()()()234,09,613,6AB a b =+=+=,()()()2,03,232,2BC a mb m m m m =+=+=+. 因为A ,B ,C 三点共线,所以//AB BC ,所以()266320m m -+=.解得32m =. 12.(2021·安徽宿州·高一期中)已知(1,0)a =-,(2,1)b =--.(1)当k 为何值时,ka b -与2a b +平行.(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)(1,0)(2,1)(2,1)ka b k k -=----=-,2(1,0)2(2,1)(5,2)a b +=-+--=--.因为ka b -与2a b +共线,所以2(2)(5)10k ----⨯=,解得12k =-. (2)因为A ,B ,C 三点共线,所以()AB BC R λλ=∈,即23()a b a mb λ+=+,又因为a 与b 不共线,a 与b 可作为平面内所有向量的一组基底,所以23m λλ=⎧⎨=⎩, 解得32m =.【题组三 线性运算的坐标表示】1.(2021·天津红桥·高一学业考试)若向量(1,2),(1,1)a b ==-,则a b +的坐标为( )A .(2,3)B .(0,3)C .(0,1)D .(3,5)【答案】B【解析】解:因为(1,2),(1,1)a b ==-,所以()()()1,21,10,3a b +=+-=故选:B2.(2021·山东邹城·高一期中)已知向量()1,0a =,()2,4b =,则a b +=( )A B .5 C .7 D .25【答案】B【解析】根据题意,向量()1,0a =,()2,4b =,则()3,4a b +=,故9165a b +=+.故选:B .3.(2021·全国·高一专题练习)已知向量(1,1)a =,()2,2b x x =+,若a ,b 共线,则实数x 的值为( )A .-1B .2C .1或-2D .-1或2【答案】D【解析】因为向量(1,1)a =,()2,2b x x =+,且a ,b 共线,所以22x x =+,解得1x =-或2x =,故选:D4.(2021·全国·高一单元测试)已知(2,1cos )a θ=--,11cos ,4b θ⎛⎫=+- ⎪⎝⎭,且//a b ,则锐角θ等于( )A .45°B .30°C .60°D .30°或60°【答案】A【解析】因为//a b ,所以()()()121cos 1cos 04θθ⎛⎫-⨯---+= ⎪⎝⎭,得211cos 02θ-+=,即21cos 2θ=,因为θ为锐角,所以cos θ=45θ=.故选:A5.(2021·云南省永善县第一中学高一月考)已知点()2,2,1A ,()1,4,3B ,()4,,C x y 三点共线,则x y -=( )A .0B .1C .1-D .2-【答案】B【解析】因为A ,B ,C 三点共线,所以可设AB AC λ=,因为(1,2,2)AB =-,()2,2,1AC x y =--,所以()()122221x y λλλ⎧-=⎪=-⎨⎪=-⎩,解得1223x y λ⎧=-⎪⎪=-⎨⎪=-⎪⎩, 所以1x y -=.故选:B.6.(2021·广东·佛山市超盈实验中学高一月考)(多选)已知()1,3a =,()2,1b =-,下列计算正确的是( )A .()1,4a b +=-B .()3,2a b -=C .()1,2b a -=D .()1,2a b --=【答案】AB【解析】因为()1,3a =,()2,1b =-,所以()1,4a b +=-,故A 正确; ()3,2a b -=,故B 正确;()3,2b a -=--,故C 错误;()1,4a b --=-,故D 错误.故选:AB.7.(2021·湖南·永州市第一中学高一期中)(多选)已知向量()1,2a =-,()1,b m =-,则( )A .若a 与b 垂直,则1m =-B .若//a b ,则2m =C .若1m =,则13a b -=D .若2m =-,则a 与b 的夹角为60︒ 【答案】BC【解析】A :a 与b 垂直,则120m --=,可得12m =-,故错误; B ://a b ,则20m -=,可得2m =,故正确;C :1m =有()1,1b =-,则(2,3)a b -=-,可得13a b -=,故正确;D :2m =-时,有()1,2b =--,所以33cos ,5||||5a b a b a b ⋅<>===⨯,即a 与b 的夹角不为60︒,故错误. 故选:BC8.(2021·全国·高一课时练习)(多选)已知(4,2),(,2)AB AC k ==-,若ABC 为直角三角形,则k 可取的值是( )A .1B .2C .4D .6 【答案】AD【解析】因为()()4,2,,2AB AC k ==-,所以()4,4BC k =--,当A ∠为直角时,0AB AC ⋅=,所以440k -=,所以1k =,当B 为直角时,0AB BC ⋅=,所以4240k -=,所以6k =,当C ∠为直角时,0AC BC ⋅=,所以2480k k -+=,此时无解,故选:AD.9.(2021·河北·正定中学高一月考)(多选)已知向量(2,1)a =,(3,1)b =-,则( )A .()a b a +⊥B .|2|6a b +=C .向量a 在向量b 上的投影向量是62(,)55-D .是向量a 的单位向量 【答案】AD【解析】对于A ,()1,2a b +=-,则()220a b a +⋅=-+=,所以()a b a +⊥,故A 正确;对于B ,()24,3a b +=-,则|2|5a b +=,故B 错误;对于C ,向量a 在向量b 上的投影向量为531cos ,,1022b a b b b a a b b b b ⋅-⎛⎫⋅⋅=⋅==- ⎪⎝⎭, 故C 错误;对于D ,因为向量的模等于1,120-=,所以向量与向量a 共线,故是向量a 的单位向量,故D 正确. 故选:AD. 10.(2021·全国·高一课时练习)已知平面向量a =(2,1),b =(m ,2),且a ∥b ,则3a +2b =_______.【答案】(14,7)【解析】因为向量a =(2,1),b =(m ,2),且//a b ,所以1·m-2×2=0,解得m=4.所以b =(4,2).故3a +2b =(6,3)+(8,4)=(14,7).故答案为:(14,7)11.(2021·全国·高一课时练习)已知向量a =(m ,3),b =(2,﹣1),若向量//a b ,则实数m 为____.【答案】6-【解析】∵//a b ,∴﹣m ﹣6=0,∴6m =-.故答案为:6-.12.(2021·全国·高一课时练习)已知(2,4)A -,(2,3)B -,(3,)C y ,若A ,B ,C 三点共线,则y =___________. 【答案】234- 【解析】解:(2,4)A -,(2,3)B -,(3,)C y ,则()4,7AB =-,()5,3BC y =-,若A ,B ,C 三点共线,则向量AB 与向量BC 共线,则有()4335y --=,解得:234y =-. 故答案为:234-. 13.(2021·全国·高一课时练习)已知向量(2,4)a =-,(1,3)b =-,若2a b +与a kb -+平行,则k =___________. 【答案】-2【解析】因为向量(2,4)a =-,(1,3)b =-,所以()202a b +=-,,()2,43a kb k k -+=+--, 又因为2a b +与a kb -+平行,所以()220k -+=,解得2k =-,故答案为:-2【题组四 数量积的坐标表示】1.(2021·全国·高一单元测试)已知矩形ABCD 中,AB =3,AD =4,E 为AB 上的点,且BE =2EA ,F 为BC 的中点,则AF DE ⋅=( )A .﹣2B .﹣5C .﹣6D .﹣8【答案】B【解析】以点B 为坐标原点,BC 所在直线为x 轴,BA 所在直线为y 轴,距离如图所示的直角坐标系, 则()0,0B ,()0,3A ,()4,3D ,()0,2E ,()2,0F , ()2,3AF =-,()4,1DE =--,则()()()24315AF DE ⋅=⨯-+-⨯-=-.故选:B .2.(2021·吉林·延边二中高一期中)在ABC 中, AB AC AB AC +=-, 4, 2AB AC ==,, E F 为线段BC 的三等分点,则AE AF ⋅=( )A .109 B .4 C .409D .569 【答案】C【解析】ABC 中,|AB AC +|=|AB AC -|,∴2AB +2AB ⋅22AC AC AB +=-2AB ⋅2AC AC +, ∴AB ⋅AC =0,∴AB ⊥AC ,建立如图所示的平面直角坐标系,由E ,F 为BC 边的三等分点,则A (0,0),B (0,4),C (2,0),E (23,83),F (43,43), ∴AE =(23,83),AF =(43,43), ∴AE 2433AF ⋅=⨯+3398440⨯=.故选:C3.(2021·福建省宁化第一中学高一月考)在菱形ABCD 中,120ABC ∠=︒,AC =102BM CB →→→+=,DC DN λ→→=,若29AM AN →→⋅=,则λ=( )A .18B .17C .16D .15【答案】D 【解析】作出图形,建立如图所示的平面直角坐标系,设(,)N x y ,因为120,1,AC ABC BO =∠=∴= 因为102BM CB →→→+=,所以12BM BC →→=,即M 是BC 的中点,所以1(),(0,1),2A M D C -所以1),(,1)2AM DC DN x y λλ→→→====+,由题知0λ≠.故1511),429,.5N AM AN λλλ→→-∴⋅=+=∴= 故选:D4.(2021·广东·东莞市新世纪英才学校高一月考)(多选)已知向量 (2,1)a =,(cos ,sin )(0)b θθθπ=,则下列命题正确的是( )A .若a b ⊥,则tan θ=B .若b 在a 上的投影向量为,则向量a 与b 的夹角为23πC .存在θ,使得a b a b +=+D .a b ⋅【答案】BCD【解析】对A ,若a b ⊥,则2cos sin 0a b θθ⋅+==,则tan θ=A 错误;对B ,若b 在a 上的投影向量为,3a =,且||1b =, ,co 3s 6a b a b a a ∴>⋅=-⋅<,则1cos 2a b 〈〉=-,,2π,3a b ∴〈〉=,故B 正确; 对C ,若2()2a b a b a b =+⋅22++,222(||||)||||2||||a b a b a b +=++,若|||||a b a b =+|+,则||||cos ||||a b a b a b a b ⋅⋅〈〉=,=,即cos ,1a b 〈〉=,故0a,b <>=︒,|||||a b a b =+|+,故C 正确;对D ,2cos sin a b θθ⋅+==)θϕ+,因为0πθ≤≤,π02ϕ<<,则当π2θϕ+=时,a b ⋅故D 正确.故选:BCD.5.(2021·上海·高一课时练习)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB 在CD 方向上的投影为___________.【解析】()()2,1,5,5AB CD ==,所以向量AB 在CD 方向上的投影为2AB CDCD ⋅==.6(2021·上海·高一课时练习)设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是___________.【答案】85x <且 【解析】∵θ为钝角,∴0a b ⋅<且两向量不共线,即850a b x ⋅=-+<,解得85x <, 当//a b 时,1040x +=,解得52x =-, 又因,a b 不共线,所以52x ≠-, 所以x 的取值范围是85x <且52x ≠-.故答案为:85x <且52x ≠-.7.(2021·北京·大峪中学高一期中)如图,在矩形ABCD 中,2AB =,BC E 为BC 的中点,点F 在边CD 上,若1AB AF ⋅=,则AE AF ⋅的值是___________.【答案】2【解析】如图,以A 为坐标原点建立平面直角坐标系,则(0,0)A ,(2,0)B ,(C ,2,2E ⎛ ⎝⎭,(F x ;∴(2,0)AB =,(,AF x =,AE ⎛= ⎝⎭; ∴1212AB AF x x ⋅==⇒=, ∴21112AE AF x ⋅=+=+=.故答案为:2.8.(2021·河北张家口·高一期末)在ABC 中,1AC =,2BC =,60ACB ∠=︒,点P 是线段BC 上一动点,则PA PC ⋅的最小值是______.【答案】116- 【解析】在ABC 中,由余弦定理得AB =ABC 是直角三角形,以点A 为坐标原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,设点P 坐标为(,)a b ,B ,(0,1)C ,(,)PA a b =--,(,1)PC a b =--,直线BC 对应一次函数为1y =,所以1b =,)a b =-,222222(1))]473PA PC a b b a b b b b b b b ⋅=--=-+=--+=-+,[0,1]b ∈,对称轴7[0,1]8b =∈,当78b =时, PA PC ⋅取得最小值116-. 故答案为:116- 9.(2021·山西·平遥县第二中学校高一月考)向量()1,3a =-,()4,2b =-且a b λ+与a 垂直,则λ=___________.【答案】1-【解析】由题意,向量()1,3a =-,()4,2b =-,可得10,10a a b =⋅=,因为a b λ+与a 垂直,可得2()10100a b a a a b λλλ+⋅=+⋅=⨯+=,解得1λ=-.故答案为:1-.10.(2021·上海·高一课时练习)已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 【答案】(1)λ=-12;(2)1(,)2-∞-;(3)(,)122-∪(2,+∞). 【解析】设a 与b 的夹角为θ,则a b ⋅=(1,2)·(1,λ)=1+2λ.(1)因为a 与b 的夹角为直角,所以cos 0θ=,所以0a b ⋅=,所以1+2λ=0,所以λ=-12.(2)因为a 与b 的夹角为钝角,所以cos 0θ<且cos 1θ≠-,所以0a b ⋅<且a 与b 不反向.由0a b ⋅<得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不可能反向.所以λ的取值范围为1(,)2-∞-.(3)因为a 与b 的夹角为锐角,所以cos 0θ>,且cos 1θ≠,所以a b ⋅>0且a 与b 不同向. 由a b ⋅>0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为(,)122-∪(2,+∞). 11.(2021·江西·九江一中高一期中)在ABC 中,底边BC 上的中线2AD =,若动点P 满足()22sin cos BP BA BD R θθθ=⋅+⋅∈.(1)求()PB PC AP +⋅的最大值;(2)若=AB AC =PB PC ⋅的范围.【答案】(1)2;(2)[1,3]-.【解析】∵()22sin cos BP BA BD R θθθ=⋅+⋅∈,22sin cos 1θθ+= ∴A 、P 、D 三点共线又∵[]22sin ,cos 0,1θθ∈,∴P 在线段AD 上.∵D 为BC 中点,设PD x =,则2AP x =-,[]0,2x ∈,∴()PB PC AP +⋅=2PD AP ⋅=()22x x -=224x x -+=()2212x --+, ∴()PB PC AP +⋅的最大值为2(2)如图,以D 为原点,BC 为x 轴,AD 为y 轴,建立坐标系,∵=AB AC =,2AD =,∴()()1,0,1,0B C -,设()0,P y 02y ,则()()1,,1,PB y PC y =--=-∴PB PC ⋅=21y -+,∵02y ≤≤,∴[]1,3PB PC ⋅∈-12.(2021·江苏省丹阳高级中学高一月考)已知()1,1a =--,()0,1b =.在①()()//ta b a tb ++;②()()ta b a tb +⊥+;③ta b a tb +=+这三个条件中任选一个,补充在下面问题中,并解答问题.(1)若________,求实数t 的值;(2)若向量(),c x y =,且()1c ya x b =-+-,求c .【答案】(1)选①:1t =±,选②:t =1t =±;【解析】因为()()1,1,0,1a b =--=,所以()()()1,10,1,1ta b t t t +=--+=--,()()()1,10,11,1a tb t t +=--+=--,选①:(1)因为()()//ta b a tb ++,所以()()11t t t --=--;即21t =,解得1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选②:(1)因为()()ta b a tb +⊥+,所以()()110t t t +--=;即2310t t -+=,解得:t = (2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选③:(1)因为ta b a tb +=+,=即21t =,解得:1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+=13.(2021·河南·高一期末)已知向量()2,1a =.(1)若向量()11b =-,,且ma b -与2a b -垂直,求实数m 的值; (2)若向量()2,c λ=-,且c 与a 的夹角为钝角,求2c a -的取值范围.【答案】(1)57-;(2)(3)5,⎡⎣+∞.【解析】(1)因为()21,1ma b m m -=+-,()24,1a b -=-,结合ma b -与2a b -垂直,得到()()42110m m +--=,解得57m =-,所以实数m 的值为57-. (2)因为c 与a 的夹角为钝角,所以()2240a c λλ⋅=⨯-+=-<,4λ<. 又当1λ=-时,//c a ,所以4λ<且1λ≠-. 因为()26,2c a λ-=--,所以()226c a -=-由于当4λ<且1λ≠-时,[)223636,45()(45,)λ-+∈+∞.所以2c a -的取值范围为(3)5,⎡⎣+∞.【题组五 向量与三角函数的综合运用】1.(2021·全国·高三专题练习)已知向量ππ2sin ,sin 44a x x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭,πsin ,sin 4b x m x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.(1)若0m =,试研究函数()π3π,84f x a b x ⎛⎫⎡⎤=⋅∈ ⎪⎢⎥⎣⎦⎝⎭在区间上的单调性;(2)若tan 2x =,且//a b ,试求m 的值.【答案】(1)π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增,3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减;(2) 2m =.【解析】(1)当0m =时,()()2πsin sin sin cos sin sin cos 4f x x x x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭1cos 2sin 2π122242x x x -⎛⎫=+=-+ ⎪⎝⎭,由π3π,84x ⎡⎤∈⎢⎥⎣⎦,得π5π20,44x ⎡⎤-∈⎢⎥⎣⎦.当ππ20,42x ⎡⎤-∈⎢⎥⎣⎦,即π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增;当ππ5π2,424x ⎡⎤-∈⎢⎥⎣⎦,即3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减.(2)由//a b πππsin sin sin sin 444x x x x ⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由tan 2x =,可得πsin 04x ⎛⎫+≠ ⎪⎝⎭(若πsin 04x ⎛⎫+= ⎪⎝⎭,则ππ4x k =-(k Z ∈),此时tan 1x =-,与条件矛盾).πsin sin 4x x ⎛⎫-= ⎪⎝⎭,即()sin cos sin m x x x -=,两边同除以cos x ,可得()tan 1tan 2m x x -==,∴2m =.2.(2021·江苏·金陵中学高一期中)设向量(3cos ,sin ),(sin ,3cos ),(cos ,3sin )a b c ααββββ===-. (1)若a 与b c -垂直,求tan()αβ+的值; (2)求||b c -的最小值.【答案】(1)tan()1αβ+=;.【解析】(1)因为a 与b c -垂直,所以()0a b c ⋅-=,即0a b a c ⋅-⋅=, 所以()()3cos sin cos sin 3cos cos sin sin 0αββααββα+--=, 所以()()3sin 3cos 0βααβ+-+=,所以tan()1αβ+=; (2)因为()sin cos ,3cos 3sin b c ββββ-=-+ ()()()2222||sin cos 3cos 3sin b c b cββββ-=-=-++1016sin cos 108sin 2βββ=+=+, 所以当222k k Z πβπ=-+∈,,即4k k Z πβπ=-+∈,时2||b c -取最小值2,所以||b c -.3.(2021·江苏铜山·高一期中)已知向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=,函数()f a b θ=⋅, (1)当0m =时,求函数π6f ⎛⎫⎪⎝⎭的值;(2)若不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立.求实数m 的范围.【答案】(1)1+;(2)(,-∞ 【解析】(1)因为向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=, ()()()()()2sin cos 2sin cos sin 22sin cos f a b m m θθθθθθθθ=⋅=+-+=+-+,当0m =时, ()()()2sin cos 2sin cos sin 22sin cos f a b θθθθθθθθ=⋅=++=++,ππππ1sin 2sin cos 2163662f ⎛⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭; (2)不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立, 即()()4sin 22sin cos 230sin cos m m θθθθθ+-++-+>+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立,令πsin cos 4t θθθ⎛⎫=+=+ ⎪⎝⎭,可得21sin 2t θ=+,所以2sin 21t θ=-,因为π02 ,θ⎡⎤∈⎢⎥⎣⎦,所以ππ3π444,θ⎡⎤+∈⎢⎥⎣⎦,()πsin 14,θ⎤+∈⎥⎣⎦,所以π4t θ⎛⎫⎡=+∈ ⎪⎣⎝⎭所以()2412230t m t m t -+-+-+>对于t ⎡∈⎣恒成立, 即()24222t t m t t+++>+对于t ⎡∈⎣恒成立, 因为20t +>,所以24222t t t m t +++<+对于t ⎡∈⎣恒成立, 令()24222t t t g t t +++=+,t ⎡∈⎣,只需()min m g t <, 因为()()2422222222t t t t t t t t t t t ++++++==+≥++当且仅当2t t=即t ()g t取得最小值所以m <所以实数m的范围为(,-∞.4.(2021·江苏宜兴·高一期中)已知向量a =(2cos α,2sin α),b =(6cos β,6sin β),且()a b a ⋅-=2. (1)求向量a 与b 的夹角;(2)若33ta b -=,求实数t 的值. 【答案】(1)3π;(2)32. 【解析】(1)由a =(2cos α,2sin α),b =(6cos β,6sin β),得24cos 2a =,36cos 6b ==,又()2a b a ⋅-=,∴22a b a ⋅-=,则2226a b ⋅=+=, 设向量a 与b 的夹角为θ,则cos θ=61262a b a b⋅==⨯, 又θ∈[0,π],∴3πθ=;(2)由33ta b -=,得2()27ta b -=, 即222227t a ta b b -⋅+=, ∴4t 2﹣12t +36=27, ∴4t 2﹣12t +9=0,解得t =32. 5.(2021·河北安平中学高一期末)在①255a b -=,②8()5+⋅=a b b ,③a b ⊥,三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=, ,若02πα<<,02πβ-<<,且5sin 13β=-,求sin α. 【答案】答案见解析.【解析】因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以||||1a b ==, 选择方案①:因为255a b -=,所以24()5-=a b ,即22425+-⋅=b a b a , 所以35a b ⋅=,因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<.所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案②: 因为8()5+⋅=a b b ,所以285⋅+=a b b ,所以35a b ⋅=, 因为(cos ,sin )a αα=,(cos ,sin )b ββ=, 所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案③:因为(cos ,sin )a αα=,(cos ,sin )b ββ=,且a b ⊥, 所以cos cos sin sin 0αβαβ⋅=+=a b ,即cos()0αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以2παβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以12sin sin cos 213παββ⎛⎫=+== ⎪⎝⎭.6.(2021·重庆复旦中学高一期中)在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A cB b+=. (1)求角A ;(2)若()0,1m =-,()2cos ,2cos 2Cn B =,试求m n +的取值范围.【答案】(1)3π;(2)54⎫⎪⎪⎝⎭. 【解析】(1)tan 2sin cos 2sin 11tan sin cos sin A c A B CB b B A B+=⇒+=, 即sin cos sin cos 2sin sin cos sin B A A B CB A B +=,()sin 2sin sin cos sin A BC B A B +∴=,1cos 2A ∴=.0πA <<,3A π∴=. (2)()2cos ,2cos1cos ,cos 2C m n B B C ⎛⎫+=-= ⎪⎝⎭, 2222221cos cos cos cos 1sin 2326m n B C B B B ππ⎛⎫⎛⎫∴+=+=+-=-- ⎪ ⎪⎝⎭⎝⎭,3A π=,23π∴+=B C , 20,3B π⎛⎫∴∈ ⎪⎝⎭,从而72666B πππ-<-<,∴当sin 216B π⎛⎫-= ⎪⎝⎭,即3B π=时,m n +取得最小值,1sin 262B π⎛⎫-=- ⎪⎝⎭,时,m n +取得最大值54,故2524m n ⎛⎫+∈ ⎪ ⎪⎝⎭.。
高中数学(人教A版)必修第二册《第六章 平面向量及其应用》解答题专项练习(含答案解析)

试卷第1页,共71页高中数学(人教A 版)必修第二册《第六章 平面向量及其应用》解答题专项练习(含答案解析)一、解答题1.设向量()1,2a =-,()1,1b =-,()4,5c =-.(1)求2a b +;(2)若c a b λμ=+,,λμ∈R ,求λμ+的值;(3)若AB a b =+,2BC a b =-,42CD a b =-,求证:A ,C ,D 三点共线.【答案】(1)1(2)2(3)证明见解析【分析】(1)先求()21,0a b +=,进而求2a b +;(2)列出方程组,求出13λμ=-⎧⎨=⎩,进而求出λμ+;(3)求出2AC a b =-,从而得到422CD a b AC =-=,得到结果.(1)()()()21,22,21,0a b +=-+-=,2101a b +=+;(2)()()()1,251,14,μλ--+-=,所以425λμλμ-+=⎧⎨-=-⎩,解得:13λμ=-⎧⎨=⎩,所以2λμ+=; (3) 因为22AC AB BC a b a b a b =+=++-=-,所以422CD a b AC =-=,所以A ,C ,D 三点共线.2.(1)在直角三角形ABC 中,C =90°,AB =5,AC =4,求AB BC ⋅;(2)已知向量(3,1)AB =,(1,)AC a =-,a R ∈.若△ABC 为直角三角形,求a 的值.【答案】(1)9-;(2)3a =或13【分析】(1)建立平面直角坐标系,写出向量的坐标,进行求解;(2)分三种情况进行求解,利用垂直关系下数量积为0列出方程,求出a 的值.【详解】(1)以C 为坐标原点,CB 所在直线为x 轴,CA 所在直线为y 轴建立平面直角坐标系,根据勾股定理得:3BC ==,所以()3,0B ,()0,4A ,所以()()3,43,09AB BC ⋅=-⋅-=-(2)()(1,)(3,1)4,1BC AB AC a a =-=--=--, ①π2A ∠=,此时(3,1)(1,)30AC a a AB ⋅=⋅-=-+=,解得:3a =; ②π2B ∠=,此时()(3,1)4,11210AB B a a C ⋅=⋅--=-+-=,解得:13a =; ③π2C ∠=,此时()2(1,)4,140AC a a BC a a ⋅=-⋅--=+-=,因为∆<0,无解; 综上:3a =或133.在ABC 中,角,,A B C 的对边分别为,,a b c ,若sin sin sin sin a A b B c C a B +=+. (1)求角C ;(2)若ABC 2c =,求ABC 的周长.【答案】(1)3π (2)6【分析】(1)、根据正弦定理和余弦定理求解即可;(2)、利用面积公式求出ab 的值,化简求出a b +的值,从而求出ABC 的周长. (1)sin sin sin sin a A b B c C a B +=+, sin ,sin ,sin ,222a b c A B C R R R===试卷第3页,共71页222a b c ab ∴+-=,2221cos 222a b c ab C ab ab +-∴===, 又0C π<<,3C π∴=. (2)由(1)可知3C π=.1sin 2ABC S ab C ==4ab ∴=, 222a b c ab +-=,2c =,228a b ∴+=,()222216a b a b ab ∴+=++=,4a b ∴+=,6a b c ∴++=. ABC ∴的周长为6.4.在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且cos A 14=,若a =4,b +c =6,且b <c ,求b ,c 的值.【答案】2,4b c ==【分析】利用余弦定理即可求出.【详解】由余弦定理可得2222cos a b c bc A =+-, 即()22215516236422b c bc b c bc bc =+-⨯=+-=-,则8bc =, 因为b c <,则可解得2,4b c ==.5.如图,已知平行四边形ABCD 的三个顶点B 、C 、D 的坐标分别是(-1,3)、(3,4)、(2,2),(1)求向量BC ;(2)求顶点A 的坐标.【答案】(1)()4,1BC =(2)()2,1-【分析】(1)由点B 、C 的坐标即可求解BC 的坐标;(2)设顶点A 的坐标为(),x y ,由四边形ABCD 为平行四边形,有BC AD =,从而即可求解.(1)解:因为点B 、C 的坐标分别是(-1,3)、(3,4),所以()()()3,41,34,1BC =--=;(2)解:设顶点A 的坐标为(),x y ,因为四边形ABCD 为平行四边形,D 的坐标是(2,2),所以BC AD =,即()()4,12,2x y =--,所以2421x y -=⎧⎨-=⎩,解得21x y =-⎧⎨=⎩, 所以顶点A 的坐标为()2,1-.6.已知||1a =,||2b =,a b 与的夹角是60°,计算(1)计算a b ⋅,||a b +;(2)求a b +和a 的夹角的余弦值.【答案】(1)1a b ⋅=,||7a b +=(2 【分析】 (1)利用数量积的定义可求出a b ⋅,先求出2||a b +,即可得出||a b +; (2)先求出()a b a +⋅,根据向量夹角关系即可求出. (1) 由题可得1cos601212a b a b ⋅=⋅⋅︒=⨯⨯=, 222||212147a b a a b b +=+⋅+=+⨯+=,所以||7a b +=;试卷第5页,共71页(2)()2112a b a a a b +⋅=+⋅=+=, 设a b +和a 的夹角为θ,所以()2cos 71a b a a b a θ+⋅==⨯+⋅7.如图,在△ABC 中,内角A ,B ,C 所对的边为a,b ,c ,已知a =6,A =60°,B =75°.(1)求角C ;(2)求边c .【答案】(1)C =45°(2)c =【分析】(1)根据三角形三个内角和等于180°即可求解;(2)结合已知条件,根据正弦定理即可求解.(1)解:在△ABC 中,因为A =60°,B =75°,所以角180180607545C A B =--=--=; (2)解:在△ABC 中,因为a =6,A =60°,又由(1)知C =45°,所以由正弦定理有sin sin a c A C ==c = 8.已知向量3a =,2b =,a 与b 的夹角为3π.(1)求a b +;(2)求()()23a b a b +⋅-.【答案】(1【分析】(1)由cos 33a b a b π⋅=⋅=,结合222?a b a ab b +=++,即可求解;(2)由()()22236a b a b a a b b +⋅-=-⋅-,即可求解. (1) 解:由题意,向量3a =,2b =,a 与b 的夹角为3π, 可得1cos 32332a b a b π⋅=⋅=⨯⨯=,又由2222?32a b a ab b +=++=+⨯ (2)解:因为向量3a =,2b =,且3a b ⋅=,所以()()222236336418a b a b a a b b +⋅-=-⋅-=--⨯=-.9.一艘海轮从A 出发,沿北偏东70︒的方向航行1)n mile 后到达海岛B ,然后从B 出发,沿北偏东10︒的方向航行2n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,应沿什么方向航行? 【答案】(1)AC =(2)沿北偏东25︒的方向航方向航行.【分析】(1)根据示意图,确定好题目中给出的长度和角度;选用余弦定理求解AC 的长度,试卷第7页,共71页(2)利用求出的AC 的长度以及相关条件,选用正弦定理完成CAB ∠的求解,进而得答案.(1)解:由题意知,在ABC 中,1807010120ABC ∠=︒-︒+︒=︒,1=AB ,2BC =,根据余弦定理,得))22222cos 14216AC AB BC AB BC ABC =+-⨯⨯∠=++=,所以AC =.(2) 解:根据正弦定理可得sin sin AC BC ABC CAB=∠∠,即2sin 2s in BC A B BC CA AC∠====∠ 又,(0,180)BC AC CAB <∈∠,所以45CAB ∠=︒.所以应沿北偏东25︒n mile 即可到达C 处. 10.已知海岛A 四周8海里内有暗礁,有一货轮由西向东航行,望见岛A 在北偏东75°,航行见此岛在北偏东30︒,若货轮不改变航向继续前进,有无触礁危险?【答案】无触礁危险,理由见解析.【分析】根据题意,作出示意图,利用正弦定理,求得AD ,与8进行比较,即可判断.【详解】如图所示,在△ABC 中,依题意得BC =,907515ABC ∠=︒︒=︒-,6045BAC ABC ∠=︒∠=︒-. 由正弦定理,得sin15AC ︒=sin 45BC ︒, 所以AC10(海里)故A到航线的距离为sin6010=︒==.AD AC因为8>,所以货轮无触礁危险.11.如图,设点O是正六边形ABCDEF的中心,请完成以下问题.(1)分别写出与OA、OB、OC相等的向量;(2)分别写出与OD、OE、OF共线的向量;(3)分别写出OD与OB,OD与OE的夹角;(4)分别写出OD与AB,OD与FA的夹角.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】(1)根据正六边形的性质以及相等向量的概念可得结果;(2)根据正六边形的性质以及共线向量的概念可得结果;(3)根据正六边形的性质以及向量夹角的概念可得结果.(4)根据正六边形的性质以及向量夹角的概念可得结果.(1)解:由正六边形的性质可知,与OA相等的向量有:DO、试卷第9页,共71页 EF、CB ,与OB 相等的向量有:EO 、FA 、DC ,与OC 相等的向量有:FO 、AB 、ED .(2) 解:与OD 共线的向量有:DO 、AO 、OA 、AD 、DA 、EF、FE 、BC 、CB , 与OB 共线的向量有BO 、EO 、OE 、CD 、DC 、BE 、EB 、FA 、AF , 与OF 共线的向量有:FO 、OC 、CO 、CF 、FC 、ED 、DE 、AB 、BA . (3)解:OD 与OB 的夹角120,OD 与OE 的夹角60. (4)解:OD 与AB 的夹角为60,OD 与FA 的夹角120.12.已知|a |5=,|b |4=,(1)若a 与b 的夹角为120.θ=︒①求a ⋅b ;②求a 在b 上的投影向量.(2)若a //b ,求a ⋅b .【答案】(1)①10-;②58-b (2)答案见解析【分析】(1)根据数量积、投影向量的知识求得正确答案. (2)根据a ,b 的夹角进行分类讨论,由此求得a ⋅b . (1) ①cos12010a b a b ⋅=⋅⋅︒=-.②a 在b 上的投影向量为15cos1205248b b a b⎛⎫⋅︒⋅=⨯-⨯=- ⎪⎝⎭b . (2)a //b , ∴a 与b 的夹角为0θ=︒或180.θ=︒ 当0θ=︒时,cos020a b a b ⋅=⋅⋅︒=. 当180θ=︒时,cos18020a b a b ⋅=⋅⋅︒=-. 13.如图,O 为ABC 内一点,OA =a ,OB =b ,OC =c .求作:(1)b +c -a ;(2)a -b -c .【答案】 (1)答案见解析(2)答案见解析【分析】(1)根据向量加法、减法的几何意义画出图象. (2)根据向量加法、减法的几何意义画出图象. (1)试卷第11页,共71页设D 是BC 的中点,连接OD 并延长,使OD DE =. b +c -a OE OA AE =-=.(2)a -b -c =a -△b +c △OA OE EA =-=.14.已知向量a ,b ,c ,d 分别表示下列位移:“向北10km ”△“向南5km ”△“向西10km ”△“向东5km ”.请说明向量a b +,b b +,a c +,a b b ++,a d d ++的意义. 【答案】答案见解析 【分析】根据a ,b ,c ,d 的意义对a b +,b b +,a c +,a b b ++,a d d ++的意义进行说明. 【详解】向量a b +表示“向北5km”; 向量b b +表示“向南10km”;向量a c +表示“”; 向量2a b b a b ++=+,表示没有位移;向量2a d d a d ++=+,表示“”.15.已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其外接圆半径R 满足2222cos .R ac B a c +=+(1)求B 的大小; (2)若2b =,512C π=,求ABC 的面积. 【答案】 (1)6π(2)2+【分析】(1)由余弦定理和已知条件化简可得R b =,再根据正弦定理,即可求出结果. (2)由三角形内角和可知A C =,进而可得a c =,由余弦定理即可求出2a ,再根据211sin sin 22ABCSac B a B ==,即可求出结果. (1)解:2222cos R ac B a c +=+,22222cos R a c ac B b ∴=+-=, 2sin bR b B ∴==,1sin 2B ∴=, 又B 为锐角,.6B π∴= (2) 解:6B π=,512C π=, 55()61212A ππππ∴=-+=,a c ∴=,又2b =,由余弦定理,得(22222cos 2b a c ac B a =+-=,24(2a ∴=,211sin sin 222ABCSac B a B ∴===16.在)1cos cos 2A A A ⋅-=;②cos cos 2A aC b c=-两个条件中任选一个填序号),补充在下面的问题中,并解答该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,________,4b c +=,求a 的最小值.试卷第13页,共71页【答案】选择①或②a 的最小值为2. 【分析】选择①利用二倍角公式以及辅助角公式化简即可求得角A ,再由余弦定理以及基本等式即可求a 的最小值;选择②由正弦定理化边为角,逆用两角和的正弦公式化简可得cos A 的值进而可得角A ,再由余弦定理以及基本等式即可求a 的最小值. 【详解】选择①:)1cos cos 2A A A ⋅-=可得:2sin 2cos 1A A A -=,1cos 22212AA +-⨯=,2cos22A A -=,所以π2sin 226A ⎛⎫-= ⎪⎝⎭,πsin 216A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ112,π666A ⎛⎫-∈- ⎪⎝⎭,所以ππ262A -=,π3A =,在ABC 中,由余弦定理可得:()()()222222212cos 3342b c b c a b c bc A bc b c b c +⎛⎫=+-≥+-⨯+ ⎪⎝⎭=+-=,当且仅当b=c等号成立即()22144a b c +=≥,所以2a ≥,所以a 的最小值为2, 选择②:cos cos 2A aC b c=-, 由正弦定理化边为角可得:sin cos cos 2sin sin A C B CA=-,所以2sin cos sin cos sin cos B A C A A C -=,即()2sin cos sin cos sin cos sin sin B A A C C A A C B =+=+=, 因为sin 0B ≠,所以2cos 1A =,1cos 2A =, 因为()0,πA ∈,所以π3A =, 在ABC 中,由余弦定理可得:()()()222222212cos 3342b c b c a b c bc A bc b c b c +⎛⎫=+-≥+-⨯+ ⎪⎝⎭=+-=即()22144a b c +=≥,所以2a ≥,所以a 的最小值为2. 17.在△3A π=,a =b =△1a =,b =6A π=;△a =b =3B π=这三个条件中选一个,补充在下面问题中,并加以解答.问题:在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知___________,解三角形.【答案】答案见解析 【分析】选择条件△:利用正弦定理求出B ,即可得出C ,再利用正弦定理即可求出c ;选择条件△:利用正弦定理求出B ,即可求出C 和c ;选择条件△:利用正弦定理求出A ,即可求出C 和c . 【详解】 选择条件△: 因为3A π=,a =b =由正弦定理得sin sin a b A B==所以sin B 4B π=或34B π=(舍去),所以53412C ππππ=--=,因为5sinsin sin cos cos sin 126464644πππππππ+⎛⎫=+=+= ⎪⎝⎭,由正弦定理可得2sin sin c aC A===,则c =. 选择条件△:因为1a =,b =6A π=,由正弦定理得sin sin a b A B=,即112=所以sin B =,解得3B π=或23B π=,符合题意,当3B π=时,632C ππππ=--=,则2c =,当23B π=时,2636C ππππ=--=,则1c a ==; 选择条件△:因为a =b =3B π=,试卷第15页,共71页由正弦定理得sin sin a bA B =,即sin 2A = 则sin 1A =,所以2A π=,所以236C ππππ=--=,c =18.在ABC 中,角,,A B C 所对的边分别为,,a b ccos sin C c B =. (1)求角C ;(2)若2b =,ABC的面积为c . 【答案】 (1)3C π=(2)c =【分析】(1)cos sin sin B C C B =,进而得tan C =在求解即可得答案;(2)由面积公式得8ab =,进而根据题意得2b =,4a =,再根据余弦定理求解即可. (1)cos sin C c B =,cos sin sin B C C B =, 因为()0,,sin 0B B π∈≠,sin C C =,即tan C = 因为()0,C π∈,所以3C π=.(2)解:因为ABC的面积为3C π=,所以1sin 2S ab C ===8ab =, 因为2b =,所以4a =,所以2222201cos 2162a b c c C ab +--===,解得c =所以c =19.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =. (1)若||25b =,且//a b ,求b 的坐标;(2)若10c =,且2a c +与43a c -垂直,求a 与c 的夹角θ. 【答案】(1)()2,4b =或()2,4b =--. (2)π4θ=. 【分析】(1)设(),b x y =,根据两向量平行的坐标关系以及向量的模的计算建立方程组,求解即可;(2)由向量垂直的条件以及向量夹角的计算公式可求得答案. (1)解:设(),b x y =,因为//a b ,所以2y x =.①又25b =,所以2220x y +=.②,由①②联立,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,所以()2,4b =或()2,4b =--. (2)解:由()()243a c a c +⊥-,得()()222438320a c a c a c a c ⋅+-=--⋅=,又||5,||10a c ==,解得5a c ⋅=,所以5cos [0,π]||||5a c a c θθ⋅==∈⨯, 所以a 与c 的夹角π4θ=.20.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin 0a C C b c +--=. (1)求A ;(2)若a =2,ABC b ,c 的值. 【答案】 (1)3A π=(2)2b c == 【分析】试卷第17页,共71页(1)先利用正弦定理将边变成角,然后利用()sin sin B A C =+以及两角和的正弦公式代入计算即可;(2)先利用面积公式求出bc ,再利用余弦定理求出22b c +,然后解方程组即可. (1)由cos sin 0a C C b c +--=及正弦定理得sin cos sin sin sin 0A C A C B C --=.因为()()sin sin sin sin cos cos sin B A C A C A C A C π=--=+=+,sin cos sin sin 0A C A C C --=. 由于sin 0C ≠,cos 10A A --= 所以1sin 62A π⎛⎫-= ⎪⎝⎭.又0A π<<,故3A π=.(2)由题得ABC的面积1sin 2S bc A ==4bc =①.而222a b c =+-2cos bc A ,且2a =,故228b c +=②, 由①②得2b c ==.21.在ABC 中,角A ,B ,C 的对边分别为a ,b ,cab=.(1)求角B ;(2)若c b ==,ABC 的周长l . 【答案】 (1)6B π=(2)3 【分析】 (1)ab=cos B B =,由此可求角B ;(2)由余弦定理可得2222cos b a c ac B =+-,解方程求a c ,,由此可得ABC 的周长l . (1)ab=sin sin cos B A A B =.在ABC 中,sin 0A ≠cos B B =,所以tan B =. 又0B π<<,所以6B π=.(2)由余弦定理2222cos b a c ac B =+-,可得2232cos6a c ac π=+-,即223a c +=,又c =,解得3a c ==.故ABC 的周长33l a b c =++==22.在ABC 中,点P 是AB 上一点,且23CP CA =+13CB ,Q 是BC 的中点,AQ 与CP 的交点为M ,且CM =tCP ,求t 的值.【答案】34【分析】由2133CP CA CB =+,化简为2AP PB =,得到点P 是AB 的一个三等分点(靠近A 点),再根据A ,M ,Q 三点共线,设AM AQ λ=,然后用,AB AC 分别表示向量,CM CP ,再根据CM =tCP 求解. 【详解】 如图所示:因为2133CP CA CB =+,所以32CP CA CB =+, 所以()2CP CA CB CP -=-, 即2AP PB =,所以点P 是AB 的一个三等分点(靠近A 点), 又因为A ,M ,Q 三点共线,且Q 为BC 的中点,试卷第19页,共71页设AM AQ λ=,则CM AM AC AQ AC λ=-=-()2222AB AC AC AB AC λλλ-=+-=+, 13CP AP AC AB AC =-=-, 因为CM =tCP , 所以21223AB AC t AB AC λλ-⎛⎫+=- ⎪⎝⎭,则2322t tλλ⎧=⎪⎪⎨-⎪=-⎪⎩,解得1234t λ⎧=⎪⎪⎨⎪=⎪⎩,所以t 的值是34.23.ABC 中,内角A ,B ,C 所对的边分别为a ,b ,csin cos C c B +=,且23C π=. (1)求A 的大小;(2)若ABC的周长为8+AC 边上中线BD 的长度. 【答案】 (1)6A π=(2)【分析】(1)根据正弦定理进行边角互化,再由角的范围可求得答案;(2)设BC AC x ==,根据三角形的周长可求得4x =,再在BCD △中,运用余弦定理,可求得中线的长. (1)sin cos C c B +,sin sin cos B C C B C +=, 因为()0,,sin 0C C π∈≠,cos B B +=sin 6B π⎛⎫+= ⎪⎝⎭因为23C π=,所以0,3B π⎛⎫∈ ⎪⎝⎭,,662B πππ⎛⎫+∈ ⎪⎝⎭,所以63B ππ+=,即6B π=,所以6A π=(2)解:由(1)得ABC 为等腰三角形,设BC AC x ==,故2222cos AB AC BC AC BC C =+-⋅,代入数据解得:=AB ,因为ABC 的周长为8+28x =+4x =,所以4,BC AC AB ===122DC AC ==, 在BCD △中,23BCD π∠=,所以222cos 2BC CD BD BCD BC CD+-∠=⋅,即2221422242BD ,解得BD =所以AC 边上中线BD 的长度为24.如图,某住宅小区的平面图是圆心角为120°的扇形AOB .//CD BO ,某人从C 沿CD 走到D 用了10min ,从D 沿DA 走到A 用了6min .若此人步行的速度为每分钟50m ,求该扇形的半径OA 的长.(精确到1m )【答案】445m 【分析】设OA r =,连接OC ,在OCD 中利用余弦定理列方程求解即得. 【详解】设扇形半径OA r =m ,连接OC ,如图,依题意,300DA =m ,500CD =m ,在OCD 中,(300)OD r =-m ,60CDO ∠=, 由余弦定理得:2222cos OC OD CD OD CD CDO =+-⋅∠,即试卷第21页,共71页222(300)5002(300)500cos 60r r r =-+--⨯⨯,化简整理得:49000011000r -=,解得:490044511r =≈(m), 所以该扇形的半径OA 的长约为445m.25.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内? 【答案】 (1)1040m (2)35min 37(3)1250625,4314⎡⎤⎢⎥⎣⎦【分析】(1)先求得sin B ,然后由正弦定理求得AB .(2)假设乙出发min t 后,甲、乙两游客距离为d ,利用余弦定理列方程,结合二次函数的性质求得d 的最小值.(3)根据“两位游客在C 处互相等待的时间不超过3min”列不等式,由此求得乙步行的速度的范围. (1) 由题意5sin 13A =,4sin 5C =,在ABC 中,()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理sin sin AB ACC B=,得1040m AB =.所以,索道AB 的长为1040m. (2)假设乙出发min t 后,甲、乙两游客距离为d , 此时甲行走了()1005t +,乙距离A 处130t ,由余弦定理得()()()222121005013021301005013d t t t t =++-⨯⨯+ ()2200377050t t =-+,因为10400130t ≤≤,即08t ≤≤, 则当35min 37t =时,甲、乙两游客之间距离最短. (3)由正弦定理sin sin BC ACA B=,得sin 500m sin AC BC AB ==, 乙从B 出发时,甲已走了()50281550m ++=,还需要走710m 才能到达C , 设乙步行的速度为m min v , 由题意得500710125062533504314v v -≤-≤⇒≤≤, 所以为了使两位游客在C 处互相等待的时间不超过3min , 乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m min )范围之内. 26.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,3B π=,3a =.(1)若4A π=,求b .(2)若______,求c 的值及ABC 的面积.请从①b =sin 2sin C A =,这两个条件中任选一个,将问题(2)补充完整,并作答. 【答案】(1;(2)选14ABCc S ==:, 26ABCc S==:,【分析】(1)根据正弦定理计算即可得出结果;(2)利用余弦定理或正弦定理求出c 的值,再结合三角形的面积公式计算即可. (1)试卷第23页,共71页334B a A ππ===,,,由正弦定理,得sin sin b aB A=,所以sin sin a b B A =⨯== (2)选①:由余弦定理,得2222cos b a c ac B =+-,即21139232c c =+-⨯⨯,整理,得2340c c --=,由c >0,得c =4,所以11sin 3422ABCSac B ==⨯⨯= 选②:因为sin 2sin C A =,由正弦定理,得c =2a , 所以c =6,所以11sin 6322ABCSac B ==⨯⨯=27.已知向量a 与b 的夹角为θ,5a =,4b =,分别求在下列条件下的a b ⋅: (1)120θ;(2)//a b ; (3)a b ⊥. 【答案】 (1)10- (2)20或20- (3)0 【分析】(1)根据=cos a b a b θ⋅⋅,代入数值,即可求出结果;(2)因为//a b ,所以0θ=︒或180︒,再根据=cos a b a b θ⋅⋅即可求出结果; (3)因为a b ⊥,所以90θ=︒,再根据=cos a b a b θ⋅⋅即可求出结果. (1)解:因为5a =,4b =,120θ,所以1=cos 54102a b a b θ⎛⎫⋅⋅=⨯⨯-=- ⎪⎝⎭;(2)解:因为//a b ,所以0θ=︒或180︒, 当0θ=︒时,=cos054120a b a b ⋅⋅︒=⨯⨯=;当180θ=︒时,()=cos18054120a b a b ⋅⋅︒=⨯⨯-=-; 所以a b ⋅的值为20或20-.(3)解:因为a b ⊥,所以90θ=︒, 所以=cos905400a b a b ⋅⋅︒=⨯⨯=.28.已知()3,1a =-,()1,2b =-,求a b ⋅,a ,b ,,a b <>. 【答案】5a b ⋅=,10a =,5b =,,4a b π<>=.【分析】利用平面向量数量积的坐标运算可求得结果. 【详解】由题意可知:()()()()3,11,231125a b ⋅=-⋅-=⨯+-⨯-=, (23a a a =⋅=+=(21b b b =⋅=+=又因为2c 1os 0,5a b a b a b=<>=⨯⋅=0,a b π≤<>≤,所以,4a b π<>=. 29.已知O 为坐标原点,()3,1OA =,()1,2OB =-,OC 与OB 垂直,BC 与OA 平行,求点C 的坐标. 【答案】()14,7. 【分析】设(),C x y ,根据OC 与OB 垂直,BC 与OA 平行,列出方程组,解之即可得出答案. 【详解】解:设(),C x y ,则()(),,1,2OC x y BC OC OB x y ==-=+-, 因为OC 与OB 垂直,BC 与OA 平行,所以()201320x y x y -+=⎧⎨+--=⎩,解得147x y =⎧⎨=⎩,所以点C 的坐标为()14,7.30.已知()110e ,=,()20,1e ,一动点P 从()012P -,开始,沿着与向量12e e +相同的方向做匀速直线运动,速度的大小为12m /s e e +.另一动点Q 从()02,1Q --开始,沿着与向量1232e e +相同的方向做匀速直线运动,速度的大小为1232m /s e e +,设P ,Q 在0s t =时分别在0P ,0Q 处,问当00PQ PQ ⊥时,所需的时间t 为多少?试卷第25页,共71页【答案】2s 【分析】根据题意,结合向量减法,同向的单位向量,以及数量积的坐标公式,即可求解. 【详解】根据题意,易知()120121212e e OP OP t e e t e e e e +-=+⋅=++,()12012121233323232e e OQ OQ t e e t e e e e +-=+⋅=++,两式相减得,()00122PQ P Q t e e -=+,由()001,3PQ =--,()110e ,=,()20,1e =,得()()0012212,3PQ P Q t e e t t =++=-+-+, 因为00PQ PQ ⊥,所以()()00112330PQ PQ t t ⋅=-⨯-+-⨯-+=,解得2s =t . 故当00PQ PQ ⊥时,所需的时间t 为2s .31.两个力1F i j =+,245F i j =-作用于同一质点,使该质点从点()20,15A 移动到点()7,0B (其中i 、j 分别是x 轴正方向、y 轴正方向上的单位向量,力的单位:N ,位移的单位:m ).求:(1)1F ,2F 分别对该质点做的功; (2)1F ,2F 的合力F 对该质点做的功. 【答案】(1)1F 对该质点做的功为28-(N m ⋅),2F 对该质点做的功23(N m ⋅); (2)5-(N m ⋅). 【分析】(1)根据题意,求出位移AB ,结合功的计算公式,即可求解; (2)根据题意,求出合力F ,结合功的计算公式,即可求解. (1)根据题意,()11,1F i j =+=,()2454,5F i j =-=-,()13,15AB =--, 故1F 对该质点做的功11131528W F AB =⋅=--=-(N m ⋅);2F 对该质点做的功()2213415523W F AB =⋅=-⨯-⨯-=(N m ⋅). (2)根据题意,1F ,2F 的合力()125,4F F F =+=-,故1F ,2F 的合力F 对该质点做的功()()5134155W F AB =⋅=⨯--⨯-=-(N m ⋅). 32.如图所示,一个物体受到同一平面内三个力1F ,2F ,3F 的作用,沿北偏东45的方向移动了8m ,其中12N F =,方向为北偏东30 ;24N F =,方向为北偏东60;36N F =,方向为北偏西30,求合力F 所做的功.【答案】 【分析】如图建立平面直角坐标系,求出1F ,2F ,3F 以及位移s 的坐标,进而可得合力123F F F F =++的坐标,再由向量数量积的坐标运算计算W F s =⋅即可求解.【详解】如图建立平面直角坐标系,由题意可得(11,F =,()223,2F =,(3F =-,位移(42,s =,所以(12322,2F F F F =++=+,所以合力F 所做的功为()(2322W F s =⋅=⨯+⨯=,33.在ABC 中,已知4cos 5A =,65a =.试卷第27页,共71页(1)当3B π=时,求b 的值;(2)设02B x x π⎛⎫=<< ⎪⎝⎭,求函数22xy b =+的值域.【答案】 (1(2)(24++ 【分析】(1)利用正弦定理即可求解.(2)利用正弦公式以及辅助角公式可得4sin 3y x π⎛⎫=++ ⎪⎝⎭再由正弦函数的性质即可求解. (1) 4cos 5A =,0A π<<,所以3sin 5A =, 当3B π=时,由正弦定理sin sin a bA B=, 可得65sin sin b A B =,解得b =(2)由正弦定理可得65sin 2sin sin b B xA=⋅=,所以22x y b =+)2sin 1cos x x =++2sin x x =+++4sin 3x π⎛⎫=++ ⎪⎝⎭因为02x π<<,所以3365x πππ<+<, 所以1sin 123x π⎛⎫<+≤ ⎪⎝⎭,所以24sin 43x π⎛⎫+<+++ ⎪⎝⎭所以函数22xy b =+的值域为(24++. 34.在ABC 中,AB a =,BC b =,当0a b ⋅≥时,判断ABC 的形状. 【答案】直角三角形或钝角三角形.【分析】根据向量数量积的定义可得0,2a b π<≤,即有2ABC π∠=或2ABC ππ<∠<,由此可得答案. 【详解】解:因为在ABC 中,AB a =,BC b =, 0a b ⋅≥,所以cos ,0a b a b ⋅⋅≥,即cos ,0a b ≥,又[],0a b π∈,,所以0,2a b π<≤,即02ABC ππ<-∠≤,所以2ABC π∠=或2ABC ππ<∠<,所以ABC 是直角三角形或钝角三角形.35.在等腰三角形ABC 中,2AB AC ==,30ABC ∠=︒,D 为BC 的中点. (1)求BA 在CD 上的投影向量; (2)求CD 在BA 上的投影向量. 【答案】(1)DC (或BD ) (2)34BA -【分析】(1)先求出BA 在CD 上的投影,然后乘以与CD 同向的单位向量即得; (2)先求出CD 在BA 上的投影,然后乘以与BA 同向的单位向量即得. (1)如图,2AB AC ==,30ABC ∠=︒,D 为BC 的中点.则AD BC ⊥,1AD =,AD CD ==所以,150BA CD <>=︒,23BA CD ⋅=︒=-,BA 在CD 上的投影为BA CD CD⋅-==BA 在CD 上的投影向量为CDCD DC CD=-=BD =;试卷第29页,共71页(2)CD 在BA 上的投影为3322BA CD BA⋅-==-, CD 在BA 上的投影向量为3324BA BA BA -⨯=-. 36.如图,已知OA a =,OB b =,OC c =,OD d =,OF f =,试用a ,b ,c ,d ,f 表示以下向量:(1)AC ; (2)AD ; (3)AD AB -; (4)AB CF +; (5)BF BD -. 【答案】 (1)c a →→- (2)d a →→- (3)d b →→- (4)b a f c →→→→-+- (5)f d→→- 【分析】由向量减法法则依次计算即可得出各小问的结果. (1)AC OC OA c a →→→→=-=-.(2)AD OD OA d a →→→→=-=-.(3)AD AB BD OD OB d b →→→→→-==-=-.(4)AB CF OB OA OF OC b a f c →→→→→→→→+=-+-=-+-.(5)BF BD DF OF OD f d →→→→→-==-=-.37.已知a b ⊥,且2=a ,1b =,若有两个不同时为零的实数k ,t ,使得()3a b t +-与ka tb -+垂直,试求k 的最小值.【答案】916- 【分析】由a b ⊥得0a b ⋅=,再由()3a b t +-与ka tb -+垂直,转化得234t tk -=,结合二次函数性质可求k 的最小值. 【详解】因为a b ⊥,所以0a b ⋅=,又()3a b t +-与ka tb -+垂直,所以()()30a b ka tb t ⎡⎤+-⋅=⎣⎦-+,即()()22330ka t t b t k t a b ⎡⎤-+-+--⋅=⎣⎦,又2=a ,1b =,所以()430k t t -+-=,234t tk -=,当32t =时,k 取到最小值916-. 38.在四边形ABCD 中,对角线AC ,BD 交于点O ,且1AB AD ==,0OA OC OB OD +=+=,1cos 2DAB ∠=.求DC BC +与CD BC +. 【答案】3DC BC +=1CD BC += 【分析】首先根据已知条件得到四边形ABCD 为菱形,且3DAB π∠=,根据DC BC AC +=,CD BC BD +=,再求其模长即可.【详解】试卷第31页,共71页因为0OA OC OB OD +=+=,所以OA OC =-,OB OD =-,即四边形ABCD 为平行四边形. 又因为1AB AD ==,则四边形ABCD 为菱形,如图所示:1cos 2DAB ∠=,0DAB π<∠<,所以3DAB π∠=. 23DC BC AD DC AC AO +=+===. 1CD BC CD CB BD +=-==. 39.是否存在a ,b ,使a b a b +==?请画出图形说明.【答案】存在,图形见解析【分析】根据平面向量数量积的运算律及向量夹角的计算公式求出a 与b 的夹角,即可得解; 【详解】 解:因为a b a b +==,所以22a b a +=,即2222a a b b a +⋅+=,即2222a a b b a +⋅+=,即212a b a ⋅=-,设a 与b 的夹角为θ,则1cos 2a b a b θ⋅==-⋅,因为[]0,θπ∈,所以23πθ=,即当a 与b 的夹角为23π且a 与b 的模相等时,满足a bab +==, 图形如下所示:40.如图,已知向量a ,b ,c 不共线,作向量a +b +c .【答案】答案见详解.【分析】利用向量加法的三角形法则即可求解.【详解】由向量加法的三角形法则, a +b +c 如图,41.如图,已知向量a ,b ,c ,求作向量a b c --.【答案】见解析【分析】利用向量减法的三角形法则即可求解.【详解】由向量减法的三角形法则,令,a OA b OB →→→==,则a b OA OB BA →→→→→-=-=,令c BC →→=,所以a b c BA BC CA →→→--=-=.如下图中CA →即为a b c --.试卷第33页,共71页42.如图,已知边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角,求AC 和BD 的坐标.【答案】3(2AC=,(BD -= 【分析】 依题意B ,D 分别是30,120︒角的终边与单位圆的交点,设()11,B x y ,()22,D x y .由三角函数的定义,求出B 、D 的坐标,再根据向量的坐标表示和向量的加减运算可得.【详解】解:由题知B ,D 分别是30,120︒角的终边与单位圆的交点.设()11,B x y ,()22,D x y .由三角函数的定义, 得1cos30x ︒==,11sin 302y ︒==,△12B ⎫⎪⎝⎭. 21cos1202x ︒==-,2sin120y ︒==△12D ⎛- ⎝⎭. ()0,0A △3122AB ⎛⎫= ⎪⎝⎭,12AD ⎛=- ⎝⎭. ∴3(2AC AB AD=+=,(BD AD AB -=-=43.在平面直角坐标系xOy 中,已知向量()6,1AB →=,(),BC x y →=,()2,3CD →=--,且BC AD →→∥.(1)求x 与y 间的关系;(2)若AC BD →→⊥,求x 与y 的值及四边形ABCD 的面积. 【答案】(1)20x y +=(2)2,1,x y =⎧⎨=-⎩或6,3.x y =-⎧⎨=⎩四边形ABCD 的面积为16 【分析】(1)由已知,利用平面向量坐标运算分别表示出AD →,BC →的坐标,利用平行关系即可得到x 与y 间的关系.(2)由(1)得到x 与y 间的关系以及利用AC BD →→⊥数量积为0,通过联立方程分别解出,x y ,并确定AC →,BD →坐标.最后,由四边形对角线垂直,可直接由对角线长度乘积的一半求出四边形面积.(1)由题意得()4,2AD AB BC CD x y →→→→=++=+-,(),BC x y →=,因为BC AD →→∥,所以()()420x y y x +--=,即20x y +=……① (2)由题意得()6,1AC AB BC x y →→→=+=++,()2,3BD BC CD x y →→→=+=--, 因为AC BD →→⊥,所以0AC BD →→⋅=,即()()()()62130x x y y +-++-=, 整理得2242150x y x y ++--=……②联立①②2242150{20x y x y x y ++--=+=,解得2,1,x y =⎧⎨=-⎩或6,3.x y =-⎧⎨=⎩. 记四边形ABCD 面积为S当2,1,x y =⎧⎨=-⎩时,()8,0AC →=,()0,4BD →=-,则1162S AC BD →→==, 当6,3x y =-⎧⎨=⎩时,()0,4AC →=,()8,0BD →=-,则1162S AC BD →→==试卷第35页,共71页 综上2,1,x y =⎧⎨=-⎩或6,3.x y =-⎧⎨=⎩四边形ABCD 的面积为16 44.已知向量()8,4a →=-,(),1b x →=.△a →,b →共线,△a b a →→→⎛⎫-⊥ ⎪⎝⎭. (1)若______,请从以上两个条件中任选一个,求x 的值;(2)当2x =时,求a →与b →夹角θ的余弦值.【答案】(1)选择△,2x =-;选择△,212x =; (2)35. 【分析】(1)选择△,根据,a b →→共线即可得出840x +=,解出x 即可;选择△,先求出(8,5)a b x →→-=--,根据a b a →→→⎛⎫-⊥ ⎪⎝⎭即可得出()0a b a →→→-=,然后进行数量积的坐标运算即可求出x 的值; (2)2x =时,可得出向量b →的坐标,然后根据向量夹角的余弦公式即可求出cos θ. (1)解:如果选择△,,a b →→共线,840x ∴+=,解得2x =-;如果选择△,(8,5)a b x →→-=--,且a b a →→→⎛⎫-⊥ ⎪⎝⎭, ∴()8(8)200a b a x →→→-=-+=,解得212x =. (2)解:当2x =时,(2,1)b →=,∴12a b →→=,|||a b →→= ∴123cos 545||||a ba b θ→→→→==. 45.已知O 为坐标原点,()2,5OA →=,()3,1OB →=,()6,3OC →=,则在线段OC 上是否存在点M ,使得MA MB →→⊥若存在,求出点M 的坐标;若不存在,请说明理由.【答案】()2,1M 或2211,55M ⎛⎫ ⎪⎝⎭ 【分析】假设存在点M ,且()()6,301OM OC λλλλ→→==<≤,求出,MA MB →→的坐标,根据平面向量互相垂直时,它们的数量积为零,得到方程,解方程求出λ,最后求出点M 坐标.【详解】解:设存在点M ,且()()6,301OM OC λλλλ→→==<≤()26,53MA λλ→=--,()36,13MB λλ→=--, 因为MA MB →→⊥,所以0MA MB →→⋅=,有()()()()2126365313045481103λλλλλλλ--+--=⇒-+=⇒=或1115λ= ()2,1OM →∴=或2211,55⎛⎫ ⎪⎝⎭∴存在()2,1M 或2211,55M ⎛⎫ ⎪⎝⎭满足题意. 46.已知a 、b 、c 为同一平面内的三个向量,其中()1,2a =(1)若()2,c k =-,且c a ∥,求c ;(2)若()1,b m =,且a 与b 垂直,求b .【答案】(1)()2,4c =--(2)11,2b ⎛⎫=- ⎪⎝⎭ 【分析】(1)根据向量平行的坐标表示得到方程,解得即可;(2)由a 与b 垂直,可得0a b ⋅=,根据向量数量积的坐标表示得到方程,解得即可; (1)解:∵()2,c k =-,()1,2a =且//c a ,∴()2210k -⨯-⨯=,∴4k =-,∴()2,4c =--.(2)解:由a 与b 垂直,得0a b ⋅=,即1120m ⨯+⨯= ∴12m =-. 47.如图,在射线,,OA OB OC 中,相邻两条射线所成的角都是120,且线段OA OB OC ==.设OP xOA yOB =+.试卷第37页,共71页(1)当2,1x y ==时,在图1中作出点P 的位置(保留作图的痕迹); (2)请用,x y 写出“点P 在射线OC 上”的一个充要条件:___________; (3)设满足“24x y +=且0xy ≥”的点P 所构成的图形为G , ①图形G 是___________;A△线段 B△射线 C△直线 D△圆②在图2中作出图形G .【答案】(1)答案见解析(2)x y =且0,0x y ≤≤(3)① A ;②答案见解析【分析】(1)根据向量的加法的几何意义作出点P 的位置;(2)根据向量的线性运算的几何意义确定“点P 在射线OC 上”的一个充要条件; (3)根据向量共线定理的推论确定P 的轨迹形状,并画图.(1)图中点P 即为所求.(2)根据向量线性运算的几何表示可得x y =且0,0x y ≤≤;(3)①因为OP xOA yOB =+,24x y +=且0xy ≥, 所以4242x y OP OA OB =⋅+⋅,其中142x y +=, 设4OD OA =,2OE OB =,则42x y OP OD OE =+,142x y +=,又0xy ≥ 所以点P 所构成的图形为线段DE故选:A ;②图中线段DE 即为所求.48.已知5a =,4b =, a 与b 的夹角为60,问:当k 为何值时,()()2ka b a b -⊥+?【答案】1415. 【分析】根据数量积的定义可得a b ⋅的值,再利用数量积的定义和性质计算()()20ka b a b -⋅+=即可求解.【详解】 因为5a =,4b =, a 与b 的夹角为60, 所以1cos6054102a b a b ⋅=⋅⋅=⨯⨯=, 若()()2ka b a b -⊥+,则()()20ka b a b -⋅+=,即()222120ka k a b b +-⋅-=,所以()222120k a k a b b +-⋅-=, 所以()2521102160k k +-⨯-⨯=,可得:1415k =.试卷第39页,共71页49.已知()cos ,sin a αα=,()1,2b =,()0,απ∈.(1)若a b ∥,求2sin 2sin sin cos cos 21ααααα+--的值; (2)若a b ⊥,且3sin 5β=,()0,βπ∈,求sin()αβ+的值. 【答案】(1)1(2)详见解析【分析】(1)由题得tan 2α=,再利用二倍角公式及同角关系式可得2sin 2sin sin cos cos 21ααααα+--22tan tan tan 2ααα=+-,即求; (2)由题可得cos 2sin 0αα+=,再利用同角关系式及两角和公式即求. (1)∵()cos ,sin a αα=,()1,2b =,()0,απ∈,a b ∥,∴2cos sin 0αα-=,即tan 2α=, ∴222sin 22sin cos sin sin cos cos 21sin sin cos 2cos ααααααααααα=+--+- 22tan tan tan 2ααα=+- 2221222⨯==+-. (2)∵()cos ,sin a αα=,()1,2b =,,a b ⊥∴cos 2sin 0αα+=,()0,απ∈,∴25sin 1,sin 0αα=>,∴sin αα== 又3sin 5β=,()0,βπ∈, ∴4cos 5β=±, 当4cos 5β=时,sin()sin cos cos sin αβαβαβ+=+4355== 当4cos 5β=-时,sin()sin cos cos sin αβαβαβ+=+4355==. 50.已知||2,||1a b ==,a 与b 的夹角为23π,设27,m ta b n a b =+=+.(1)求(2)a a b ⋅+的值;(2)若m 与n 的夹角是锐角,求实数t 的取值范围.【答案】(1)2;(2)114,722⎛⎛⎫ ⎪ ⎪⎝⎭⎝⎭﹒ 【分析】(1)将(2)a a b ⋅+展开,通过数量积运算即可得到答案;(2)两向量夹角为锐角,数量积为正,但需排除两向量同向的情况﹒ (1)2221(2)2||2||||cos 4221232a a b a a b a a b π⎛⎫⋅+=+⋅=+⋅=+⨯⨯⨯-= ⎪⎝⎭; (2)△m 与n 的夹角是锐角,△0m n ⋅>且m 与n 不共线.△()222(27)()2||277||m n ta b a tb t a t a b t b ⋅=++=++⋅+22827721570t t t t t =--+=-+->,△221570t t -+<,解得172t <<. 当m 与n 共线时,则存在实数λ,使27()ta b a tb λ+=+,△2,7t t λλ=⎧⎨=⎩,解得2t =±.综上所述,实数t 的取值范围是114,722⎛⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 51.如图,正三角形ABC 的边长为4,D ,E ,F 分别在线段,,AB BC CA 上,且D 为AB 的中点,DE DF ⊥.试卷第41页,共71页(1)若60BDE ∠=︒,求三角形DEF 的面积. (2)求三角形DEF 面积的最小值. 【答案】 (1(2)12- 【分析】(1)根据题意,结合面积公式,即可求解;(2)根据题意,设BDE θ∠=,结合正弦定理,以及三角恒等变换,及可求解. (1)根据题意,知2AD BD ==,因为60BDE ∠=,所以2DE =,又因为DE DF ⊥,所以30ADF ∠=, 因此cos303DF AD ==,故12DEFS DE DF =⋅= (2)根据题意,设BDE θ∠=,090θ≤≤.在BDE 和ADF 中,由正弦定理知()sin 60sin 120DE BD θ=-,()sin 60sin 30DF ADθ=+, 化简得)3sin 60DE θ=+,)3sin 30DF θ=+,故()()1322sin 60sin 30DEFSDE DF θθ=⋅=++, 因为()()311sin 60sin 30sincos 222θθθθθθ⎛⎫⎛⎫++=+⎪⎪ ⎪⎪⎝⎭⎝⎭ 1sin 22θ= 所以12DEF S =- 52.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c 1b =,120C =. (1)求B 的大小; (2)求ABC 的面积S 【答案】 (1)30;(2 【分析】(1)利用正弦定理即可求解;(2)由三角形的内角和求得角A ,再由三角形的面积公式即可求解. (1)在ABC 中,c =1b =,120C =,由正弦定理得sin sin b c B C =即1si 20n B =,所以1sin 2B ==, 因为b c <,所以B C <, 因为060B <<,所以30B = (2)因为180A B C ++=,所以1801803012030A B C =--=--=,所以ABC 的面积为113sin 1sin 30224S bc A ==⨯=.53.已知()1,2a =,()3,1b =- (1)求2a b -;(2)设a ,b 的夹角为θ,求cos θ的值; (3)若向量a kb +与a kb -互相垂直,求k 的值 【答案】 (1)()7,0;(2)10-;(3)【分析】(1)利用线性运算的坐标表示即可求解; (2)利用向量夹角的坐标表示即可求解;(3)求出向量a kb +与a kb -的坐标,利用坐标表示()()0a kb a kb ⋅-=+即可求解. (1)因为()1,2a =,()3,1b =-,所以()()()21,223,17,0a b -=--=. (2)因为cos a b a b θ⋅=⋅⋅,试卷第43页,共71页所以21cos 1a b a bθ⨯⋅===⋅+(3)由()1,2a =,()3,1b =-可得()()()1,23,113,2a kb k k k +=+-=-+,()()()1,23,113,2a kb k k k -=--=+-,因为向量a kb +与a kb -互相垂直,所以()()()()()()1313220a kb a kb k k k k +⋅-=-+++-=, 即221k =,解得:k =. 54.已知()2,3A ,()4,3B -,点P 在线段AB 的延长线上,且32AP PB =,求点P 的坐标.【答案】()8,15- 【分析】根据点P 在线段AB 的延长线上,且3||||2AP PB =,可得12AB BP =,可得2OP OB AB =+. 【详解】点P 在线段AB 的延长线上,且3||||2AP PB =, ∴12AB BP =, ∴2(4OP OB AB =+=,3)2(2-+,6)(8-=,15)-.所以点P 的坐标为()8,15-55.已知ABCD 的顶点()1,2--A ,()3,1B -,()5,6C ,求顶点D 的坐标. 【答案】(1,5)﹒ 【分析】由平行四边形可得:DC AB =,于是OD OC AB =-. 【详解】设坐标原点为O ,由平行四边形可得:DC AB =,(5OD OC AB =-=,6)(4-,1)(1=,5).∴D 的坐标为(1,5)﹒56.如图,已知平行四边形ABCD ,点O 为任一点,设OA a =,OB b =,OC c =,试。
高中数学必修二第六章平面向量及其应用知识点归纳超级精简版(带答案)

高中数学必修二第六章平面向量及其应用知识点归纳超级精简版单选题1、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b ⃑⃑的夹角为( ) A .30°B .60°C .120°D .150° 答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b ⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0,解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A.2、“黄金三角形”是几何历史上的瑰宝,它有两种类型,其中一种是顶角为36°的等腰三角形,暂且称为“黄金三角形A ”.如图所示,已知五角星是由5个“黄金三角形A ”与1个正五边形组成,其中sin18°=√5−14,则阴影部分面积与五角形面积的比值为( ).A .√5−14B .√55C .√5+16D .3√520答案:B分析:在三角形ABC 中,由sin18°值,可得BCAC =√5−12,即BD AB=√5−12,设△ABC 的面积为x ,由此可知△BCD 和△CEF 的面积均为√5−12x ,△CDE 的面积为x ,由此即可求出结果.如图所示,依题意,在三角形ABC 中,sin18°=BC 2AC=√5−14,故BC AC=√5−12; 所以BDAB =√5−12, 设△ABC 的面积为x ,则△BCD 面积为√5−12x ,同理△CEF 的面积为√5−12x , △CDE 的面积为x ,则阴影部分面积与五角形面积的比值为2x+2⋅√5−12x 2⋅√5−12x+6x=√55. 故选:B .3、在△ABC 中,已知AB =6,AC =2,且满足DB ⃑⃑⃑⃑⃑⃑⃑=2AD ⃑⃑⃑⃑⃑⃑,AE ⃑⃑⃑⃑⃑⃑=EC ⃑⃑⃑⃑⃑⃑,若线段CD 和线段BE 的交点为P ,则AP⃑⃑⃑⃑⃑⃑⋅(CA ⃑⃑⃑⃑⃑⃑+CB ⃑⃑⃑⃑⃑⃑)=( ). A .3B .4C .5D .6 答案:B分析:待定系数法将AP ⃑⃑⃑⃑⃑⃑向量分解,由平面向量共线定理求出系数,然后代回原式计算 设AP⃑⃑⃑⃑⃑⃑=xAB ⃑⃑⃑⃑⃑⃑+yAC ⃑⃑⃑⃑⃑⃑, 由DB ⃑⃑⃑⃑⃑⃑⃑=2AD ⃑⃑⃑⃑⃑⃑知AB ⃑⃑⃑⃑⃑⃑=3AD ⃑⃑⃑⃑⃑⃑,∴AP ⃑⃑⃑⃑⃑⃑=3xAD ⃑⃑⃑⃑⃑⃑+yAC ⃑⃑⃑⃑⃑⃑,∵D ,P ,C 三点共线,∴3x +y =1①, 由AE⃑⃑⃑⃑⃑⃑=EC ⃑⃑⃑⃑⃑⃑知AC ⃑⃑⃑⃑⃑⃑=2AE ⃑⃑⃑⃑⃑⃑,∴AP ⃑⃑⃑⃑⃑⃑=xAB ⃑⃑⃑⃑⃑⃑+2yAE ⃑⃑⃑⃑⃑⃑,∵B ,P ,E 三点共线,∴x +2y =1②, 由①②得:x =15.y =25,∴AP ⃑⃑⃑⃑⃑⃑=15AB⃑⃑⃑⃑⃑⃑+25AC ⃑⃑⃑⃑⃑⃑, 而CA⃑⃑⃑⃑⃑⃑+CB ⃑⃑⃑⃑⃑⃑=−AC ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑−AC ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑−2AC ⃑⃑⃑⃑⃑⃑, ∴AP ⃑⃑⃑⃑⃑⃑⋅(CA ⃑⃑⃑⃑⃑⃑+CB ⃑⃑⃑⃑⃑⃑)=(15AB ⃑⃑⃑⃑⃑⃑+25AC ⃑⃑⃑⃑⃑⃑)(AB ⃑⃑⃑⃑⃑⃑−2AC ⃑⃑⃑⃑⃑⃑)=15(AB ⃑⃑⃑⃑⃑⃑2−4AC ⃑⃑⃑⃑⃑⃑2)=15×(62−4×22)=4 故选:B4、已知平面向量a ⃑=(1,2),b ⃑⃑=(-2,m ),且a ⃑∥b ⃑⃑,则2a ⃑+3b ⃑⃑=( ) A .(-4,-8)B .(-8,-16) C .(4,8)D .(8,16) 答案:A分析:根据向量平行的坐标表示求出m ,再根据向量线性运算得坐标表示即可求解. ∵a ⃑∥b ⃑⃑,∴1×m =2×(-2),∴m =-4,∴b ⃑⃑=(-2,-4), ∴2a ⃑+3b ⃑⃑=(2,4)+(-6,-12)=(-4,-8). 故选:A.5、已知向量a ⃑=(−1,m ),b ⃑⃑=(m +1,2),且a ⃑⊥b ⃑⃑,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⃑⋅b ⃑⃑=−m −1+2m =0,解得m =1 故选:C .6、在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23答案:A分析:根据已知条件结合余弦定理求得AB ,再根据cosB =AB 2+BC 2−AC 22AB⋅BC,即可求得答案.∵在△ABC 中,cosC =23,AC =4,BC =3根据余弦定理:AB 2=AC 2+BC 2−2AC ⋅BC ⋅cosCAB 2=42+32−2×4×3×23可得AB 2=9 ,即AB =3 由∵ cosB =AB 2+BC 2−AC 22AB⋅BC=9+9−162×3×3=19故cosB =19.故选:A.小提示:本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 7、在△ABC 中,角A,B,C 的对边分别是a,b,c ,若A =45°,B =60°,b =2√3,则c 等于( ) A .√6−√24B .√6+√24C .√6−√2D .√6+√2答案:D分析:先求出C ,再由正弦定理求解即可. 解:在△ABC 中,C =180°−45°−60°=75°. 由正弦定理可知csinC =bsinB ,所 以csin75°=2√3sin60°, 故c =2√3sin75°sin60°=4sin75°=4sin(30°+45°)=4×√6+√24=√6+√2.故选:D.8、已知向量|a ⃑|=2,|b ⃑⃑|=4,且a ⃑,b ⃑⃑不是方向相反的向量,则|a ⃑−b ⃑⃑|的取值范围是( ) A .(2,6)B .[2,6) C .(2,6]D .[2,6] 答案:B分析:直接由||a ⃑|−|b ⃑⃑||≤|a ⃑−b ⃑⃑|<|a ⃑|+|b⃑⃑|求解即可. 由已知必有||a ⃑|−|b ⃑⃑||≤|a ⃑−b ⃑⃑|<|a ⃑|+|b ⃑⃑|,则所求的取值范围是[2,6). 故选:B. 多选题9、如果平面向量a ⃗=(2,−4),b ⃑⃗=(−6,12),那么下列结论中正确的是( ) A .|b ⃑⃗|=3|a ⃗|B .a ⃗//b⃑⃗ C .a ⃗与b ⃑⃗的夹角为30°D .a ⃗在b ⃑⃗方向上的投影为2√5 答案:AB分析:根据向量坐标运算及向量共线的意义可得解.因为a ⃗=(2,−4),b ⃑⃗=(−6,12),所以b ⃑⃗=−3a ⃗. 在A 中,由b ⃑⃗=−3a ⃗,可得|b ⃑⃗|=3|a ⃗|,故A 正确; 在B 中,由b ⃑⃗=−3a ⃗,可得a ⃗//b⃑⃗,故B 正确; 在C 中,由b ⃑⃗=−3a ⃗,可得a ⃗与b⃑⃗的夹角为180°,故C 错误; 在D 中,a ⃗在b ⃑⃗方向上的投影为a ⃑⃗⋅b ⃑⃗|b ⃑⃗|=22=−2√5,故D 错误. 故选:AB .10、ΔABC 是边长为3的等边三角形,已知向量a ⃑、b ⃑⃑满足AB ⃑⃑⃑⃑⃑⃑=3a ⃑,AC ⃑⃑⃑⃑⃑⃑=3a ⃑+b ⃑⃑,则下列结论中正确的有( ) A .a ⃑为单位向量B .b ⃑⃑//BC ⃑⃑⃑⃑⃑⃑C .a ⃑⊥b ⃑⃑D .(6a ⃑+b ⃑⃑)⊥BC ⃑⃑⃑⃑⃑⃑ 答案:ABD解析:求出|a ⃑|可判断A 选项的正误;利用向量的减法法则求出b ⃑⃑,利用共线向量的基本定理可判断B 选项的正误;计算出a ⃑⋅b ⃑⃑,可判断C 选项的正误;计算出(6a ⃑+b⃑⃑)⋅BC ⃑⃑⃑⃑⃑⃑,可判断D 选项的正误.综合可得出结论. 对于A 选项,∵AB ⃑⃑⃑⃑⃑⃑=3a ⃑,∴a ⃑=13AB ⃑⃑⃑⃑⃑⃑,则|a ⃑|=13|AB⃑⃑⃑⃑⃑⃑|=1,A 选项正确; 对于B 选项,∵AC ⃑⃑⃑⃑⃑⃑=3a ⃑+b ⃑⃑=AB ⃑⃑⃑⃑⃑⃑+b ⃑⃑,∴b ⃑⃑=AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑=BC ⃑⃑⃑⃑⃑⃑,∴b ⃑⃑//BC ⃑⃑⃑⃑⃑⃑,B 选项正确; 对于C 选项,a ⃑⋅b ⃑⃑=13AB ⃑⃑⃑⃑⃑⃑⋅BC ⃑⃑⃑⃑⃑⃑=13×32×cos 2π3≠0,所以a ⃑与b ⃑⃑不垂直,C 选项错误; 对于D 选项,(6a ⃑+b ⃑⃑)⋅BC ⃑⃑⃑⃑⃑⃑=(AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑)⋅(AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑)=AC ⃑⃑⃑⃑⃑⃑2−AB ⃑⃑⃑⃑⃑⃑2=0,所以,(6a ⃑+b ⃑⃑)⊥BC ⃑⃑⃑⃑⃑⃑,D 选项正确. 故选:ABD.小提示:本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.11、在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下述结论中正确的是( ) A .AB ⃑⃑⃑⃑⃑⃑+BC ⃑⃑⃑⃑⃑⃑=CA ⃑⃑⃑⃑⃑⃑B .AG⃑⃑⃑⃑⃑⃑=12(AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑) C .AF ⃑⃑⃑⃑⃑⃑+BD ⃑⃑⃑⃑⃑⃑⃑+CE ⃑⃑⃑⃑⃑⃑=0⃑⃑D .GA ⃑⃑⃑⃑⃑⃑+GB ⃑⃑⃑⃑⃑⃑+GC ⃑⃑⃑⃑⃑⃑=0⃑⃑ 答案:CD分析:根据向量的加法运算、相反向量、中线的向量表示,重心的性质分别计算求解. 由D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,因为AB⃑⃑⃑⃑⃑⃑+BC ⃑⃑⃑⃑⃑⃑=AC →≠CA ⃑⃑⃑⃑⃑⃑,故A 错误; 由12(AB⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑)=AD →≠AG →, 故B 错误; 因为AF ⃑+BD ⃑+CE ⃑=12(AB →+BC →+CA →)=0⃑, 故C 正确;因为GA ⃑⃑⃑⃑⃑⃑+GB⃑⃑⃑⃑⃑⃑+GC ⃑⃑⃑⃑⃑⃑=−23[12(AB →+AC →)+12(BA →+BC →)+12(CA →+CB →)] =−13(AB →+BA →+BC →+CB →+AC →+CA →)=0→, 故D 正确. 故选:CD 填空题12、在△ABC 中, a =5,b =5√3,A =30°,则B =________. 答案:60°或120°分析:利用正弦定理求得sinB ,由此求得B . 由正弦定理得asinA=b sinB,即5sin30°=5√3sinB ⇒sinB =√32, 由于0°<B <180°,所以B =60°或B =120°. 所以答案是:60°或120°13、在△ABC 中,cos∠BAC =−13,AC =2,D 是边BC 上的点,且BD =2DC ,AD =DC ,则AB 等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可. 设DC =x,AB =y ,因为BD =2DC ,AD =DC ,所以BC =3x,AD =DC =x , 在△ADC 中,由余弦定理可知:cosC =AC 2+CD 2−AD 22AC⋅DC =4+x 2−x 24x=1x , 在△ABC 中,由余弦定理可知:cosC =AC 2+CB 2−AB 22AC⋅BC=4+9x 2−y 212x,于是有4+9x 2−y 212x=1x ⇒9x 2−y 2=8(1),在△ABC 中,由余弦定理可知:cosA =AB 2+CA 2−CB 22AB⋅AC=y 2+4−9x 24y=−13,⇒27x 2−3y 2−4y =12(2),把(1)代入(2)中得,y =3, 所以答案是:314、在△ABC 中,P 是BC 上一点,若BP ⃑⃑⃑⃑⃑⃑=2PC ⃑⃑⃑⃑⃑⃑,AP ⃑⃑⃑⃑⃑⃑=λAB ⃑⃑⃑⃑⃑⃑+μAC ⃑⃑⃑⃑⃑⃑,则2λ+μ=___________. 答案:43##113分析:根据给定条件,用向量AB ⃑⃑⃑⃑⃑⃑,AC ⃑⃑⃑⃑⃑⃑表示向量AP ⃑⃑⃑⃑⃑⃑,再利用平面向量基本定理求解作答. 在△ABC 中,BP ⃑⃑⃑⃑⃑⃑=2PC ⃑⃑⃑⃑⃑⃑,则AP ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑+BP ⃑⃑⃑⃑⃑⃑=AB⃑⃑⃑⃑⃑⃑+23BC ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑+23(AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑) =13AB ⃑⃑⃑⃑⃑⃑+23AC ⃑⃑⃑⃑⃑⃑, 又AP ⃑⃑⃑⃑⃑⃑=λAB ⃑⃑⃑⃑⃑⃑+μAC ⃑⃑⃑⃑⃑⃑,且AB ⃑⃑⃑⃑⃑⃑,AC ⃑⃑⃑⃑⃑⃑不共线,则λ=13,μ=23,所以2λ+μ=43. 所以答案是:43解答题15、已知函数f (x )=4cosxsin (x −π3)+√3. (Ⅰ)求函数f (x )在区间[π4,π2]上的值域.(Ⅱ)在△ABC 中,角A ,B ,C ,所对的边分别是a ,b ,c ,若角C 为锐角,f (C )=√3,且c =2,求△ABC 面积的最大值.答案:(Ⅰ)[1,2];(Ⅱ)√3分析:(Ⅰ)利用差角的正弦公式、辅助角公式化简函数,结合正弦函数的性质,可得函数f(x)在区间[π4,π2]上的值域;(Ⅱ)先求出C ,再利用余弦定理,结合基本不等式,即可求得△ABC 面积的最大值. 解:(Ⅰ)f(x)=4cosxsin(x −π3)+√3=4cosx (sinxcos π3−cosxsin π3)+√3=4cosx (12sinx −√32cosx)+√3=2sinxcosx −2√3cos 2x +√3=sin2x −√3cos2x =2sin(2x −π3),由π4⩽x⩽π2,有π6⩽2x−π3⩽2π3,所以12≤sin(2x−π3)≤1∴函数f(x)的值域为[1,2].(Ⅱ)由f(C)=√3,有sin(2C−π3)=√32,∵C为锐角,∴2C−π3=π3,∴C=π3.∵c=2,∴由余弦定理得:a2+b2−ab=4,∵a2+b2⩾2ab,∴4=a2+b2−ab⩾ab.∴S△ABC=12absinC=√34ab⩽√3,∴当a=b,即△ABC为正三角形时,△ABC的面积有最大值√3.。
高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析

第六章平面向量及其应用6.1 平面向量的概念课后篇巩固提升必备知识基础练1.有下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥功.其中,不是向量的个数是( )A.1B.2C.3D.4,又有方向,所以它们是向量;而质量、路程和功只有大小,没有方向,所以它们不是向量,故不是向量的个数是3.2.在同一平面上,把向量所在直线平行于某一直线的一切向量的起点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一条直线C.圆上一群孤立的点D.一个半径为1的圆,而向量所在直线平行于同一直线,所以随着向量模的变化,向量的终点构成的是一条直线.3.如图所示,在正三角形ABC 中,P ,Q ,R 分别是AB ,BC ,AC 的中点,则与向量PQ⃗⃗⃗⃗⃗ 相等的向量是( )A.PR ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗B.AR ⃗⃗⃗⃗⃗ 与RC⃗⃗⃗⃗⃗ C.RA ⃗⃗⃗⃗⃗ 与CR ⃗⃗⃗⃗⃗ D.PA ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗,方向相同,因此AR ⃗⃗⃗⃗⃗ 与RC ⃗⃗⃗⃗⃗ 都是和PQ ⃗⃗⃗⃗⃗ 相等的向量. 4.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 的形状为 ( )A.正方形B.矩形C.菱形D.等腰梯形BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 知,AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形.5.(多选题)(2021福建福清期中)下列说法正确的是( )A.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 是菱形B.在平行四边形ABCD 中,一定有AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗C.若a =b ,b =c ,则a =cD.若a ∥b ,b ∥c ,则a ∥cA,由BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,知AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形,又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形,故A 正确;对于B,在平行四边形ABCD 中,对边平行且相等,AB ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的方向相同,所以AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,故B 正确;对于C,由向量相等的定义知,当a =b ,b =c 时,有a =c ,故C 正确;对于D,当b =0时不成立,故D 错误.故选ABC .6.(多选题)设点O 是正方形ABCD 的中心,则下列结论正确的是( ) A.AO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ B.BO ⃗⃗⃗⃗⃗ ∥DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线 D.AO ⃗⃗⃗⃗⃗ =BO⃗⃗⃗⃗⃗图,∵AO ⃗⃗⃗⃗⃗ 与OC⃗⃗⃗⃗⃗ 方向相同,长度相等,∴选项A 正确; ∵BO ⃗⃗⃗⃗⃗ 与DB ⃗⃗⃗⃗⃗⃗ 的方向相反, ∴BO ⃗⃗⃗⃗⃗ ∥DB ⃗⃗⃗⃗⃗⃗ ,选项B 正确; ∵AB ∥CD ,∴AB⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线, ∴选项C 正确; ∵AO ⃗⃗⃗⃗⃗ 与BO ⃗⃗⃗⃗⃗ 方向不同,∴AO ⃗⃗⃗⃗⃗ ≠BO⃗⃗⃗⃗⃗ ,∴选项D 错误. 7.如图,四边形ABCD ,CEFG ,CGHD 都是全等的菱形,HE 与CG 相交于点M ,则下列关系不一定成立的是( )A.|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗⃗ |B.AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线C.BD ⃗⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗⃗ 共线D.DC ⃗⃗⃗⃗⃗ 与EC⃗⃗⃗⃗⃗ 共线,直线BD 与EH 不一定平行,因此BD ⃗⃗⃗⃗⃗⃗ 不一定与EH ⃗⃗⃗⃗⃗⃗ 共线,C 项错误. 8.如图所示,4×3的矩形(每个小方格的边长均为1),在起点和终点都在小方格的顶点处的向量中,试问: (1)与AB⃗⃗⃗⃗⃗ 相等的向量共有几个? (2)与AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有几个? (3)与AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有几个?与向量AB⃗⃗⃗⃗⃗ 相等的向量共有5个(不包括AB ⃗⃗⃗⃗⃗ 本身). (2)与向量AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有24个. (3)与向量AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有2个. 关键能力提升练9.已知a 为单位向量,下列说法正确的是( ) A.a 的长度为一个单位长度 B.a 与0不平行C.与a 共线的单位向量只有一个(不包括a 本身)D.a 与0不是平行向量已知a 为单位向量,∴a 的长度为一个单位长度,故A 正确;a 与0平行,故B 错误;与a 共线的单位向量有无数个,故C 错误;零向量与任何向量都是平行向量,故D 错误. 10.(多选题)如图,在菱形ABCD 中,∠DAB=120°,则以下说法正确的是( )A.与AB⃗⃗⃗⃗⃗ 相等的向量只有一个(不包括AB ⃗⃗⃗⃗⃗ 本身) B.与AB⃗⃗⃗⃗⃗ 的模相等的向量有9个(不包括AB ⃗⃗⃗⃗⃗ 本身) C.BD ⃗⃗⃗⃗⃗⃗ 的模为DA ⃗⃗⃗⃗⃗ 模的√3倍 D.CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 不共线项,由相等向量的定义知,与AB⃗⃗⃗⃗⃗ 相等的向量只有DC ⃗⃗⃗⃗⃗ ,故A 正确;B 项,因为AB=BC=CD=DA=AC ,所以与AB ⃗⃗⃗⃗⃗ 的模相等的向量除AB ⃗⃗⃗⃗⃗ 外有9个,故B 正确;C 项,在Rt △ADO 中,∠DAO=60°,则DO=√32DA ,所以BD=√3DA ,故C 正确;D 项,因为四边形ABCD 是菱形,所以CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 共线,故D 错误.11.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是 .(填序号)a =b ,则a 与b 大小相等且方向相同,所以a ∥b ;若|a |=|b |,则a 与b 的大小相等,而方向不确定,因此不一定有a ∥b ;方向相同或相反的向量都是平行向量,因此若a 与b 方向相反,则有a ∥b ;零向量与任意向量平行,所以若|a |=0或|b |=0,则a ∥b .12.如图,四边形ABCD 和ABDE 都是边长为1的菱形,已知下列说法: ①AE ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ 都是单位向量; ②AB ⃗⃗⃗⃗⃗ ∥DE ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ ∥DC ⃗⃗⃗⃗⃗ ; ③与AB⃗⃗⃗⃗⃗ 相等的向量有3个(不包括AB ⃗⃗⃗⃗⃗ 本身); ④与AE ⃗⃗⃗⃗⃗ 共线的向量有3个(不包括AE⃗⃗⃗⃗⃗ 本身); ⑤与向量DC⃗⃗⃗⃗⃗ 大小相等、方向相反的向量为DE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ . 其中正确的是 .(填序号)由两菱形的边长都为1,故①正确;②正确;③与AB ⃗⃗⃗⃗⃗ 相等的向量是ED ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,故③错误;④与AE ⃗⃗⃗⃗⃗ 共线的向量是EA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,DB⃗⃗⃗⃗⃗⃗ ,故④正确;⑤正确.13.已知在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,tan D=√3,判断四边形ABCD 的形状.在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ , ∴AB DC ,∴四边形ABCD 是平行四边形. ∵tan D=√3,∴∠B=∠D=60°.又|AB⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,∴△ABC 是等边三角形. ∴AB=BC ,故四边形ABCD 是菱形.学科素养创新练14.如图所示的方格纸由若干个边长为1的小正方形组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC⃗⃗⃗⃗⃗ |=√5.(1)画出所有的向量AC⃗⃗⃗⃗⃗ ;⃗⃗⃗⃗⃗ |的最大值与最小值.(2)求|BC⃗⃗⃗⃗⃗ 如图所示.(2)由(1)所画的图知,⃗⃗⃗⃗⃗ |取得最小值√12+22=√5;①当点C位于点C1或C2时,|BC⃗⃗⃗⃗⃗ |取得最大值√42+52=√41.②当点C位于点C5或C6时,|BC⃗⃗⃗⃗⃗ |的最大值为√41,最小值为√5.∴|BC。
高中数学必修二第六章 平面向量的概念 知识点总结及练习

名称定义向量既有大小又有方向的量叫作向量,向量的大小叫作向量的长度(或称模) 零向量长度为零的向量叫作零向量,其方向是任意的,零向量记作0单位向量长度等于1个单位的向量平行向量表示两个向量的有向线段所在的直线平行或重合,则这两个向量叫作平行向量,平行向量又叫共线向量.规定:0与任一向量平行相等向量长度相等且方向相同的向量相反向量长度相等且方向相反的向量易误提醒1.对于平行向量易忽视两点:(1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件.2.单位向量的定义中只规定了长度没有方向限制.[自测练习]1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:若a与b都是零向量,则a=b,故选项C正确.答案:C2.若m∥n,n∥k,则向量m与向量k( )A.共线B.不共线C.共线且同向D.不一定共线解析:可举特例,当n=0时,满足m∥n,n∥k,故A,B,C选项都不正确,故D 正确.答案:D向量运算定义法则(或几何意义)运算律 加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ;(2)结合律: (a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫作a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb易误提醒1.作两个向量的差时,要注意向量的方向是指向被减向量的终点. 2.数乘向量仍为向量只是模与方向发生变化,易认为数乘向量为实数.[自测练习]3.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( ) A.AB →+AC →=BC →B.AB →=12BC →+DA →C.AD →-DC →=AC → D .2CD →+BA →=CA →解析:本题考查向量的线性运算.A 错,应为AB →+AC →=2AD →;B 错,应为12BC →+DA →=BD →+DA →=BA →;C 错,应为AC →=AD →+DC →;D 正确,2CD →+BA →=CB →+BA →=CA →,故选D.答案:D知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 易误提醒1.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 2.要注意向量共线与三点共线的区别与联系. 必记结论 三点共线等价关系:A ,P ,B 三点共线⇔AP →=λAB →(λ≠0)⇔OP →=(1-t )·OA →+tOB →(O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP →=xOA →+yOB →(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[自测练习]4.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-13考点一 向量的基本概念|1.已知a ,b ,c 是任意向量,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ∥b ,则a ,b 方向相同或相反; ③若a =-b ,则|a |=|b |;④若a ,b 不共线,则a ,b 中至少有一个为零向量,其中正确命题的个数是( ) A .4 B .3 C .2D .1解析:按照平面向量的概念逐一判断.若b =0,则①②都错误;若a =-b ,则|a |=|b |,③正确;若a ,b 不共线,则a ,b 中一定没有零向量,④错误,所以正确命题只有1个.答案:D2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( ) A .a =2b B .a ∥b C .a =-13bD .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a ,b 共线且方向相反,因此当向量a ,b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A中向量a ,b 的方向相同,选项B 中向量a ,b 共线,方向相同或相反,选项C 中向量a ,b 的方向相反,选项D 中向量a ,b 互相垂直,故选C.答案:C解决向量的概念问题应关注五点(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.考点二 平面向量的线性运算|(1)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →[解析] 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A.[答案] A(2)(2015·东北三校联考(二))已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________. [解析] 因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB→-CA →)=13CA →+23CB →,所以λ=23.[答案]3平面向量线性运算问题的两种类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合平行四边形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.1.设O 为△ABC 内部的一点,且OA →+OB →+2OC →=0,则△AOC 的面积与△BOC 的面积之比为( )A.32 B.53 C .2D .1解析:取AB 的中点E ,连接OE ,则有OA →+OB →+2OC →=2(OE →+OC →)=0,OE →+OC →=0,所以E ,O ,C 三点共线,所以有△AEO 与△BEO 面积相等,因此△AOC 的面积与△BOC 的面积之比为1,故选D.答案:D考点三 共线向量定理的应用|设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. [解析] 由于λa +b 与a +2b 平行,所以存在μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0,因为向量a ,b 不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=12.[答案]21.共线向量定理的应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a,b不共线,则λa+μb=0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB→=λAC→,则A、B、C三点共线.2.设两个非零向量e1和e2不共线.(1)如果AB→=e1-e2,BC→=3e1+2e2,CD→=-8e1-2e2,求证:A,C,D三点共线;(2)如果AB→=e1+e2,BC→=2e1-3e2,AF→=3e1-k e2,且A,C,F三点共线,求k的值.解:(1)证明:AB→=e1-e2,BC→=3e1+2e2,∴AC→=AB→+BC→=4e1+e2,又CD→=-8e1-2e2,∴CD→=-2AC→,∴AC→与CD→共线.又∵AC→与CD→有公共点C,∴A,C,D三点共线.(2)∵AB→=e1+e2,BC→=2e1-3e2,∴AC→=AB→+BC→=3e1-2e2.∵A,C,F三点共线.∴AC →∥AF →,从而存在实数λ,使得AC →=λAF →. ∴3e 1-2e 2=3λe 1-λk e 2, 又e 1,e 2是不共线的非零向量,∴⎩⎪⎨⎪⎧3=3λ,-2=-λk ,因此k =2.∴实数k 的值为2.13.方程思想在平面向量呈线性运算中的应用【典例】 如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.[思路点拨] (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去.(2)既然OM →能用a ,b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. [解] 设OM →=m a +n b ,则AM →=OM →-OA →=m a +m b -a =(m -1)a +n b . AD →=OD →-OA →=12OB →-OA →=-a +12b .又∵A ,M ,D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →,即(m -1)a +n b =t ⎝⎛⎭⎪⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n ,即m +2n =1.①又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C ,M ,B 三点共线, ∴CM →与CB →共线.∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b .[方法点评] (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是,找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A ,M ,D 三点共线和B ,M ,C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[跟踪练习] 如图,△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.解析:由GA →+GB →+GC →=0,知G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG→=13CD →=16(CA →+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.答案:6课时跟踪检测 A 组 考点能力演练1.关于平面向量,下列说法正确的是( ) A .零向量是唯一没有方向的向量 B .平面内的单位向量是唯一的C .方向相反的向量是共线向量,共线向量不一定是方向相反的向量D .共线向量就是相等向量解析:对于A ,零向量是有方向的,其方向是任意的,故A 不正确;对于B ,单位向量的模为1,其方向可以是任意方向,故B 不正确;对于C ,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C 正确;对于D ,由共线向量和相等向量的定义可知D 不正确,故选C.答案:C2.已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则向量OC →等于( ) A.23OA →-13OB → B .-13OA →+23OB →C .2OA →-OB →D .-OA →+2OB →解析:因为AC →=OC →-OA →,CB →=OB →-OC →,所以2AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2OA →+OB →=0,所以OC →=2OA →-OB →,故选C.答案:C3.已知在△ABC 中,M 是BC 的中点,设CB →=a ,CA →=b ,则AM →=( ) A.12a -b B.12a +b C .a -12bD .a +12b解析:AM →=AC →+CM →=-CA →+12CB →=-b +12a .答案:A4.(2015·海淀期中)如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =( )A .2B .-2C .1D .-1解析:AC →=AB →+BC →=AB →+32BD →=AB →+32(AD →-AB →)=-12AB →+32AD →,则m =-12,n=32,所以m -n =-2. 答案:B5.若a ,b 是两个不共线的非零向量,a 与b 的起点相同,已知a ,t b ,13(a +b )三个向量的终点在同一条直线上,则t =( )A.12 B .-12C .2D .-2 解析:设OA →=a ,OB →=t b ,OC →=13(a +b ),则AC →=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t a -a .要使A ,B ,C 三点共线,只需AC →=λAB →,即-23a +13b =λt b -λa 即可,又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧ -23=-λ,13=λt ,解得⎩⎪⎨⎪⎧λ=23,t =12,∴当三个向量的终点在同一条直线上时,t =12.答案:A6.(2016·长沙一模)在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC→+BC →)=12(5e 1+3e 2).答案:12(5e 1+3e 2)7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________.解析:因为a 与b 共线,所以a =x b ,⎩⎪⎨⎪⎧x =2,λx =-1,故λ=-12.答案:-128.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,O 是坐标原点,则|OA →|的最大值为________.解析:因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.答案:29.已知a ,b 不共线,OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.10.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心. 解:如图,记AM →=AB→|AB→|,AN →=AC→|AC→|,则AM →,AN →都是单位向量,∴|AM →|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.B 组 高考题型专练1.)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC →B.12AD →C.AD →D.12BC → 解析:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选C. 答案:C2.对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2解析:对于A 选项,设向量a ,b 的夹角为θ,∵|a ·b |=|a ||b ||cos θ|≤|a ||b |,∴A 选项正确;对于B 选项,∵当向量a ,b 反向时,|a -b |≥||a |-|b ||,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出(a +b )·(a -b )=a 2-b 2,故D 选项正确,综上选B.答案:B3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:124.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出所有正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解析:∵AB →=2a ,AC →=2a +b ,∴a =12AB →,b =BC →,又△ABC 是边长为2的等边三角形,∴|a |=1,|b |=2,故①正确,②错误,③错误;由b =BC →,知b ∥BC →,故④正确;∵4a +b =2AB →+BC →=AB →+AC →,∴(4a +b )·BC →=(AB →+AC →)·BC →=-2+2=0,∴(4a +b )⊥BC →,故⑤正确.答案为①④⑤.答案:①④⑤。
部编版高中数学必修二第六章平面向量及其应用带答案真题
(名师选题)部编版高中数学必修二第六章平面向量及其应用带答案真题单选题1、P 是△ABC 所在平面内一点,满足|CB ⃗⃗⃗⃗⃗ |−|PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ −2PA ⃗⃗⃗⃗⃗ |=0,则△ABC 的形状是( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形2、已知向量a ⃑=(2,3),b ⃗⃑=(3,2),则|a ⃑–b ⃗⃑|= A .√2B .2 C .5√2D .503、已知向量a ⃑与b ⃗⃑的夹角为π6,且|a ⃑|=2|b ⃗⃑|=2,则a ⃑⋅b ⃗⃑=( ) A .√3B .1C .2√3D .24、设在△ABC 中,角A ,B,C 所对的边分别为a ,b,c , 若 bcosC +ccosB =asinA , 则△ABC 的形状为( ) A .直角三角形B .等边三角形 C .等腰三角形D .钝角三角形5、设a ,b ⃗ 均为单位向量,且|a −b ⃗ |=1,则|a −2b ⃗ |=( ) A .√3B .√7C .3D .76、在平行四边形ABCD 中,|AB ⃗⃗⃗⃗⃗⃑|=3,若BA ⃗⃗⃗⃗⃗⃑|BA ⃗⃗⃗⃗⃗⃑|+BC ⃗⃗⃗⃗⃗⃑|BC ⃗⃗⃗⃗⃗⃑|=BD ⃗⃗⃗⃗⃗⃗⃑|BD ⃗⃗⃗⃗⃗⃗⃑|,则|AC ⃗⃗⃗⃗⃗⃑|=( ) A .2√3B .3√3C .4√3D .37、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc = A .6B .5C .4D .38、定义空间两个向量的一种运算a ⃑⊗b ⃗⃑=|a ⃑|⋅|b ⃗⃑|sin⟨a ⃑,b ⃗⃑⟩,则关于空间向量上述运算的以下结论中恒成立的有( )A .λ(a ⃑⊗b ⃗⃑)=(λa ⃑)⊗b ⃗⃑B .(a ⃑⊗b ⃗⃑)⊗c ⃑=a ⃑⊗(b ⃗⃑⊗c ⃑)C .(a ⃑+b ⃗⃑)⊗c ⃑=(a ⃑⊗c ⃑)+(b ⃗⃑⊗c ⃑)D .若a ⃑=(x 1,y 1),b ⃗⃑=(x 2,y 2),则a ⃑⊗b ⃗⃑=|x 1y 2−x 2y 1| 多选题9、已知λ,μ∈R ,AB ⃗⃗⃗⃗⃗⃑=(λ,1),AC ⃗⃗⃗⃗⃗⃑=(−1,1),AD ⃗⃗⃗⃗⃗⃑=(1,μ),那么( ) A .CB⃗⃗⃗⃗⃗⃑+DC ⃗⃗⃗⃗⃗⃑=(λ−1,1−μ) B .若AB⃗⃗⃗⃗⃗⃑∥AD ⃗⃗⃗⃗⃗⃑,则λ=2,μ=12 C .若A 是BD 中点,则B ,C 两点重合 D .若点B ,C ,D 共线,则μ=110、在△ABC 中,a ,b ,c 为三个内角A ,B ,C 的对边,若(a 2+c 2−b 2)tanB =√3ac ,则角B =( ) A .30°B .60° C .150°D .120°11、在△ABC 中,角A,B,C 的对边分别为a,b,c ,若a 2=b 2+bc ,则角A 可为( ) A .3π4B .π4C .7π12D .2π3填空题12、已知OA ⃗⃗⃗⃗⃗⃑=(k,2),OB ⃗⃗⃗⃗⃗⃑=(1,2k ),OC ⃗⃗⃗⃗⃗⃑=(1−k,−1),且相异三点A 、B 、C 共线,则实数k =________.部编版高中数学必修二第六章平面向量及其应用带答案(十九)参考答案1、答案:B分析:根据平面向量的线性运算与模长公式,可以得出AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,由此可判断出△ABC 的形状. 由|CB ⃗⃗⃗⃗⃗ |=|PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ −2PA ⃗⃗⃗⃗⃗ |,可得|CB ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |,即|AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ |, 等式|AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ |两边平方,化简得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,∴AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ , 因此,△ABC 是直角三角形. 故选:B.小提示:本题考查了平面向量的线性运算与数量积运算,也考查了模长公式应用,是中等题. 2、答案:A分析:本题先计算a ⃑−b ⃗⃑,再根据模的概念求出|a ⃑−b ⃗⃑|. 由已知,a ⃑−b ⃗⃑=(2,3)−(3,2)=(−1,1), 所以|a ⃑−b ⃗⃑|=√(−1)2+12=√2, 故选A小提示:本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错. 3、答案:A解析:利用向量数量积的定义即可求解. 由|a ⃑|=2|b ⃗⃑|=2,则|a ⃑|=2,|b ⃗⃑|=1, 又向量a ⃑与b ⃗⃑的夹角为π6, 所以a ⃑⋅b ⃗⃑=|a ⃑||b ⃗⃑|cos⟨a ⃑,b ⃗⃑⟩=2×1×√32=√3.故选:A小提示:本题考查了向量数量积的定义,考查了基本运算求解能力,属于基础题. 4、答案:A分析:根据两角和的正弦公式和正弦定理求得sinA =sin 2A ,得到sinA =1,求得A =π2,即可求解. 因为bcosC +ccosB =asinA ,由正弦定理可得sinBcosC +sinCcosB =sin 2A , 即sin (B +C )=sin 2A ,即sinA =sin 2A ,所以sinA =1, 又因为A ∈(0,π),所以A =π2,所以是直角三角形. 故选:A. 5、答案:A分析:由已知,利用向量数量积的运算律求得a ⋅b ⃗ =12,又|a −2b ⃗ |2=a 2−4a ⋅b ⃗ +4b ⃗ 2即可求|a −2b⃗ |. 由题设,|a −b ⃗ |2=a 2−2a ⋅b ⃗ +b ⃗ 2=1,又a ,b ⃗ 均为单位向量, ∴a ⋅b⃗ =12, ∴|a −2b ⃗ |2=a 2−4a ⋅b ⃗ +4b ⃗ 2=3,则|a −2b ⃗ |=√3. 故选:A 6、答案:B解析:由题意分析可知,四边形ABCD 为菱形且∠ABC =120∘,然后求解|AC ⃗⃗⃗⃗⃗⃑|. ∵BA ⃗⃗⃗⃗⃗⃑|BA ⃗⃗⃗⃗⃗⃑|+BC⃗⃗⃗⃗⃗⃑|BC⃗⃗⃗⃗⃗⃑|=BD⃗⃗⃗⃗⃗⃗⃑|BD ⃗⃗⃗⃗⃗⃗⃑|,则BD 平分∠ABC ,则四边形ABCD 为菱形. 且∠ABC =120∘,由|AB ⃗⃗⃗⃗⃗⃑| = |BC ⃗⃗⃗⃗⃗⃑|=3,则|AC ⃗⃗⃗⃗⃗⃑|=3√3, 故选:B.小提示:关键点睛:本题考查向量的综合运用,解题的关键是要注意a⃗⃑|a ⃗⃑|为a ⃑上的单位向量,考查学生的逻辑推理能力与运算能力,属于基础题. 7、答案:A分析:利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 详解:由已知及正弦定理可得a 2−b 2=4c 2,由余弦定理推论可得 −14=cosA =b 2+c 2−a 22bc , ∴c 2−4c 22bc=−14 , ∴3c 2b=14 , ∴b c=32×4=6,故选A .小提示:本题考查正弦定理及余弦定理推论的应用. 8、答案:D分析:A .按λ的正负分类讨论可得,B .由新定义的意义判断,C .可举反例说明进行判断,D .与平面向量的数量积进行联系,用数量积求出两向量夹角的余弦值,转化为正弦值,代入计算可判断.A.(λa⃑)⊗b⃗⃑=|λa⃑||b⃗⃑|sin<λa⃑,b⃗⃑>,λ>0时,<λa⃑,b⃗⃑>=<a⃑,b⃗⃑>,(λa⃑)⊗b⃗⃑=λ|a⃑||b⃗⃑|sin<a⃑,b⃗⃑>=λ(a⃑⊗b⃗⃑),λ=0时,λ(a⃑⊗b⃗⃑)=0,(λa⃑)⊗b⃗⃑=0,成立,λ<0时,<λa⃑,b⃗⃑>=π−<a⃑,b⃗⃑>,sin<λa⃑,b⃗⃑>=sin(π−<a⃑,b⃗⃑>)=sin<a⃑,b⃗⃑>(λa⃑)⊗b⃗⃑=−λ|a⃑||b⃗⃑|sin< a⃑,b⃗⃑>=−λ(a⃑⊗b⃗⃑),综上,A不恒成立;B.a⃑⊗b⃗⃑是一个实数,(a⃑⊗b⃗⃑)⊗c⃑无意义,B不成立;C.若a⃑=(0,1),b⃗⃑=(1,0),c⃑=(1,1),则a⃑+b⃗⃑=(1,1),<a⃑+b⃗⃑,c⃑>=0,(a⃑+b⃗⃑)⊗c⃑=|a⃑+b⃗⃑||c⃑|sin0=√2×√2×0=0,<a⃑,c⃑>=π4,<b⃗⃑,c⃑>=π4,(a⃑⊗c⃑)+(b⃗⃑⊗c⃑)=1×√2×sinπ4+1×√2×sinπ4=2,(a⃑+b⃗⃑)⊗c⃑≠(a⃑⊗c⃑)+(b⃗⃑⊗c⃑),C错误;D.若a⃑=(x1,y1),b⃗⃑=(x2,y2),则|a⃑|=√x12+y12,|b⃗⃑|=√x22+y22,cos<a⃑,b⃗⃑>=1212√x1+y1×√x2+y2,sin<a⃑,b⃗⃑>=√1−cos2<a⃑,b⃗⃑>=√1−(x1x2+y1y2)2(x12+y12)(x22+y22)=1221√(x12+y12)(x22+y22),所以a⃑⊗b⃗⃑=|a⃑||b⃗⃑|sin<a⃑,b⃗⃑>=|x1y2−x2y1|,成立.故选:D.小提示:本题考查向量的新定义运算,解题关键是理解新定义,并能运用新定义求解.解题方法一种方法是直接利用新定义的意义判断求解,另一种方法是把新定义与向量的数量积进行联系,把新定义中的sin<a⃑,b⃗⃑>用cos<a⃑,b⃗⃑>,而余弦可由数量积进行计算.9、答案:AC分析:根据向量运算、向量平行(共线)等知识对选项进行分析,从而确定正确选项.A 选项,CB ⃗⃗⃗⃗⃗⃑+DC ⃗⃗⃗⃗⃗⃑=AB ⃗⃗⃗⃗⃗⃑−AC ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑−AD ⃗⃗⃗⃗⃗⃑=AB ⃗⃗⃗⃗⃗⃑−AD ⃗⃗⃗⃗⃗⃑ =(λ,1)−(1,μ)=(λ−1,1−μ),A 选项正确.B 选项,若AB ⃗⃗⃗⃗⃗⃑//AD ⃗⃗⃗⃗⃗⃑,则λ⋅μ=1,故可取λ=3,μ=13,B 选项错误.C 选项,若A 是BD 的中点,则AB⃗⃗⃗⃗⃗⃑=−AD ⃗⃗⃗⃗⃗⃑,即(λ,1)=(−1,−μ)⇒λ=μ=−1, 所以AB⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑=(−1,1),所以B,C 两点重合,C 选项正确. D 选项,由于B,C,D 三点共线,所以BC ⃗⃗⃗⃗⃗⃑//BD ⃗⃗⃗⃗⃗⃗⃑, BC⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑=(−1,1)−(λ,1)=(−1−λ,0), BD ⃗⃗⃗⃗⃗⃗⃑=AD ⃗⃗⃗⃗⃗⃑−AB⃗⃗⃗⃗⃗⃑=(1−λ,μ−1), 则(−1−λ)×(μ−1)=0×(1−λ)⇒λ=−1或μ=1,所以D 选项错误. 故选:AC 10、答案:BD分析:由余弦定理化边为角即得. 由题得a 2+c 2−b 22actanB =√32根据余弦定理可知cosBtanB =sinB =√32, ∴B =60°或B =120°. 故选:BD. 11、答案:BC分析:利用余弦定理化简可得cosA =c−b 2b;分别验证各个选项中的A 的取值,根据c >0可确定正确选项.由余弦定理得:a 2=b 2+c 2−2bccosA ,又a 2=b 2+bc ,∴b 2+bc =b 2+c 2−2bccosA ,整理可得:cosA =c−b 2b;对于A ,cosA =c−b 2b =−√22,则c =(1−√2)b <0,A 错误;对于B ,cosA =c−b 2b =√22,则c =(1+√2)b ,B 正确; 对于C ,cosA =c−b 2b=√2−√64,则c =2+√2−√62b >0,C 正确;对于D ,cosA =c−b 2b=−12,则c =0,D 错误.故选:BC. 12、答案:−14分析:本题首先可根据向量的运算法则得出AB ⃗⃗⃗⃗⃗⃑、AC ⃗⃗⃗⃗⃗⃑,然后通过题意得出AB ⃗⃗⃗⃗⃗⃑//AC ⃗⃗⃗⃗⃗⃑,最后通过向量平行的相关性质即可得出结果.AB⃗⃗⃗⃗⃗⃑=OB ⃗⃗⃗⃗⃗⃑−OA ⃗⃗⃗⃗⃗⃑=(1−k,2k −2),AC ⃗⃗⃗⃗⃗⃑=OC ⃗⃗⃗⃗⃗⃑−OA ⃗⃗⃗⃗⃗⃑=(1−2k,−3), 因为相异三点A 、B 、C 共线,所以AB⃗⃗⃗⃗⃗⃑//AC ⃗⃗⃗⃗⃗⃑, 则−3×(1−k )−(2k −2)(1−2k )=0,解得k =−14或k =1, 当k =1时,OA ⃗⃗⃗⃗⃗⃑=OB ⃗⃗⃗⃗⃗⃑,A 、B 重合,舍去, 故k =−14, 所以答案是:−14.小提示:关键点点睛:本题考查通过三点共线求参数,主要考查向量平行的相关性质,若a ⃑=(x 1,y 1),b ⃗⃑=(x 2,y 2),a ⃑//b ⃗⃑,则x 1y 2−x 2y 1=0,求出k 的值后要注意检验,考查计算能力,是中档题.。
高中数学6.2.2《平面向量的运算》基础过关练习题(含答案)
第六章 6.2 6.2.2A 级——基础过关练1.(多选)如图,在平行四边形ABCD 中,下列结论正确的是( )A .AB →=DC → B .AD →+AB →=AC → C .AB →-AD →=BD → D .AD →+CB →=0【答案】ABD 【解析】A 项显然正确;由平行四边形法则知B 正确;C 项中AB →-AD →=DB →,故C 错误;D 项中AD →+CB →=AD →+DA →=0.故选ABD .2.化简以下各式:①AB →+BC →+CA →;②AB →-AC →+BD →-CD →;③OA →-OD →+AD →;④NQ →+QP →+MN →-MP →.结果为零向量的个数是( )A .1B .2C .3D .4【答案】D 【解析】①AB →+BC →+CA →=AC →+CA →=AC →-AC →=0; ②AB →-AC →+BD →-CD →=(AB →+BD →)-(AC →+CD →)=AD →-AD →=0; ③OA →-OD →+AD →=(OA →+AD →)-OD →=OD →-OD →=0; ④NQ →+QP →+MN →-MP →=NP →+PM →+MN →=NM →-NM →=0. 3.(2020年北京期末)如图,向量a -b 等于( )A .3e 1-e 2B .e 1-3e 2C .-3e 1+e 2D .-e 1+3e 2【答案】B 【解析】如图,设a -b =AB →=e 1-3e 2,∴a -b =e 1-3e 2.故选B .4.对于菱形ABCD ,给出下列各式:①AB →=BC →;②|AB →|=|BC →|;③|AB →-CD →|=|AD →+BC →|;④|AD →+CD →|=|CD →-CB →|. 其中正确的个数为( ) A .1 B .2 C .3D .4【答案】C 【解析】由菱形的图形,可知向量AB →与BC →的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|AB →-CD →|=|AB →+DC →|=2|AB →|,|AD →+BC →|=2|BC →|,且|AB →|=|BC →|,所以|AB →-CD →|=|AD →+BC →|,即③正确;因为|AD →+CD →|=|BC →+CD →|=|BD →|,|CD →-CB →|=|CD →+BC →|=|BD →|,所以④正确.综上所述,正确的个数为3.故选C .5.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13]D .(3,13)【答案】C 【解析】由于BC →=AC →-AB →,则有|AB →|-|AC →|≤|BC →|≤|AB →|+|AC →|,即3≤|BC →|≤13.6.若非零向量a 与b 互为相反向量,给出下列结论:①a ∥b ;②a ≠b ;③|a|≠|b|;④b =-a.其中所有正确命题的序号为________.【答案】①②④ 【解析】非零向量a ,b 互为相反向量时,模一定相等,因此③不正确.7.若a ,b 为相反向量,且|a|=1,|b|=1,则|a +b|=________,|a -b|=________. 【答案】0 2 【解析】若a ,b 为相反向量,则a +b =0,所以|a +b|=0.又a =-b ,所以|a|=|-b|=1.因为a 与-b 共线,所以|a -b|=2.8.如图,已知向量a 和向量b ,用三角形法则作出a -b +a .解:如图所示,作向量OA →=a ,向量OB →=b ,则向量BA →=a -b ;作向量AC →=a ,则BC →=a -b +a .9.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OF →=f ,试用a ,b ,c ,d ,f 表示以下向量:AC →,AD →,AD →-AB →,AB →+CF →,BF →-BD →. 解:AC →=OC →-OA →=c -a . AD →=AO →+OD →=OD →-OA →=d -a . AD →-AB →=BD →=OD →-OB →=d -b .AB →+CF →=OB →-OA →+OF →-OC →=b -a +f -c . BF →-BD →=OF →-OB →-(OD →-OB →)=OF →-OD →=f -d .10.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12,求|DC →+BC →|与|CD →+BC →|.解:∵OA →+OC →=OB →+OD →=0, ∴OA →=CO →,OB →=DO →.∴四边形ABCD 为平行四边形.又|AB →|=|AD →|=1,∴▱ABCD 为菱形. ∵cos ∠DAB =12,∠DAB ∈(0,π),∴∠DAB =π3,∴△ABD 为正三角形.∴|DC →+BC →|=|AB →+BC →|=|AC →|=2|AO →|=3,|CD →+BC →|=|BD →|=|AB →|=1.B 级——能力提升练11.在平面上有A ,B ,C 三点,设m =AB →+BC →,n =AB →-BC →,若m 与n 的长度恰好相等,则有( )A .A ,B ,C 三点必在一条直线上 B .△ABC 必为等腰三角形且∠B 为顶角 C .△ABC 必为直角三角形且∠B 为直角D .△ABC 必为等腰直角三角形【答案】C 【解析】以BA →,BC →为邻边作平行四边形ABCD ,则m =AB →+BC →=AC →,n =AB →-BC →=AB →-AD →=DB →,由m ,n 的长度相等可知,两对角线相等,因此平行四边形一定是矩形.故选C .12.平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是( )A .梯形B .平行四边形C .矩形D .菱形【答案】B 【解析】因为OA →+OC →=OB →+OD →,所以OA →-OB →=OD →-OC →,即BA →=CD →.所以AB CD .故四边形ABCD 是平行四边形.13.平面上有一个△ABC 和一点O ,设OA →=a ,OB →=b ,OC →=c .又OA →,BC →的中点分别为D ,E ,则向量DE →等于( )A .12(a +b +c )B .12(-a +b +c )C .12(a -b +c )D .12(a +b -c )【答案】B 【解析】DE →=DO →+OE →=-12a +12(b +c )=12(-a +b +c ).14.如图,在正六边形ABCDEF 中,与OA →-OC →+CD →相等的向量有________.①CF →;②AD →;③DA →;④BE →;⑤CE →+BC →;⑥CA →-CD →;⑦AB →+AE →.【答案】① 【解析】OA →-OC →+CD →=CA →+CD →=CF →;CE →+BC →=BC →+CE →=BE →≠CF →;CA →-CD →=DA →≠CF →;AB →+AE →=AD →≠CF →.15.已知|a|=7,|b|=2,且a ∥b ,则|a -b|的值为________.【答案】5或9 【解析】当a 与b 方向相同时,|a -b|=||a|-|b||=7-2=5;当a 与b 方向相反时,|a -b|=|a|+|b|=7+2=9.16.如图所示,点O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a ,b ,c ,d 的方向(用箭头表示),使a +b =BA →,c -d =DC →,并画出b -c 和a +d .解:因为a +b =BA →,c -d =DC →,所以a =OA →,b =BO →,c =OC →,d =OD →.如图所示,作平行四边形OBEC ,平行四边形ODF A .根据平行四边形法则可得,b -c =EO →,a +d =OF →.17.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,若AB →=a ,DA →=b ,OC →=c ,试证明:b +c -a =OA →.证明:(方法一)因为b +c =DA →+OC →=OC →+CB →=OB →,OA →+a =OA →+AB →=OB →,所以b +c =OA →+a ,即b +c -a =OA →.(方法二)OA →=OC →+CA →=OC →+CB →+CD →=c +DA →+BA →=b +c -AB →=b +c -a .(方法三)因为c -a =OC →-AB →=OC →-DC →=OC →+CD →=OD →=OA →+AD →=OA →-DA →=OA →-b ,所以b +c -a =OA →.C 级——探索创新练18.已知|a |=8,|b |=15. (1)求|a -b |的取值范围;(2)若|a -b |=17,则表示a ,b 的有向线段所在的直线所成的角是多少? 解:(1)由向量三角不等式||a |-|b ||≤|a -b |≤|a |+|b |,得7≤|a -b |≤23. 当a ,b 同向时,不等式左边取等号, 当a ,b 反向时,不等式右边取等号. (2)易知|a |2+|b |2=82+152=172=|a -b |2. 作OA →=a ,OB →=b ,则|BA →|=|a -b |=17, 所以△OAB 是直角三角形,其中∠AOB =90°. 所以表示a ,b 的有向线段所在的直线成90°角.。
部编版高中数学必修二第六章平面向量及其应用带答案重点知识归纳
(名师选题)部编版高中数学必修二第六章平面向量及其应用带答案重点知识归纳单选题1、在△ABC 中,已知AB =6,AC =2,且满足DB ⃑⃑⃑⃑⃑⃑ =2AD ⃑⃑⃑⃑⃑ ,AE ⃑⃑⃑⃑⃑ =EC ⃑⃑⃑⃑⃑ ,若线段CD 和线段BE 的交点为P ,则AP⃑⃑⃑⃑⃑ ⋅(CA ⃑⃑⃑⃑⃑ +CB ⃑⃑⃑⃑⃑ )=( ). A .3B .4C .5D .62、向量PA ⃑⃑⃑⃑⃑ =(k,12),PB ⃑⃑⃑⃑⃑ =(4,5),PC ⃑⃑⃑⃑⃑ =(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−113、已知向量a =(−1,m ),b ⃑ =(m +1,2),且a ⊥b ⃑ ,则m =( ) A .2B .−2C .1D .−14、在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .235、某地为响应习近平总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A =23°,∠C =120°,AC =60√3米,则A ,B 间的直线距离约为(参考数据sin37°≈0.6)( )A .60米B .120米C .150米D .300米6、已知向量|a |=2,|b ⃑ |=4,且a ,b ⃑ 不是方向相反的向量,则|a −b ⃑ |的取值范围是( ) A .(2,6)B .[2,6) C .(2,6]D .[2,6]7、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .表高×表距表目距的差+表高B .表高×表距表目距的差−表高 C .表高×表距表目距的差+表距D .表高×表距表目距的差−表距8、在△ABC 中,AB =1,AC =2,∠BAC =60°,P 是△ABC 的外接圆上的一点,若AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ ,则m +n 的最小值是( ) A .−1B .−12C .−13D .−16 多选题9、在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下述结论中正确的是( ) A .AB⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑ =CA ⃑⃑⃑⃑⃑ B .AG ⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) C .AF ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑⃑ +CE ⃑⃑⃑⃑⃑ =0⃑ D .GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =0⃑10、在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cosBcosC =b2a−c , S △ABC =3√34,且b =3,则A .cosB =12B .cosB =√32C .a +c =√3D .a +c =3√211、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A =π3,b +c =10,a =2√10,则三角形的面积不可能是( )A .5√3B .6√3C .14√3D .16√3 填空题12、在△ABC 中,P 是BC 上一点,若BP ⃑⃑⃑⃑⃑ =2PC ⃑⃑⃑⃑⃑ ,AP ⃑⃑⃑⃑⃑ =λAB ⃑⃑⃑⃑⃑ +μAC ⃑⃑⃑⃑⃑ ,则2λ+μ=___________.部编版高中数学必修二第六章平面向量及其应用带答案(二)参考答案1、答案:B分析:待定系数法将AP ⃑⃑⃑⃑⃑ 向量分解,由平面向量共线定理求出系数,然后代回原式计算 设AP⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ , 由DB ⃑⃑⃑⃑⃑⃑ =2AD ⃑⃑⃑⃑⃑ 知AB ⃑⃑⃑⃑⃑ =3AD ⃑⃑⃑⃑⃑ ,∴AP ⃑⃑⃑⃑⃑ =3xAD ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ ,∵D ,P ,C 三点共线,∴3x +y =1①, 由AE⃑⃑⃑⃑⃑ =EC ⃑⃑⃑⃑⃑ 知AC ⃑⃑⃑⃑⃑ =2AE ⃑⃑⃑⃑⃑ ,∴AP ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +2yAE ⃑⃑⃑⃑⃑ ,∵B ,P ,E 三点共线,∴x +2y =1②, 由①②得:x =15.y =25,∴AP ⃑⃑⃑⃑⃑ =15AB⃑⃑⃑⃑⃑ +25AC ⃑⃑⃑⃑⃑ , 而CA⃑⃑⃑⃑⃑ +CB ⃑⃑⃑⃑⃑ =−AC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ −2AC ⃑⃑⃑⃑⃑ , ∴AP⃑⃑⃑⃑⃑ ⋅(CA ⃑⃑⃑⃑⃑ +CB ⃑⃑⃑⃑⃑ )=(15AB ⃑⃑⃑⃑⃑ +25AC ⃑⃑⃑⃑⃑ )(AB ⃑⃑⃑⃑⃑ −2AC ⃑⃑⃑⃑⃑ )=15(AB ⃑⃑⃑⃑⃑ 2−4AC ⃑⃑⃑⃑⃑ 2)=15×(62−4×22)=4 故选:B 2、答案:C分析:求得BA ⃑⃑⃑⃑⃑ ,CA ⃑⃑⃑⃑⃑ ,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃑⃑⃑⃑⃑ =PA ⃑⃑⃑⃑⃑ −PB ⃑⃑⃑⃑⃑ =(k,12)−(4,5)=(k −4,7), CA⃑⃑⃑⃑⃑ =PA ⃑⃑⃑⃑⃑ −PC ⃑⃑⃑⃑⃑ =(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA ⃑⃑⃑⃑⃑ ∥CA ⃑⃑⃑⃑⃑ ,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11. 故选:C. 3、答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃑ =−m −1+2m =0,解得m =1 故选:C . 4、答案:A分析:根据已知条件结合余弦定理求得AB ,再根据cosB =AB 2+BC 2−AC 22AB⋅BC,即可求得答案.∵在△ABC 中,cosC =23,AC =4,BC =3根据余弦定理:AB2=AC2+BC2−2AC⋅BC⋅cosCAB2=42+32−2×4×3×2 3可得AB2=9,即AB=3由∵cosB=AB2+BC2−AC22AB⋅BC =9+9−162×3×3=19故cosB=19.故选:A.小提示:本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.5、答案:C分析:应用正弦定理有ACsinB =ABsinC,结合已知条件即可求A,B间的直线距离.由题设,∠B=180°−∠A−∠C=37°,在△ABC中,ACsinB =ABsinC,即60√3sin37°=√32,所以AB=90sin37°≈150米.故选:C6、答案:B分析:直接由||a|−|b⃑||≤|a−b⃑|<|a|+|b⃑|求解即可.由已知必有||a|−|b⃑||≤|a−b⃑|<|a|+|b⃑|,则所求的取值范围是[2,6).故选:B.7、答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EH AH ,FGAB =CGAC ,而 DE =FG ,所以DE AB=EH AH=CG AC=CG−EH AC−AH=CG−EH CH,而 CH =CE −EH =CG −EH +EG , 即AB =CG−EH+EG CG−EH×DE =EG×DE CG−EH+DE =表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出. 8、答案:B分析:先解三角形得到△ABC 为直角三角形,建立直角坐标系,通过AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ 表示出m +n ,借助三角函数求出最小值.由余弦定理得BC 2=AB 2+AC 2−2AB ⋅AC ⋅cos∠BAC = 1+4−2×1×2×cos 60∘=3,所以BC =√3,所以AB 2+BC 2=AC 2,所以AB ⊥BC .以AC 的中点为原点,建立如图所示的平面直角坐标系,易得A (-1,0),C (1,0),B (-12,√32),设P 的坐标为(cosθ,sinθ),所以AB ⃑⃑⃑⃑⃑ =(12,√32),AC ⃑⃑⃑⃑⃑ =(2,0),AP ⃑⃑⃑⃑⃑ = (cosθ+1,sinθ),又AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ +nAC ⃑⃑⃑⃑⃑ ,所以(cosθ+1,sinθ)=m (12,√32)+ n (2,0)=(m 2+2n ,√32m),所以m =2√33sin θ,n =cos θ2+12−√36sin θ,所以m +n =2√33sin θ+cos θ2+12−√36sin θ =√32sin θ+cos θ2+12=sin (θ+π6)+12≥−1+12=−12,当且仅当sin (θ+π6)=−1时,等号成立.故选:B . 9、答案:CD分析:根据向量的加法运算、相反向量、中线的向量表示,重心的性质分别计算求解. 由D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心, 因为AB⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑ =AC →≠CA ⃑⃑⃑⃑⃑ ,故A 错误; 由12(AB⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ )=AD →≠AG →, 故B 错误; 因为AF+BD+CE=12(AB →+BC →+CA →)=0, 故C 正确;因为GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =−23[12(AB →+AC →)+12(BA →+BC →)+12(CA →+CB →)] =−13(AB →+BA →+BC →+CB →+AC →+CA →)=0→, 故D 正确. 故选:CD 10、答案:AD分析:利用正弦定理边化角,再结合余弦定理即可求解. ∵cosBcosC =b2a−c =sinB2sinA−sinC .整理可得: sinBcosC =2sinAcosB −sinCcosB可得 sinBcosC +sinCcosB =sin(B +C)=sinA =2sinAcosB ∵A 为三角形内角, sinA ≠0 cosB =12, 故A 正确,B 错误.B ∈(0,π) ∴B =π3S △ABC=3√34,b =3∴3√34=12acsinB =12×a ×c ×√32=√34ac 解得 ac =3,由余弦定理得 9=a 2+c 2−ac =(a +c)2−3ac =(a +c)2−9 解得a +c =3√2, 故C 错误,D 正确. 故选: AD.小提示:解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”. 11、答案:BCD分析:根据余弦定理和三角形面积公式进行求解判断即可.解:因为A =π3,b +c =10,a =2√10,所以由余弦定理a 2=b 2+c 2−2bccosA ,可得40=b 2+c 2−ab =(b +c)2−3bc =100−3bc ,所以bc =20, 所以S △ABC =12bcsinA =12×20×√32=5√3.故选:BCD 12、答案:43##113分析:根据给定条件,用向量AB ⃑⃑⃑⃑⃑ ,AC ⃑⃑⃑⃑⃑ 表示向量AP ⃑⃑⃑⃑⃑ ,再利用平面向量基本定理求解作答. 在△ABC 中,BP ⃑⃑⃑⃑⃑ =2PC ⃑⃑⃑⃑⃑ ,则AP ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +BP ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +23BC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +23(AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ) =13AB ⃑⃑⃑⃑⃑ +23AC ⃑⃑⃑⃑⃑ , 又AP ⃑⃑⃑⃑⃑ =λAB ⃑⃑⃑⃑⃑ +μAC ⃑⃑⃑⃑⃑ ,且AB ⃑⃑⃑⃑⃑ ,AC ⃑⃑⃑⃑⃑ 不共线,则λ=13,μ=23,所以2λ+μ=43. 所以答案是:43。
新课程必修第二册《6.2平面向量的运算》基础检测及答案解析
新课程必修第二册《6.2平面向量的运算》基础检测及答案解析一、判断题:正确的打“√”,错误的打“×”1.实数λ与向量a 的积还是向量.( )2.对于非零向量a ,向量-6a 与向量2a 方向相反.( )3.向量-8a 的模是向量4a 的模的2倍.( )4.若b =λa (a ≠0),则a 与b 方向相同或相反.( )5.若a ∥b ,则存在λ∈R ,使得b =λa .( )[答案] (1)√ (2)√ (3)√ (4)× (5)×二、选择题1.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=( )①AD →;②DB →;③BC →;④CB →.A .①③B .②④C .①④D .②③答案:A解析:[∵四边形ABCD 为平行四边形,∴BC →=AD →,∴BC →+DC →+BA →=AD →+DC →+BA →=AC →+BA →=BC →.]2.对于任意一个四边形ABCD ,下列式子不能化简为BC →的是( )A .BA →+AD →+DC →B .BD →+DA →+AC → C .AB →+BD →+DC →D .DC →+BA →+AD → 答案:C解析:[在A 中,BA →+AD →+DC →=BD →+DC →=BC →;在B 中,BD →+DA →+AC →=BA →+AC →=BC →;在C 中,AB→+BD →+DC →=AD →+DC →=AC →;在D 中,DC →+BA →+AD →=DC →+BD →=BD →+DC →=BC →.] 3.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,DB .A ,B ,C C .B ,C ,DD .A ,C ,D答案:A 解析:[AB →+BC →+CD →=a +2b +(-5a +6b )+(7a -2b )=3a +6b =3(a +2b )=AD →=3AB →.所以A ,B ,D 三点共线.]4.如图所示,在平行四边形ABCD 中,下列结论中错误的是( )A.AB →=DC →B.AD →+AB →=AC →C.AB →-AD →=BD →D.AD →+CB →=0 答案:C解析:[A 项显然正确,由平行四边形法则知B 项正确.AB →-AD →=DB →,故C 项错误.D 项中AD →+CB →=AD →+DA →=0.]5.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( )A.EF →=OF →+OE →B.EF →=OF →-OE →C.EF →=-OF →+OE →D.EF →=-OF →-OE → 答案:B解析:[因为O ,E ,F 三点不共线,所以在△OEF 中,由向量减法的几何意义,得EF →=OF →-OE →,故选B.]6.下列等式错误的是( )A .a +0=0+a =aB.AB →+BC →+AC →=0C.AB →+BA →=0D.CA →+AC →=MN →+NP →+PM →答案: B解析:对于A ,根据0加任何向量都等于原向量,且向量加法满足交换律,所以A 正确;对于B ,根据向量的三角形加法运算可得AB →+BC →=AC →,故原式等于AC →+AC →≠0.故B 错误;对于C ,可知AB →与BA→共线且方向相反,所以AB →+BA →=0,所以C 正确;对于D ,可知MN →+NP →+PM →=MP →+PM →=0,又CA →+AC →=0,可知D 正确.故选B.7.设P 是△ABC 所在平面内一点,且BC →+BA →=BP →+BP →,则( )A.P A →+PB →+PC →=0B.P A →+PB →=0C.PC →+P A →=0D.PB →+PC →=0答案 C8.若|a |=3,|b |=4,a ,b 的夹角为135°,则a ·b =( )A.-3 2B.-6 2C.6 2D.2解析 ∵a ·b =|a ||b |cos 135°=3×4×⎝ ⎛⎭⎪⎫-22=-6 2.答案 B9.已知向量|a |=10,|b |=12,且a ·b =-60,则向量a 与b 的夹角为() A.60° B.120° C.135° D.150°答案 B解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-6010×12=-12,又0°≤θ≤180°,∴θ=120°.10.若向量a 与b 的夹角为60°,则向量-a 与-b 的夹角是( )A.60°B.120°C.30°D.150°答案 A解析 向量-a 与-b 的夹角与a 与b 的夹角相等,为60°.11.已知|a |=1,|b |=2,a 与b 的夹角为π3,则a ·b 等于( )A.1B.2C.3D.4答案 A解析 a ·b =1×2×cos π3=1,故选A.12.在等腰直角三角形ABC 中,若∠C =90°,AC =2,则BA→·BC →的值等于( ) A.-2B.2C.-2 2D.22答案 B解析 BA→·BC →=|BA →||BC →|cos ∠ABC =2×2×cos 45°=2. 13.已知|a |=8,|b |=4,a 与b 的夹角为120°,与a 同向的单位向量为e ,则向量b 在a 方向上的投影向量为( )A.4eB.-4eC.2eD.-2e答案 D解析 向量b 在a 方向上的投影向量为|b |cos θ e =4×cos 120°e =-2e .三、填空题1.已知a ,b 为非零向量,则下列命题中真命题的序号是________.①若|a |+|b |=|a +b |,则a 与b 方向相同;②若|a |+|b |=|a -b |,则a 与b 方向相反;③若|a |+|b |=|a -b |,则a 与b 有相等的模;④若||a |-|b ||=|a -b |,则a 与b 方向相同.①②④ [当a ,b 方向相同时有|a |+|b |=|a +b |,||a |-|b ||=|a -b |,当a ,b 方向相反时有||a | -|b ||=|a +b |,|a |+|b |=|a -b |.因此①②④为真命题.]2.在△ABC 中,AB →=a ,BC →=b ,则a +b =________.答案:AC →解析:[a +b =AB →+BC →=AC →.]3.在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 是________.答案:矩形解析:[由图知|BC →+BA →|=|BD →|.又|BC →+AB →|=|AD →+AB →|=|AC →|,∴|BD →|=|AC →|.∴四边形ABCD 为矩形.]4.若a 等于“向东走8 km ”,b 等于“向北走8 km ”,则|a +b |=________,a +b 的方向是________. 答案 8 2 km 北偏东45°解析 如图所示,设AB →=a ,BC →=b ,则AC →=a +b ,且△ABC 为等腰直角三角形.则|AC →|=82,∠BAC =45°.5.在菱形ABCD 中,∠DAB =60°,|A B →|=1,则|BC →+CD →|=________.答案 1解析 由题意知△ABD 为等边三角形,∴|BC →+CD →|=|BD →|=1.6.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b .答案:-57 解析:[因为|a |=5,|b |=7,所以|a ||b |=57.又因为b 与a 的方向相反,所以a =-57b .]7.已知a ,b 的夹角为θ,|a |=2,|b |=3.(1)若θ=135°,则a ·b =________;(2)若a ∥b ,则a ·b =________;(3)若a ⊥b ,则a ·b =________.答案 (1)-32 (2)±6 (3)0四、解答题1.化简:(1)CD →+BC →+AB →;(2)AB →+DF →+CD →+BC →+FG →.(3)化简:(AB →-CD →)-(AC →-BD →).解析 因为P 是△ABC 所在平面内一点,BC →+BA →=BP →+BP →,所以P 是AC 的中点,所以PC →+P A →=0.[解] (1)CD →+BC →+AB →=(AB →+BC →)+CD →=AC →+CD →=AD →.(2)AB →+DF →+CD →+BC →+FG →=(AB →+BC →)+(CD →+DF →)+FG →=AC →+CF →+FG →=AF →+FG →=AG →.(3)法一:(AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=AB →+DC →+CA →+BD →=(AB →+BD →)+(DC →+CA →)=AD →+DA →=0.法二:(AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.2.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.解析: OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.3.如图,在正六边形OABCDE 中,OA →=a ,OE →=b ,试用向量a ,b 将OB →,OC →,OD →表示出来.解 设正六边形的中心为P ,则四边形ABPO ,AOEP ,ABCP ,OPDE 均为平行四边形,由向量加法的平行四边形法则得OP →=OA →+OE →=a +b . ∵AB →=OP →=ED →,∴AB →=ED →=a +b .在△AOB 中,根据向量加法的三角形法则得OB →=OA →+AB →=a +a +b . 同理,在△OBC 中,OC →=OB →+BC →=a +a +b +b ,在△OED 中,OD →=OE →+ED →=OE →+OP →=b +a +b .4.如图所示,设O 为正六边形ABCDEF 的中心,求下列向量:(1)OA →+OC →;(2)BC →+FE →.[解] (1)由题图可知,四边形OABC 为平行四边形.由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由题图可知,BC →=FE →=OD →=AO →,∴BC →+FE →=AO →+OD →=AD →.5.如图,在边长为1的菱形ABCD 中,∠ABC =60°,求(1)AB→·AC →;(2)AB →·AD →;(3)BC →·AC →. 解 (1)由菱形的性质知,∠BAD =120°,∠BAC =60°,∠ACB =60°. ∴△ABC 为等边三角形.∴AB →·AC →=|AB →||AC →|cos 60°=1×1×12=12. (2)∵AB→与AD →的夹角为120°, ∴AB →·AD →=|AB →||AD →|cos 120°=1×1×⎝ ⎛⎭⎪⎫-12=-12. (3)∵BC →与AC →的夹角为60°,∴BC →·AC →=|BC →||AC →|cos 60°=1×1×12=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修二第六章第2节《平面向量的运算》解答题 (19)一、解答题(本大题共30小题,共360.0分) 1. 如图,在边长为1的菱形ABCD 中,∠DAB =60∘,E 是线段CD 上一点,且满足|CE⃗⃗⃗⃗⃗ |=2|DE ⃗⃗⃗⃗⃗⃗ |,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ .(1)用a ⃗ ,b ⃗ 表示BE ⃗⃗⃗⃗⃗; (2)在线段BC 上是否存在一点F 满足AF ⊥BE ?若存在,确定点F 的位置,并求|AF ⃗⃗⃗⃗⃗ |;否则,请说明理由.2. 已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且,a ⊥c .(1)求b ⃗ 和c ⇀;(2)若m =2a −b ,n =a +c ,求向量m ⇀与向量n ⇀的夹角的大小. (3)当k 为何值时,向量ka +b 与向量a −2b 共线.3.已知向量a→=(sinx,2√3sinx−cosx),b→=(sinx,cosx),函数f(x)=a→⋅b→.(1)求f(x)的单调递增区间;]时,求f(x)的值域.(2)当x∈[0,5π124.已知平面向量a⃗=(3,4),b⃗ =(9,x),c⃗=(4,y),且a⃗//b⃗ ,a⃗⊥c⃗.(1)求b⃗ 和c⃗;(2)若m⃗⃗⃗ =2a⃗−b⃗ ,n⃗=a⃗+c⃗,求向量m⃗⃗⃗ 与向量n⃗的夹角的大小.5.已知ω>0,a⃗=(√3sinωx,−cosωx),b⃗ =(cosωx,cosωx),f(x)=a⃗⋅b⃗ ,x1,x2是y=f(x)−12的其中两个零点,且|x1−x2|min=π.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若α∈(0,π2),f(α2)=110,求sin2α的值.6.已知a⃗=(1,0),b⃗ =(2,1).(1)当k为何值时,k a⃗+b⃗ 与a⃗+2b⃗ 共线?(2)当k为何值时,k a⃗+b⃗ 与a⃗+2b⃗ 垂直?(3)当k为何值时,k a⃗+b⃗ 与a⃗+2b⃗ 的夹角为锐角?7.如图,已知正方形ABCD的边长为2,过中心O的直线l与两边AB、CD分别交于交于点M、N.(1)求BD ⃗⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ 的值;(2)若Q 是BC 的中点,求QM ⃗⃗⃗⃗⃗⃗⃗ ⋅QN⃗⃗⃗⃗⃗⃗ 的取值范围; (3)若P 是平面上一点,且满足2OP ⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗⃗ +(1−λ)OC ⃗⃗⃗⃗⃗ ,求PM ⃗⃗⃗⃗⃗⃗ ⋅PN⃗⃗⃗⃗⃗⃗ 的最小值.8. 在ΔOPQ 中,OA →=12OP →,OB →=13OQ →,QA 与PB 相交于点C ,设OP →=a→,OQ →=b →. (1)用a →,b →表示OC →;(2)过C 点作直线l 分别与线段OQ ,OP 交于点M ,N ,设OM →=λOQ →,ON →=μOP →,求1λ+2μ的值.9. 设e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是不共线的非零向量,且a ⃗ =e 1⃗⃗⃗ −2e 2⃗⃗⃗ ,b ⃗ =e 1⃗⃗⃗ +3e 2⃗⃗⃗ .(1)若c ⃗ =3e 1⃗⃗⃗ −e 2⃗⃗⃗ ,用a⃗ ,b ⃗ 表示c ⃗ ; (2)若4e 1⃗⃗⃗ −3e 2⃗⃗⃗ =λa⃗ +u b ⃗ ,求λ,u 的值.10. 已知在平面直角坐标系中,点A (a,0)、点B (0,b )(其中a 、b 为常数,且ab ≠0),点O 为坐标原点.(1)设点P 为线段AB 靠近点A 的三等分点,OP ⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +(1−λ)OB ⃗⃗⃗⃗⃗⃗ (λ∈R),求λ的值; (2)如图,设点P 1,P 2,⋯,P k ,⋯,P n−1是线段AB 的n 等分点,OP k →=μOA →+(1−μ)OB →,其中1≤k ≤n −1,n ,k ∈N ∗,n ≥2,求当n =2020时,求|OA →+OP 1→+OP 2→+⋯+OP n−1→+OB →|的值(用含a 、b 的式子表示)(3)若a =b =1,t ∈[0,1],求|tAB →−AO →|+|13OB →+(1−t )BA →|的最小值.11.已知向量a⃗=(2sinθ,sinθ+cosθ),b⃗ =(cosθ,−2−m),函数f(θ)=a⃗⋅b⃗ 的最小值为g(m)(m∈R).(1)当m=1时,求g(m)的值;(2)求g(m);(3)已知函数ℎ(x)为定义在R上的增函数,且对任意的x1,x2都满足ℎ(x1+x2)=ℎ(x1)+ℎ(x2).问:是否存在这样的实数m,使不等式ℎ(f(θ))−ℎ(4sinθ+cosθ)+ℎ(3+2m)>0对所有θ∈[0,π2]恒成立,若存在,求出m的取值范围;若不存在,说明理由.12.已知在中,角A、B、C的对边分别是a、b、c,,n⃗=(c,−1),且.(1)求角C;(2)若边长c=3,求周长的最大值.13.已知向量a⃗=(sin θ,1),b⃗ =(√3,−cos θ),θ∈[0,π].(1)若,求θ的值;(2)求|a⃗+b⃗ |的最大值,并写出此时的θ的值.14.已知向量a⃗=(2sin x,√3cos x),b⃗ =(−sin x,2sin x),函数f(x)=a⃗·b⃗ .(1)求f(x)的单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=1,c=1,ab=2√3,且a>b,求a,b的值.15.已知椭圆C:x22+y2=1的上顶点为B,过点(0,−13)且不与y轴重合的直线l与椭圆C相交于P,Q两点.(1)求证:BP⊥BQ;(2)求▵BPQ面积S的最大值,并求此时直线l的方程.16. 在▵ABC 中,a,b,c 分别是角A,B,C 所对的边,已知a =1,m ⃗⃗⃗ =(1,−√3),n⃗ =(sinA,cosA ),且m ⃗⃗⃗ ⊥n ⃗ . (1)求角A 的大小;(2)若▵ABC 的面积为√34,求b +c 的值.17. (1)已知平面向量a ⃗ 、b ⃗ ,其中a →=(√5,−2),若|b ⃗ |=3√2,且a ⃗ //b ⃗ ,求向量b →的坐标表示;(2)已知平面向量a →、b →满足|a →|=2,|b →|=1,a →与b →的夹角为2π3,且(a →+λb →)⊥(2a ⃗ −b →),求λ的值.18. 如图,在四边形ABCD 中,AD =4,AB =2.(1)若△ABC 为等边三角形,且AD//BC ,E 是CD 的中点,求AE ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ 的值; (2)若AC =AB ,cos∠CAB =35,AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =45,求|DC ⃗⃗⃗⃗⃗ |的值.19. 在△ABC 中,∠BAC =120∘,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ .(1)试用a ⃗ ,b ⃗ 表示AD ⃗⃗⃗⃗⃗⃗ ; (2)求AD⃗⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ 的值.20. 在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ .(1)试用a ⃗ ,b ⃗ 表示AD ⃗⃗⃗⃗⃗⃗ ; (2)求AD⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ 的值.21. 已知向量a ⃗ =(cosα,sinα),b ⃗ =(cosβ,sinβ),且a ⃗ ,b ⃗ 满足关系|k a ⃗ +b ⃗ |=√3|a ⃗ −k b ⃗ |(k >0).(1)求a ⃗ 与b ⃗ 的数量积用k 表示的解析式f(k);(2)a ⃗ 能否和b ⃗ 垂直?a ⃗ 能否和b ⃗ 平行?若不能,则说明理由;若能,则求出相应的k 值; (3)求a ⃗ 与b ⃗ 夹角的最大值.22. 如图在直角坐标系中,AB ⌢的圆心角为3π2,AB ⌢所在圆的半径为1,角θ的终边与AB ⌢交于点C .(1)当C 为AB ⌢的中点时,D 为线段OA 上任一点,求|OC⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |的最小值; (2)当C 在AB ⌢上运动时,D ,E 分别为线段OA ,OB 的中点,求CE ⃗⃗⃗⃗⃗ ⋅DE⃗⃗⃗⃗⃗⃗ 的取值范围.23. 已知两个非零向量a ⃗ 与b ⃗ 不共线,(1)若AB ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,BC ⃗⃗⃗⃗⃗ =2a ⃗ +8b ⃗ ,CD ⃗⃗⃗⃗⃗ =3(a ⃗ −b ⃗ ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使得k a ⃗ +b ⃗ 与a ⃗ +k b ⃗ 方向相反;(3)若a ⃗ =(1,2),b ⃗ =(1,1),c ⃗ =a ⃗ +λb ⃗ ,且b ⃗ ⊥c ⃗ ,求实数λ的值.24. 如图在矩形ABCD 中,AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,N 是CD 的中点,M 是线段AB 上的点,|a ⃗ |=2,|b ⃗ |=1。
(1)若M 是AB 的中点,求证:AN ⃗⃗⃗⃗⃗⃗ 与CM⃗⃗⃗⃗⃗⃗ 共线; (2)在线段AB 上是否存在点M ,使得BD ⃗⃗⃗⃗⃗⃗ 与CM ⃗⃗⃗⃗⃗⃗ 垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在矩形ABCD 上运动,试求AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值及取得最大值时P 点的位置。
25. 已知向量a⃗ =(sin θ,1),b ⃗ =(1,cos θ),−π2<θ<π2. (Ⅰ)若,求θ;(Ⅱ)求|a ⃗ +b ⃗ |的最大值.26. 如图,在ΔABC 中,,E 是AD 的中点,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ .(1)试用a ⃗ ,b ⃗ 表示AD ⃗⃗⃗⃗⃗ ; (2)若|a ⃗ |=1,|b ⃗ |=1,且a ⃗ 与b ⃗ 的夹角为,求|BE⃗⃗⃗⃗⃗ |.27. 在直角梯形ABCD 中,已知AB//CD ,∠DAB =90°,AB =4,AD =CD =2,对角线AC 交BD于点O ,点M 在AB 上,且满足OM ⊥BD .(1)求AM ⃗⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ 的值; (2)若N 为线段AC 上任意一点,求AN ⃗⃗⃗⃗⃗⃗ ·MN⃗⃗⃗⃗⃗⃗⃗ 的最小值.28.已知a⃗,b⃗ ,c⃗在同一平面内,且a⃗=(1,2).(1)若|c⃗|=3√5,且a⃗ll c⃗,求c⃗;(2)若b⃗ |=√2,且(a⃗+2b⃗ )⊥(a⃗−b⃗ ),求a⃗与b⃗ 的夹角的余弦值.29.已知向量p⃗=(√3sin x,cos x),q⃗=(cos x,−cos x),函数f(x)=p⃗⋅q⃗−32,(x∈R).(1)求函数f(x)在x∈[−π12,5π12]上的值域;(2)设▵ABC的内角A,B,C的对应边分别为a,b,c,若f(C)=−1,且c=4,a+b=5,求ΔABC的面积.30. 如图所示,在ΔABC 中D,F 分别是BC,AC 的中点,AE ⃗⃗⃗⃗⃗=23AD ⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗(1)用a ⃗ ,b ⃗ 表示向量AD ⃗⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ ; (2)求证:B,E,F 三点共线.【答案与解析】1.答案:解:(1)根据题意得:BC⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ =b ⃗ , CE ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ =23BA ⃗⃗⃗⃗⃗ =−23AB ⃗⃗⃗⃗⃗ =−23a ⃗ , BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =b ⃗ −23a ⃗ .(2)设BF ⃗⃗⃗⃗⃗ =t BC ⃗⃗⃗⃗⃗ =t b ⃗ ,则FC ⃗⃗⃗⃗⃗ =(1−t )b ⃗ ,t ∈[0,1], ∴AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ =a ⃗ +t b ⃗ , 因为在边长为1的菱形ABCD 中,, |a ⃗ |=|b⃗ |=1,,为使AF ⊥BE ,则AF ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =0,即(a ⃗ +t b ⃗ )·(b ⃗ −23a ⃗ )=(1−23t)a ⃗ ·b ⃗ −23a ⃗ 2+tb ⃗ 2=(1−23t)×12−23+t =23t −16=0,解得t =14∈[0,1],从而AF ⃗⃗⃗⃗⃗ =a ⃗ +14b ⃗ , 此时BF ⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,如图:|AF ⃗⃗⃗⃗⃗ |=√AF ⃗⃗⃗⃗⃗ 2=√a ⃗ 2+12a ⃗ ·b ⃗ +116b ⃗ 2=√1+12×12+116=√214. 综上所述,满足题意的点F 存在,BF ⃗⃗⃗⃗⃗=14BC ⃗⃗⃗⃗⃗ ,且此时|AF ⃗⃗⃗⃗⃗ |=√214.解析:本题考查向量的加、减法运算法则,数量积运算,属于中档题. (1)根据题意可知BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,求得CE ⃗⃗⃗⃗⃗ =−23a ⃗ ,从而即可得到BE ⃗⃗⃗⃗⃗ 的值. (2)根据题意设BF ⃗⃗⃗⃗⃗ =t BC ⃗⃗⃗⃗⃗ =tb ⃗ ,求得AF ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ 关于 a ⃗ ,b ⃗ 的表达式,为使AF ⊥BE ,则AF ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =0,利用数量积的运算得到关于t 的方程,求得t 的值,看是否在[0,1]的范围内即可,然后确定F 的位置,并利用向量的模的求法得到|AF⃗⃗⃗⃗⃗ |的值. 2.答案:(1)∵a →=(3,4),b →=(9,x ),c →=(4,y ),且,a →⊥c →,∴{3x =4×93×4+4y =0, 解得{x =12y =−3,因此,b →=(9,12),c →=(4,−3); (2)∵m →=2a →−b →=2×(3,4)−(9,12)=(−3,−4),n →=a →+c →=(3,4)+(4,−3)=(7,1),则m →⋅n →=−3×7−4×1=−25,∴|m →|=√(−3)2+(−4)2=5,|n →|=√72+12=5√2,设m →与n →的夹角为θ,∴cos ⟨m →,n →⟩=m →⋅n→|m →|⋅|n →|=−255×5√2=−√22,∵0≤θ≤π,则θ=3π4.因此,向量m →与向量n →的夹角为3π4.(3)ka +b =k (1,2)+(−3,2)=(k −3,2k +2),a −2b =(1,2)−2(−3,2)=(7,−2)∵ka +b 与a −2b 共线,∴7(2k +2)=−2(k −3)∴k =−12解析:本题考查平面向量的坐标运算,涉及共线向量、向量垂直以及利用坐标计算向量的夹角,解题的关键就是将问题转化为向量的坐标运算,考查计算能力,属于中等题.(1)利用共线向量的坐标表示和垂直向量的坐标表示并结合条件,a →⊥c →,列方程求出x 、y 的值,可得出向量b →和c →的坐标;(2)求出m→、n→的坐标,利用向量数量积的坐标运算计算出向量m→与向量n→夹角的余弦值,由夹角的取值范围可求出这两个向量夹角的值.(3)利用向量的坐标运算可将ka+b与向量a−2b表示出来,再利用向量共线的性质,即可求解.3.答案:解:(1)由题得f(x)=a⃗⋅b⃗.令−π2+2kπ⩽2x−π6⩽π2+2kπ(k∈Z),得:−π6+kπ⩽x⩽π3+kπ(k∈Z),则函数f(x)的单调递增区间为[−π6+kπ,π3+kπ](k∈Z);(2)当0≤x≤5π12时,−π6⩽2x−π6⩽2π3,所以,则函数f(x)的值域为[−1,2].解析:本题考查平面向量的数量积,二倍角公式和辅助角公式,以及正弦函数的性质,是中档题.(1)由数量积的定义和三角函数的运算可得,由2kπ−π2≤2x−π6≤2kπ+π2,k∈Z,可得单调递增区间;(2)由x的范围,可得2x−π6的范围,进而可得sin(2x−π6)的范围,可得函数f(x)在区间x∈[0,5π12]上的值域.4.答案:解:(1)∵a⃗//b⃗ ,∴3x−36=0.∴x=12.∵a⃗⊥c⃗,∴3×4+4y=0.∴y=−3.∴b⃗ =(9,12),c⃗=(4,−3).(2)m⃗⃗⃗ =2a⃗−b⃗ =(6,8)−(9,12)=(−3,−4),n⃗=a⃗+c⃗=(3,4)+(4,−3)=(7,1).设m⃗⃗⃗ ,n⃗的夹角为θ,则cosθ=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ ||n⃗⃗ |=√(−3)2+(−4)2×√72+12=25√2=−√22.∵θ∈[0,π],∴θ=3π4,即m⃗⃗⃗ ,n⃗的夹角为3π4.解析:本题考查平面向量共线的充要条件,向量的数量积,考查向量的坐标运算和求两向量的夹角,属于中档题.(1)根据向量平行和向量垂直对应的坐标关系,可得结果;(2)首先求得m⃗⃗⃗ ,n⃗的坐标,代入公式cosθ=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ ||n⃗⃗ |计算即可.5.答案:解:(Ⅰ)f(x)=√3sinωxcosωx−cos2ωx=√32sin2ωx−1+cos2ωx2=√32sin2ωx−12cos2ωx−12=sin(2ωx−π6)−12.∵x1,x2是函数y=f(x)−12=sin(2ωx−π6)−1的两个零点,即x1,x2是方程sin(2ωx−π6)=1的两个实根,且|x1−x2|min=π,∴T=π.∵T=2π2ω,∴ω=1.∴f(x)=sin(2x−π6)−12.令−π2+2kπ⩽2x−π6⩽π2+2kπ,k∈Z,得−π6+kπ≤x≤π3+kπ,k∈Z.∴f(x)的单调递增区间为[−π6+kπ,π3+kπ](k∈Z).(Ⅱ)f(α2)=sin (α−π6)−12=110,∴sin(α−π6)=35.∵0<α<π2,∴−π6<α−π6<π3,∴cos (α−π6)=45.∵sinα=sin[(α−π6)+π6]=sin(α−π6)cosπ6+cos(α−π6)sinπ6=4+3√310,cosα=cos[(α−π)+π]=cos(α−π6)cosπ6−sin(α−π6)sinπ6=4√3−310,∴sin2α=2sinαcosα=2×4+3√310×4√3−310=24+7√350解析:本题考查了函数y=Asin(ωx+φ)的图象与性质、三角恒等变换和向量的数量积,是中档题.(Ⅰ)先由向量的数量积和三角恒等变换得出f(x),由|x1−x2|min=π,得出T,进而得出ω的值,再由整体代入法f(x)的单调递增区间;(Ⅱ)由f(α2)=110得出sin(α−π6)=35,cos (α−π6)=45,由sinα=sin[(α−π6)+π6]和cosα=cos[(α−π6)+π6]计算,再由二倍角公式可得sin2α的值.6.答案:解:因为a⃗=(1,0),b⃗ =(2,1),所以k a⃗+b⃗ =(k+2,1),a⃗+2b⃗ =(5,2).(1)因为k a⃗+b⃗ 与a⃗+2b⃗ 共线,所以(k+2)×2−1×5=0,解得k=12,即当k =12时,k a ⃗ +b ⃗ 与a ⃗ +2b ⃗ 共线. (2)因为k a ⃗ +b ⃗ 与a ⃗ +2b ⃗ 垂直,所以(k a ⃗ +b ⃗ )⋅(a ⃗ +2b ⃗ )=0,即5×(k +2)+2×1=0,解得k =−125,即当k =−125时,k a ⃗ +b ⃗ 与a ⃗ +2b ⃗ 垂直.(3)因为k a ⃗ +b ⃗ 与a ⃗ +2b ⃗ 的夹角为锐角,所以(k a ⃗ +b ⃗ )⋅(a ⃗ +2b ⃗ )>0且k a ⃗ +b ⃗ 与a ⃗ +2b ⃗ 不共线, 因此5×(k +2)+2×1>0且(k +2)×2−1×5≠0, 解得k >−125且k ≠12,即当k >−125且k ≠12时,k a ⃗ +b ⃗ 与a ⃗ +2b ⃗ 的夹角为锐角.解析:本题考查了向量垂直的判断与证明,向量的数量积,平面向量的坐标运算和平面向量共线的充要条件,属于中档题.利用平面向量的坐标运算得k a ⃗ +b ⃗ =(k +2,1)和a ⃗ +2b ⃗ =(5,2). (1)利用平面向量共线的充要条件,计算得结论;(2)利用向量垂直的判断得(k a ⃗ +b ⃗ )⋅(a ⃗ +2b ⃗ )=0,再利用向量数量积的坐标运算,计算得结论; (3)利用向量的数量积得(k a ⃗ +b ⃗ )⋅(a ⃗ +2b ⃗ )>0且k a ⃗ +b ⃗ 与a ⃗ +2b ⃗ 不共线,再利用向量数量积的坐标运算和平面向量共线的充要条件,计算得结论.7.答案:解:(1)由正方形可得BC ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =0所以BD ⃗⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =(BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ )⋅DC ⃗⃗⃗⃗⃗ =−CD ⃗⃗⃗⃗⃗ 2=−4;(2)因为直线l 过中心O 且与两边AB 、CD 分别交于交于点M 、N . 所以O 为M 、N 中点,所以QM ⃗⃗⃗⃗⃗⃗⃗ ⋅QN ⃗⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗⃗ )⋅(QO ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=QO ⃗⃗⃗⃗⃗⃗ 2−OM ⃗⃗⃗⃗⃗⃗⃗ 2. 因为Q 是BC 的中点,所以|QO ⃗⃗⃗⃗⃗⃗ |=1,1⩽|OM ⃗⃗⃗⃗⃗⃗⃗ |⩽√2, 所以−1⩽QO ⃗⃗⃗⃗⃗⃗ 2−OM⃗⃗⃗⃗⃗⃗⃗ 2⩽0,即QM ⃗⃗⃗⃗⃗⃗⃗ ⋅QN⃗⃗⃗⃗⃗⃗ 的取值范围为[−1,0]; (3)令OT⃗⃗⃗⃗⃗ =2OP ⃗⃗⃗⃗⃗ ,由OT ⃗⃗⃗⃗⃗ =2OP ⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗⃗ +(1−λ)OC ⃗⃗⃗⃗⃗ 知点T 在BC 上, 又因为O 为M 、N 中点,所以|OT ⃗⃗⃗⃗⃗ |⩾1,从而|OP ⃗⃗⃗⃗⃗|⩾12, PM ⃗⃗⃗⃗⃗⃗ ⋅PN ⃗⃗⃗⃗⃗⃗ =(PO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗⃗ )⋅(PO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=PO ⃗⃗⃗⃗⃗ 2−OM⃗⃗⃗⃗⃗⃗⃗ 2因为1⩽|OM⃗⃗⃗⃗⃗⃗⃗ |⩽√2, 所以PM ⃗⃗⃗⃗⃗⃗ ⋅PN ⃗⃗⃗⃗⃗⃗ =PO ⃗⃗⃗⃗⃗ 2−OM ⃗⃗⃗⃗⃗⃗⃗ 2⩾14−2=−74, 即PM ⃗⃗⃗⃗⃗⃗ ⋅PN ⃗⃗⃗⃗⃗⃗ 的最小值为−74.解析:本题考查向量的数量积,向量的基本运算,向量的模,向量共线的判定与证明,向量的几何运用,数中档题.(1)将向量BD ⃗⃗⃗⃗⃗⃗ 分解为BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ ,利用垂直和数量积的运算即可求解;(2)由O 为M 、N 中点可得QM ⃗⃗⃗⃗⃗⃗⃗ ⋅QN ⃗⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗⃗ )⋅(QO ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=QO ⃗⃗⃗⃗⃗⃗ 2−OM ⃗⃗⃗⃗⃗⃗⃗ 2,再由|QO ⃗⃗⃗⃗⃗⃗ |和|OM⃗⃗⃗⃗⃗⃗⃗ |的范围计算即可;(3)令OT ⃗⃗⃗⃗⃗ =2OP ⃗⃗⃗⃗⃗ ,由向量共线的判断可得点T 在BC 上,即可得|OP ⃗⃗⃗⃗⃗ |的范围,再由PM ⃗⃗⃗⃗⃗⃗ ⋅PN⃗⃗⃗⃗⃗⃗ =(PO⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗⃗ )⋅(PO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=PO ⃗⃗⃗⃗⃗ 2−OM ⃗⃗⃗⃗⃗⃗⃗ 2结合|OM ⃗⃗⃗⃗⃗⃗⃗ |的范围计算即可. 8.答案:解:(1)∵A ,C ,Q 三点共线,设AC⃗⃗⃗⃗⃗ =k AQ ⃗⃗⃗⃗⃗ , ∴OC ⃗⃗⃗⃗⃗ =k ⋅OQ ⃗⃗⃗⃗⃗⃗ +(1−k)⋅OA ⃗⃗⃗⃗⃗ =k b ⃗ +(1−k)2a ⃗ .同理由P ,C ,B 三点共线可得:OC ⃗⃗⃗⃗⃗ =t ⋅OP ⃗⃗⃗⃗⃗ +(1−t)⋅OB ⃗⃗⃗⃗⃗⃗ =t a ⃗ +(1−t)3b ⃗ ,其中k,t ∈R , 根据平面向量基本定理知:{t =1−k2k =1−t 3,k =15,t =25,∴OC ⃗⃗⃗⃗⃗ =25a ⃗ +15b ⃗ . (2)由N ,C ,M 三点共线,OC ⃗⃗⃗⃗⃗ =x ⋅OM ⃗⃗⃗⃗⃗⃗⃗ +(1−x)⋅ON ⃗⃗⃗⃗⃗⃗ =xλ⋅b ⃗ +(1−x)μ⋅a ⃗ .又由(1)知OC ⃗⃗⃗⃗⃗ =25a ⃗ +15b ⃗ ,所以{xλ=15(1−x)μ=25,消去x 得1λ+2μ=5.解析:本题考查平面向量的基本定理及其应用和平面向量的线性运算,属于一般题. (1)设AC →=kAQ →,得OC ⃗⃗⃗⃗⃗ =k b ⃗ +(1−k)2a ⃗ ,结合OC ⃗⃗⃗⃗⃗ =t a ⃗ +(1−t)3b ⃗ ,由平面向量基本定理得{t =1−k2k =1−t 3,求出k ,t ,即可得OC →;(2)由OC ⃗⃗⃗⃗⃗ =x ⋅OM ⃗⃗⃗⃗⃗⃗⃗ +(1−x)⋅ON ⃗⃗⃗⃗⃗⃗ =xλ⋅b ⃗ +(1−x)μ⋅a ⃗ ,结合OC ⃗⃗⃗⃗⃗ =25a ⃗ +15b ⃗ ,得{xλ=15(1−x)μ=25,消去x 即可求1λ+2μ的值.9.答案:解: (1)设c ⃗ =x a ⃗ +y b ⃗ =x(e 1⃗⃗⃗ −2e 2⃗⃗⃗ )+y(e 1⃗⃗⃗ +3e 2⃗⃗⃗ )=(x +y)e 1⃗⃗⃗ +(3y −2x)e 2⃗⃗⃗ ,因为c ⃗ =3e 1⃗⃗⃗ −e 2⃗⃗⃗ ,所以(x +y)e 1⃗⃗⃗ +(3y −2x)e 2⃗⃗⃗ =3e 1⃗⃗⃗ −e 2⃗⃗⃗ , 又e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是不共线的非零向量, 所以{x +y =33y −2x =−1,解得{x =2y =1,即c ⃗ =2a ⃗ +b ⃗ . (2)因为4e 1⃗⃗⃗ −3e 2⃗⃗⃗ =λa ⃗ +μb ⃗ =λ(e 1⃗⃗⃗ −2e 2⃗⃗⃗ )+μ(e 1⃗⃗⃗ +3e 2⃗⃗⃗ )=(λ+μ)e 1⃗⃗⃗ −(2λ−3μ)e 2⃗⃗⃗ , 且向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是不共线的非零向量, 所以{λ+μ=42λ−3μ=3,解得{λ=3μ=1.解析:本题考查平面向量基本定理以及向量的加减数乘运算, 属基础题目.(1)可设c ⃗ =x a ⃗ +y b ⃗ ,从而得到c ⃗ =x a ⃗ +y b ⃗ =x(e 1⃗⃗⃗ −2e 2⃗⃗⃗ )+y(e 1⃗⃗⃗ +3e 2⃗⃗⃗ )=(x +y)e 1⃗⃗⃗ +(3y −2x)e 2⃗⃗⃗ ,根据平面向量基本定理即可建立关于x ,y 的方程组,解出x ,y 便可用a⃗ ,b ⃗ 表示出向量c ⃗ ;(2)方法同(1),根据平面向量基本定理建立关于λ,μ的二元一次方程组,解出λ,μ即可. 10.答案:解:(1)因为AP →=OP →−OA →=(λ−1)OA →+(1−λ)OB →=(λ−1)(OA →−OB →)=(λ−1)BA →, 而点P 为线段AB 上靠近点A 的三等分点,所以AP →=13AB →, 所以λ−1=−13,所以λ=23.(2)由题意得OP 1=20192020OA →+12020OB →,OP 2019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12020OA ⃗⃗⃗⃗⃗ +20192020OB ⃗⃗⃗⃗⃗⃗ , 所以OP 1→+OP 2019→=OA →+OB →,事实上,对任意正整数m ,n ,且m +n =2020,有OP m →=2020−m 2020OA →+m2020OB →,OP n →=2020−n 2020OA →+n2020OB →,所以OP m →+OP n →=OA →+OB →,所以|OA ⇀+OP 1⇀+OP 2⇀+⋯+OP n−1⇀+OB ⇀|=20212|OA ⇀+OB ⇀|=20212√a 2+b 2,(3)当a =b =1时,线段AB 上存在一点M ,使得tAB ⇀=AM →,(1−t )BA →=BM →,且存在点N (0,23),NB →=13OB →,则tAB →−AO →=AM →−AO →=OM →,13OB →+(1−t )BA →=NB →+BM →=NM →,所以|tAB →−AO →|+|13OB →+(1−t )BA →|=|OM →|+|MN →|,即线段AB 上存在一点M ,到点O 和点N 的距离之和,如图所示:作点O 关于线段AB 的对称点O′(1,1),则最小值为|O′N |=√(1−0)2+(1−23)2=√103.解析:本题考查向量共线定理、向量线性运算、向量的模及平面向量基本定理应用,属于较难题. (1)根据题意AP ⃗⃗⃗⃗⃗ =(λ−1)BA ⃗⃗⃗⃗⃗ ,可得λ−1=−13,即可得答案. (2)由题意得OP 1→+OP 2019→=OA →+OB →,当m +n =2020时,OP m →+OP n →=OA →+OB →,即可化简|OA →+OP 1→+OP 2→+⋯+OP n−1→+OB →|;(3)化简可得|tAB →−AO →|+|13OB →+(1−t )BA →|=|OM →|+|MN →|,作点O 关于线段AB 的对称点O′(1,1),利用两点间距离公式可得答案. 11.答案:解:(1)∵f(θ)=m⃗⃗⃗ ⋅n ⃗ =2sinθcosθ−(2+m)(sinθ+cosθ),令t =sinθ+cosθ=√2sin(θ+π4),t ∈[−√2,√2], ∴2sinθcosθ=t 2−1,当m =1时,g(m)=(t 2−3t −1)min ,∵y =t 2−3t −1对称轴为x =32>√2,在[−√2,√2]上单调递减, ∴t =√2时,(t 2−3t −1)min =1−3√2, ∴g(m)=1−3√2.(2)令F(t)=t 2−(m +2)t −1,t ∈[−√2,√2],对称轴为t =m 2+1,①当m2+1≤−√2,即m ≤−2√2−2时, F(t)在[−√2,√2]上单调递增,∴F(t)min =F(−√2)=(m +2)√2+1;②当−√2<m 2+1<√2,即−2√2−2<m <2√2−2时,F(t)在[−√2,m2+1]上单调递减,在[−m2+1,√2]上单调递增,∴F(t)min=F(m 2+1)=−m 2+4m +84;③当m2+1≥√2,即m ≥2√2−2时, F(t)在[−√2,√2]上单调递减, ∴F(t)min =F(√2)=1−(m +2)√2.∴g(m)={(m +2)√2+1,m ≤−2√2−2−m 2+4m+84,−2√2−2<m <2√2−21−(m +2)√2,m ≥2√2−2.(3)ℎ(x 1+x 2)=ℎ(x 1)+ℎ(x 2), 可令x 1=x 2=0,可得ℎ(0)=0,由x 1=x ,x 2=−x ,可得ℎ(x)+ℎ(−x)=0, 可得函数ℎ(x)为R 上的奇函数,∵使不等式ℎ(f(θ))−ℎ(4sinθ+cosθ)+ℎ(3+2m)>0对所有θ∈[0,π2]恒成立, ∴只需使不等式ℎ(2sinθcosθ−(2+m)(sinθ+cosθ)−4sinθ+cosθ)+ℎ(3+2m)>0对所有θ∈[0,π2]恒成立,∴ℎ(2sinθcosθ−(2+m)(sinθ+cosθ)−4sinθ+cosθ)>−ℎ(3+2m)=ℎ(−3−2m), ∵函数ℎ(x)为定义在R 上的增函数,∴2sinθcosθ−(2+m)(sinθ+cosθ)−4sinθ+cosθ>−3−2m ,令t=sinθ+cosθ,∴2sinθcosθ=t2−1,∵θ∈[0,π2],∴t=√2sin(θ+π4)∈[1,√2],∴原问题等价于t2−1−(m+2)t−4t+3+2m>0对t∈[1,√2]恒成立,∴(2−t)m>2t−t2+4t−2对t∈[1,√2]恒成立,∵2−t>0,∴m>t(2−t)+2t(2−t)2−t =t+2t,设φ(t)=t+2t,任取t1,t2∈[1,√2],且t1<t2,∴φ(t1)−φ(t2)=t1+2t1−t2−2t2=(t1−t2)+2(t2−t1)t1⋅t2=(t1−t2)(t1⋅t2−2)t1⋅t2,∵1≤t1<t2≤√2,∴(t1−t2)<0,t1⋅t2>0,t1⋅t2−2<0,∴φ(t1)−φ(t2)>0,即φ(t1)>φ(t2),∴φ(t)=t+2t在[1,√2]上为减函数,(或由对勾函数的图象和性质直接可得减函数)∴φ(t)max=φ(1)=3,∴m>3时,不等式ℎ(f(θ))−ℎ(4sinθ+cosθ)+ℎ(3+2m)>0对所有θ∈[0,π2]恒成立.解析:本题综合考查了三角函数综合,函数奇偶性和单调性的应用,二次函数最值,向量数量积的坐标表示,考查恒成立问题,属于难题.(1)把m=1,代入相应的向量坐标表示式,然后,利用向量数量积的坐标表示,化简函数解析式即可;(2)转化成二次函数问题,对对称轴与区间[−√2,√2]的位置关系进行讨论;(3)利用函数ℎ(x)为R上的奇函数,得到ℎ[2sinθcosθ−(2+m)(sinθ+cosθ)−4sinθ+cosθ]>ℎ(−3−2m),然后,再根据函数的单调性,转化成2sinθcosθ−(2+m)(sinθ+cosθ)−4sinθ+cosθ>−3−2m,最后,利用换元法令t=sinθ+cosθ,转化成m>t(2−t)+2t(2−t)2−t =t+2t,求解函数φ(t)=t+2t在[1,√2]的最大值为3,从而解决问题.12.答案:解:(Ⅰ,由正弦定理得,即2sinCcosC−sin(A+B)=0,,在ΔABC中,0<C<π,,,∵C∈(0,π),∴C=π3;(Ⅱ)由余弦定理可得:,即(a+b)2−3ab=9,∴ab=13[(a+b)2−9]⩽(a+b2)2,∴(a+b)2⩽36,∴a+b≤6,当且仅当a=b=3时取等号,∴ΔABC周长的最大值为6+3=9.解析:本题考查正余弦定理在解三角形中的应用,平面向量的几何应用,利用基本不等式求最值,两个向量垂直的性质,属于中档题.(▵)由可得2ccosC−(acosB+bcosA)=0,再根据正弦定理可得cos C的值,根据C的取值范围,即可求出答案;(▵)根据余弦定理可求得,化简即可求得a+ b⩽6,当且仅当a=b=3时取等号,求得周长的最大值.13.答案:解:(1)因为a⃗=(sin θ,1),b⃗ =(√3,−cos θ)且,所以a⃗⋅b⃗ =√3sin θ−cos θ=0.明显cosθ≠0(否则有sinθ=0,这与sin2θ+cos2θ=1矛盾),故tanθ=√33,又θ∈[0,π],故θ=π6.(2)|a⃗+b⃗ |=√(sin θ+√3)2+(1−cos θ)2=√2√3sinθ−2cosθ+5=√4(√32sinθ−12cosθ)+5=√4sin(θ−π6)+5.又θ∈[0,π],故当且仅当θ=23π时,|a⃗+b⃗ |取得最大值3.解析:本题考查三角函数同向量结合的问题,考查向量垂直的充要条件和模的求法,涉及三角函数的最值,属中档题.(1)根据向量垂直的充要条件,即可求tanθ=√33,即可求θ;(2)根据向量的模的求法,得到|a⃗+b⃗ |=√4sin(θ−π6)+5,结合三角函数的有界性即可求最大值.14.答案:解:(1)由f(x)=a⃗⋅b⃗=−2sin2x+2√3sinxcosx=√3sin2x+cos2x−1=2sin(2x+π6)−1;令2kπ−π2≤2x+π6≤π2+2kπ,k∈Z,得:kπ−π3≤x≤π6+kπ,k∈Z.∴f(x)的单调递增区间为[kπ−π3,π6+kπ],k∈Z.(2)由(1)可得f(C)=2sin(2C+π6)−1=1,即sin(2C+π6)=1,∵0<C<π,∴2C+π6=π2,可得:C =π6. 由余弦定理:cos π6=a 2+b 2−12ab,可得:6=a 2+b 2−1……① ab =2√3且a >b ,……②, 由①②解得:{a =2b =√3.解析:本题主要考查三角函数的图象和性质,向量坐标的运算,余弦定理的应用,利用三角函数公式将函数进行化简是解决本题的关键.(1)根据函数f(x)=a ⃗ ⋅b ⃗ .利用向量坐标关系即可求解f(x)化简,结合三角函数性质即可求解(x)的单调递增区间(2)根据f(C)=1,求解C ,结合余弦定理,c =1,ab =2√3,a >b ,即可求解a ,b 的值.15.答案:(1)证明:点B 的坐标为(0,1),由题意知直线l 的斜率存在,设直线l 的方程为y =kx −13,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),联立方程{x 22+y 2=1,y =kx −13消去y 后整理为9(2k 2+1)x 2−12kx −16=0,则x 1+x 2=12k9(2k 2+1)=4k3(2k 2+1),x 1x 2=−169(2k 2+1), 所以y 1+y 2=k(x 1+x 2)−23=4k 23(2k 2+1)−23=−23(2k 2+1), y 1y 2=(kx 1−13)(kx 2−13)=k 2x 1x 2−13k(x 1+x 2)+19=−16k 29(2k 2+1)−4k 29(2k 2+1)+19=1−18k 29(2k 2+1),BP ⃗⃗⃗⃗⃗ =(x 1,y 1−1),BQ⃗⃗⃗⃗⃗⃗ =(x 2,y 2−1), 所以BP ⃗⃗⃗⃗⃗ ⋅BQ ⃗⃗⃗⃗⃗⃗ =x 1x 2+(y 1−1)(y 2−1)=x 1x 2+y 1y 2−(y 1+y 2)+1=−1618k 2+9+1−18k218k 2+9+618k 2+9+1=0,所以BP ⊥BQ ;(2)解:S =12×|1−(−13)|×|x 2−x 1|=23|x 2−x 1|=23√(x 2+x 1)2−4x 1x 2 =23√[4k3(2k 2+1)]2+649(2k 2+1)=8√9k 2+49(2k 2+1). 令2k 2+1=t(t ≥1),有k 2=t−12,则S =8√9(t−1)2+49t =8√9t−129t=4√29×√9t −1t2=4√29×√−(1t −92)2+814, 所以当1t =1时,S 取得最大值,S max =4√29×2√2=169,此时t =1,即2k 2+1=1,所以k =0,所以此时直线l 的方程为y =−13. 所以△BPQ 面积S 的最大值为169,此时直线l 的方程为y =−13.解析:本题考查直线与椭圆位置关系,考查圆锥曲线的综合问题及圆锥曲线中的面积与最值问题,属难题.(1)依题意,设直线l 的方程为y =kx −13,代入椭圆方程,利用韦达定理及数量积运算即可证明结论成立;(2)由(1)知S =23√[4k3(2k 2+1)]2+649(2k 2+1)=8√9k 2+49(2k 2+1),令2k 2+1=t(t ≥1),有k 2=t−12,S =4√29×√−(1t −92)2+814,进而求得最值即可.16.答案:解:(1)由m ⃗⃗⃗ =(1,−√3),n ⃗ =(sinA,cosA),且m ⃗⃗⃗ ⊥n ⃗ , 得m ⃗⃗⃗ ·n ⃗ =sinA −√3cosA =0, ∴tanA =√3, 又A ∈(0,π), ∴A =π3;(2)由余弦定理得a 2=b 2+c 2−2bccosA , 即1=b 2+c 2−2bc ·cos π3,∴b 2+c 2−bc =1,即b 2+c 2=bc +1, 又△ABC 的面积为S =12bcsinA =12bcsin π3=√34,∴bc =1,∴(b +c)2=b 2+c 2+2bc =3bc +1=4, ∵b >0,c >0, ∴b +c =2.解析:本题考查了余弦定理、三角形面积公式 ,也考查了平面向量的数量积应用问题,属于中档题. (1)由题意得出m ⃗⃗⃗ ·n ⃗ =sinA −√3cosA =0,得到tanA =√3,从而求得A 的值; (2)由余弦定理和△ABC 的面积公式求出bc 和(b +c)2的值,即得b +c 的值.17.答案:解:(1)设b →=(x,y ),由a ⃗ //b ⃗ ,可得√5y +2x =0,由题意可得{√5y +2x =0√x 2+y 2=3√2,解得{x =√10y =−2√2或{x =−√10y =2√2.因此,b ⃗ =(√10,−2√2)或b ⃗ =(−√10,2√2);(2)∵(a ⃗ +λb ⃗ )⊥(2a ⃗ −b ⃗ ),∴(a ⃗ +λb ⃗ )⋅(2a ⃗ −b ⃗ )=0, 化简得2|a ⃗ |2+(2λ−1)a ⃗ ⋅b ⃗ −λ|b ⃗ |2=0, 即8+(2λ−1)×2×1×(−12)−λ=0, 解得λ=3.解析:本题考查了向量的模,向量的数量积,向量平行、垂直的判断和证明,属于中档题. (1)设b →=(x,y ),根据题意可得出关于实数x 、y 的方程组,可求得这两个未知数的值,由此可得出平面向量b →的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得λ的值.18.答案:解:(1)因为△ABC 为等边三角形,且AD//BC ,所以∠DAB =120°.又AD =2AB ,所以AD =2BC . 因为E 是CD 中点,所以AE ⃗⃗⃗⃗⃗ =12(AD ⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12(AD ⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=12(AD ⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ ) =34AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ .又BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,所以AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(34AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =34AD ⃗⃗⃗⃗⃗⃗ 2−12AB ⃗⃗⃗⃗⃗ 2−14AD ⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =34×16−12×4−14×4×2×(−12)=11. (2)因为AB =AC ,AB =2,所以AC =2.因为AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =45,所以AC ⃗⃗⃗⃗⃗ ·(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=45, 所以AC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =45. 又AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =|AC ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ |cos∠CAB =4×35=125,所以AC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ =45+AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =165, 所以|DC ⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2+AD ⃗⃗⃗⃗⃗⃗ 2−2AC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ =4+16−2×165=685, 所以|DC ⃗⃗⃗⃗⃗ |=2√855.解析:本题考查了平面向量的线性运算及数量积,(1)先表示AE ⃗⃗⃗⃗⃗ =34AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ 以及BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 即可表示AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =34AD ⃗⃗⃗⃗⃗⃗ 2−12AB ⃗⃗⃗⃗⃗ 2−14AD ⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ ,再利用线性运算及数量积公式即可求得.(2)根据AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ·(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =45,再结合已知求出AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =|AC ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ |cos∠CAB ,即可求得AC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ ,从而表示|DC ⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2+AD ⃗⃗⃗⃗⃗⃗ 2−2AC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ ,利用线性运算及数量积公式即可.19.答案:解:(1)∵D 是边BC 上一点,DC =2BD ,∴BD ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,又∵AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ , ∴AD⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =a ⃗ +13·(b ⃗ −a ⃗ )=23a ⃗ +13b ⃗ .(2)∵|a ⃗ |=|AB⃗⃗⃗⃗⃗ |=2,|b ⃗ |=|AC ⃗⃗⃗⃗⃗ |=1,∠BAC =120°, ∴a ⃗ ·b ⃗ =2×1×(−12)=−1,∴AD ⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(23a ⃗ +13b ⃗ )·13(b ⃗ −a ⃗ )=13·(−23a ⃗ 2+13b ⃗ 2+13·a ⃗ ·b ⃗ ) =19·(−2×4+1−1)=−89.解析:本题考查平面向量基本定理,平面向量的加减法及数量积运算,属于中档题.(1)根据题意得BD ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,由向量的减法法则得BC ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ ,从而可得AD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ 即可求得答案;(2)由(1)可得:AD ⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(23a ⃗ +13b ⃗ )·13(b ⃗ −a ⃗ ),根据题意算出a ⃗ ·b ⃗ =2×1×(−12)=−1,a ⃗ 2=4,b ⃗ 2=1,代入计算即可得到AD ⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ 的值. 20.答案:解:(1)∵D 是边BC 上一点,DC =2BD ,∴BD ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,又∵AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ , ∴AD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗=a ⃗ +13·(b ⃗ −a ⃗ )=23a ⃗ +13b ⃗ .(2)∵|a ⃗ |=|AB⃗⃗⃗⃗⃗ |=2,|b ⃗ |=|AC ⃗⃗⃗⃗⃗ |=1,∠BAC =120°, ∴a ⃗ ·b ⃗ =2×1×(−12)=−1,∴AD ⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(23a ⃗ +13b ⃗ )·13(b ⃗ −a ⃗ )=13·(−23a ⃗ 2+13b ⃗ 2+13·a ⃗ ·b ⃗ ) =19·(−2×4+1−1)=−89.解析:本题考查平面向量基本定理,平面向量的加减法及数量积运算,属于中档题.(1)根据题意得BD ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,由向量的减法法则得BC ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ ,从而可得AD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ 即可求得答案;(2)由(1)可得:AD ⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(23a ⃗ +13b ⃗ )·13(b ⃗ −a ⃗ ),根据题意算出a ⃗ ·b ⃗ =2×1×(−12)=−1,a ⃗ 2=4,b ⃗ 2=1,代入计算即可得到AD ⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ 的值. 21.答案:解:(1)由已知得|a ⃗ |=|b ⃗ |=1.∵|k a ⃗ +b ⃗ |=√3|a ⃗ −k b ⃗ |, ∴(k a ⃗ +b ⃗ )2=3(a ⃗ −k b ⃗ )2,∴k 2|a ⃗ |2+2k a ⃗ ·b ⃗ +|b ⃗ |2=3(|a ⃗ |2−2k a ⃗ ·b ⃗ +k 2|b ⃗ |2),∴8k a ⃗ ·b ⃗ =2k 2+2,∴a⃗ ·b ⃗ =k 2+14k (k >0). (2)由(1)知a ⃗ ·b ⃗ >0, ∴a ⃗ 与b ⃗ 不可能垂直.若a ⃗ //b ⃗ ,由a ⃗ ·b ⃗ >0知a ⃗ ,b ⃗ 同向, 于是有a ⃗ ·b ⃗ =|a ⃗ ||b ⃗ |cos 0°=|a ⃗ ||b ⃗ |=1,即k 2+14k=1,解得k =2±√3,∴当k =2±√3时,a ⃗ //b ⃗ . (3)设a ⃗ 与b ⃗ 的夹角为θ, 则,∴cos θ=14(k +1k )=14[(√k)2+(1√k )2]=14[(√k −1√k)2+2], ∴当√k =√k ,即k =1时,cos θ取得最小值12. 又0°≤θ≤180°,∴a ⃗ 与b ⃗ 夹角θ的最大值为60°.解析:本题考查了数量积运算,向量的垂直与平行的判定与证明以及求夹角的问题; (1)|k a ⃗ +b ⃗ |=√3|a ⃗ −k b ⃗ |等式两边平方化简求解.(2)由(1)得a ⃗ ·b ⃗ >0,所以a ⃗ 不可能能否和b ⃗ 垂直,所以利用平行的等价条件|a ⃗ ·b ⃗ |=|a ⃗ ||b ⃗ |求解. (3)用k 表示,利用二次函数求最值.22.答案:解:(1)设D(t,0)(0≤t ≤1);C(−√22,√22)∴OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ =(t −√22,√22); |OC⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |2=(t −√22)2+12,(0≤t ≤1);∴t =√22时,|OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |的最小值为√22; (2)设OC⃗⃗⃗⃗⃗ =(cosα,sinα),0≤α≤3π2,E(0,−12),D(12,0); ∴CE ⃗⃗⃗⃗⃗ =(−cosα,−12−sinα),DE ⃗⃗⃗⃗⃗⃗ =(−12,−12); ∴CE ⃗⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =12cosα+12sinα+14=√22sin(α+π4)+14; ∵0≤α≤3π2;∴π4≤α+π4≤7π4⇒sin(α+π4)∈[−1,1];∴√22sin(α+π4)+14∈[14−√22,14+√22]. ∴CE ⃗⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ 的取值范围是:[14−√22,14+√22].解析:本题考查向量的数量积的应用,考查平面向量的坐标运算 ,考查计算能力. (1)设D(t,0)(0≤t ≤1);求出各点坐标,表示出|OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |2结合二次函数即可求解; (2)设OC ⃗⃗⃗⃗⃗ =(cosα,sinα),0≤α≤3π2,求出各点坐标,代入数量积结合三角函数的性质即可求解23.答案:解:(1)证明:∵AB ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,BC ⃗⃗⃗⃗⃗ =2a ⃗ +8b ⃗ ,CD ⃗⃗⃗⃗⃗ =3(a ⃗ −b ⃗ ),∴BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2a ⃗ +8b ⃗ +3(a ⃗ −b ⃗ )=2a ⃗ +8b ⃗ +3a ⃗ −3b ⃗ =5(a ⃗ +b ⃗ )=5AB ⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ 共线, 又∵它们有公共点B , ∴A 、B 、D 三点共线; (2)解:与a ⃗ +k b ⃗ 共线,∴存在实数λ,使k a ⃗ +b ⃗ =λ(a ⃗ +k b ⃗ ), 即k a ⃗ +b ⃗ =λa ⃗ +λk b ⃗ ,,∵a ⃗ ,b ⃗ 是两个不共线的非零向量,,解得k =±1,因为k <0,所以k =−1.(3)∵a ⃗ =(1,2),b ⃗ =(1,1),c ⃗ =a ⃗ +λb ⃗ ,且b ⃗ ⊥c ⃗ ,,,解得λ=−32.解析:本题考查向量共线定理,考查向量垂直的性质,考查计算能力,属于基础题.(1)根据所给的三个首尾相连的向量,用其中两个相加,得到两个首尾相连的向量,根据表示这两个向量的基底,得到两个向量之间的共线关系,从而得到三点共线;(2)两个向量共线,写出向量共线的充要条件,进而得到关于实数k 的方程,解出k 的值; (3)直接利用已知计算求解即可得到答案.24.答案:(1)证明:∵AN ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =b ⃗ +12a ⃗ ,CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =−b ⃗ −12a ⃗ , ∴AN ⃗⃗⃗⃗⃗⃗ =−CM ⃗⃗⃗⃗⃗⃗ , ∴AN ⃗⃗⃗⃗⃗⃗ 与CM⃗⃗⃗⃗⃗⃗ 共线. (2)解:在线段AB 上存在点M ,使BD ⃗⃗⃗⃗⃗⃗ 与CM⃗⃗⃗⃗⃗⃗ 垂直. 理由:设BM ⃗⃗⃗⃗⃗⃗ =λa ⃗ ,BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ ,CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =−b ⃗ +λa ⃗ , ∵BD ⃗⃗⃗⃗⃗⃗ 与CM ⃗⃗⃗⃗⃗⃗ 垂直,∴BD ⃗⃗⃗⃗⃗⃗ ⋅CM⃗⃗⃗⃗⃗⃗ =0.即(b ⃗ −a ⃗ )⋅(−b ⃗ +λa ⃗ )=0,∵|a ⃗ |=2,|b ⃗ |=1,a ⃗ ⋅b ⃗ =0,∴λ=−14. ∴存在满足条件的点M ,即AM =32,使得BD ⃗⃗⃗⃗⃗⃗ 与CM ⃗⃗⃗⃗⃗⃗ 垂直. 此时点M 在线段AB 的四等分点,最靠近点B 的位置. (3)解:①当P 在线段AB 上时,设AP ⃗⃗⃗⃗⃗ =k a ⃗ ,(0⩽k ⩽1),则:AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =k a ⃗ ⋅a ⃗ =4k , ∴AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值为4,此时P 在B 点处;②当P 在线段BC 上(不含端点)时,设AP ⃗⃗⃗⃗⃗ =a ⃗ +k b ⃗ ,∴AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(a ⃗ +k b ⃗ )⋅a ⃗ =4,此时P 在线段BC 上(端点除外);③当P 在线段CD 上时,设CP ⃗⃗⃗⃗⃗ =−k a ⃗ ,(0⩽k ⩽1),AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(a ⃗ +b ⃗ −k a ⃗ )⋅a ⃗ =4(1−k), ∴AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值为4 ,此时P 在C 点处; ④当P 在线段AD 上时,AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0.综上所述,当P 在线段BC 上时,AP⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值是4.解析:本题考查了向量共线的判定,向量垂直的判定,向量的数量积,向量的几何运用,属于拔高题.(1)解答本题的关键是由向量的几何运用将AN ⃗⃗⃗⃗⃗⃗ 和CM ⃗⃗⃗⃗⃗⃗ 用a ⃗ 和b ⃗ 表示出来,可发现AN ⃗⃗⃗⃗⃗⃗ =−CM ⃗⃗⃗⃗⃗⃗ ,由此即可证得AN ⃗⃗⃗⃗⃗⃗ 与CM⃗⃗⃗⃗⃗⃗ 共线; (2)解答本题的关键是将AM ⃗⃗⃗⃗⃗⃗ 、CM ⃗⃗⃗⃗⃗⃗ 用a ⃗ 和b ⃗ 表示出来,由向量垂直的条件可知:BD ⃗⃗⃗⃗⃗⃗ ⋅CM ⃗⃗⃗⃗⃗⃗ =0,由此即可求得点M 的位置;(3)解答本题的关键是将点P 的位置进行分情况讨论,再分别求出AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值,最后得出AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值及点P 的位置即可.25.答案:解:(1)由题a ⃗ ⊥b ⃗ ,所以a ⃗ ·b ⃗ =sinθ+cosθ=0,从而tanθ=sinθcosθ=−1,解得;(2)因为a ⃗ +b ⃗ =(sinθ+1,1+cosθ),所以(a⃗ +b ⃗ )2=(sinθ+1)2+(1+cosθ)2=3+2√2sin(θ+π4), 因为−π2<θ<π2,所以−π4<θ+π4<3π4,从而θ=π4时,(a ⃗ +b ⃗ )2=3+2√2=(1+√2)2为最大值, 所以|a ⃗ +b⃗ |的最大值是1+√2.解析:本题考查了平面向量的数量积与模长公式的应用问题,向量的垂直,也考查了三角函数的性质,是中档题.(1)利用向量垂直数量积为0求解即可.(2)求得a ⃗ +b ⃗ =(sinθ+1,1+cosθ),结合三角函数的性质可得答案. 26.答案:解:(1)AD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =a ⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )。