相似三角形全章教案资料
27.2相似三角形(教案)

1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
三角形教案相似三角形教案

三角形教案相似三角形教案一、教学目标:1.知识目标:了解相似三角形的定义及性质,掌握相似三角形的判定方法。
2.技能目标:能够判断两个三角形是否相似,能够应用相似三角形的性质解决问题。
3.情感目标:培养学生对几何知识的兴趣,培养学生观察和分析问题的能力。
二、教学重点和难点:1.重点:物理教学方法的运用,培养学生的观察和分析能力。
2.难点:判定两个三角形是否相似的方法,相似三角形的性质的应用。
三、教学过程:1.导入(10分钟)教师带领学生复习角度平分线的性质,并通过一个小问题引出相似三角形的概念。
2.展示与导入(10分钟)教师在板书中画出两个相似三角形,并让学生观察两个相似三角形之间的关系,引导学生发现相似三角形的性质,即对应角相等,对应边成比例。
3.学习与讨论(30分钟)教师引导学生通过观察两个图形,判断它们是否相似,并找出相似的理由。
学生在小组合作讨论,共同解决问题。
学生学会判定两个三角形是否相似的方法:(1)三边成比例;(2)两边成比例且夹角相等;(3)两角相等且夹边成比例。
4.拓展与巩固(30分钟)教师撰写一些关于相似三角形的练习题,学生在小组内完成,然后进行讨论,最后全班共同讨论,学生通过练习巩固所学的知识。
5.归纳总结(10分钟)教师带领学生进行总结,总结相似三角形的判定方法和相似三角形的性质。
6.课堂作业(10分钟)布置课后作业:完成相似三角形的练习题,课后复习本节课的内容。
四、板书设计:相似三角形定义:对应角相等,对应边成比例。
判定方法:三边成比例,两边成比例且夹角相等,两角相等且夹边成比例。
五、教学反思:通过本节课的教学,学生明确了相似三角形的定义及判定方法。
通过观察和分析两个相似三角形的性质,学生培养了观察和分析问题的能力。
然而,在教学中还存在着一些问题。
比如,教师在引导学生判断两个三角形是否相似时,应该引导学生根据“对应角相等,对应边成比例”的原则进行判断,而不是直接告诉学生判定的答案。
相似三角形教案

相似三角形教案标题:相似三角形教案【教学目标】1. 了解相似三角形的定义和性质。
2. 能够判断两个三角形是否相似。
3. 掌握相似三角形的比例关系及其在解决实际问题中的应用。
4. 培养学生的逻辑思维和推理能力。
【教学准备】1. 教学工具:投影仪、黑板、白板、谱恩平等视觉辅助工具。
2. 教学资源:相似三角形的定义和定理说明、示例题和练习题。
【教学过程】一、导入(5分钟)1. 利用谱恩平或平面图片展示一组相似三角形,引发学生对相似三角形的兴趣,并启发学生探讨相似三角形的特点。
2. 提出问题:在哪些情况下可以认为两个三角形是相似的?二、理论讲解(15分钟)1. 结合黑板和白板上的图形、公式或教材内容,引导学生理解相似三角形的定义和相似条件。
2. 通过讲解相似三角形的性质,包括对应角相等、对应边成比例,加深学生对相似三角形的理解。
三、示例演练(20分钟)1. 给出若干个三角形,要求学生判断它们是否相似,并解释判断的依据。
2. 根据已知条件,要求学生计算相似三角形的比例关系,帮助学生理解相似三角形的特点。
3. 在计算过程中引导学生思考,让学生总结相似三角形的关键点,加深对概念的理解。
四、拓展应用(15分钟)1. 制作一些与实际生活相关的相似三角形问题,让学生运用所学内容解决问题。
2. 引导学生思考如何利用相似三角形解决实际问题,如距离或高度的测量等。
五、小结与展望(5分钟)1. 对本堂课的内容进行总结,强调相似三角形的重要性和应用价值。
2. 展望下一节课的内容,引导学生继续学习并巩固相似三角形的知识。
【教学总结】通过本节课的学习,学生应该对相似三角形的定义、性质和应用有一定的认识和理解。
同时,通过实例演练和拓展应用的形式,培养学生的主动思考和解决问题的能力。
在下一节课中,需要进一步加深学生对相似三角形的理解并进行更多的实际问题应用训练。
相似三角形教案

相似三角形教案相似三角形教案一、教学目标1. 理解相似三角形的定义和性质。
2. 学会寻找相似三角形,并利用相似三角形的性质解决问题。
3. 培养学生的观察、分析和推理能力。
二、教学重点和难点1. 理解相似三角形的概念和性质。
2. 寻找相似三角形,并利用相似三角形的性质解决问题。
三、教学内容和过程安排1. 引入教师通过示意图向学生介绍相似三角形的概念,让学生理解相似三角形的定义和性质。
2. 转换与探索教师给出几对相似三角形,让学生通过观察和比较,找出它们相似的特点和规律,并总结相似三角形的判定条件。
3. 性质归纳教师引导学生总结相似三角形的性质,如对应角相等、对应边成比例等,并提供一些练习题供学生练习。
4. 应用与拓展教师出示一些实际问题,让学生利用相似三角形的性质解决问题,并引导学生思考相似三角形在实际生活中的应用。
四、教学方法1. 教师讲解法:通过讲解相似三角形的概念和性质,引导学生理解和掌握相关知识。
2. 案例分析法:通过分析实际问题的解题过程,让学生理解相似三角形的应用。
3. 合作学习法:让学生分组讨论和解答问题,通过合作学习提高学生的思维能力和团队合作能力。
五、教学评价和反思通过本节课的学习,学生能够理解相似三角形的概念和性质,能够寻找相似三角形并利用相似三角形的性质解决问题。
教师可以通过练习题和课堂讨论来评价学生的学习情况。
在反思中,教师可以思考教学中的不足之处,为今后的教学改进提供参考。
六、拓展延伸1. 学生可以使用几何绘图软件或尺规作图工具来练习寻找相似三角形。
2. 学生可以通过实际观察和测量来寻找相似三角形,并验证相似三角形的性质。
3. 学生可以进一步学习相似三角形的应用,如计算高度、测量距离等。
相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在△ABC和△中,, .问:△ABC和△是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或 .问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.“作相似.证全等”.(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,∽ .例1 已知和中,,, .求证:∽ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:∽∽ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即∽△∽△.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
相似三角形教案完美版

面积比与边长比关系
1 2
面积比性质
相似三角形的面积比等于对应边长的平方比,即 如果AB/A'B' = k,则S△ABC/S△A'B'C' = k^2。
面积比推论
如果两个三角形的面积比已知,可以通过求边长 比来进一步确定这两个三角形的相似关系。
3
应用
在解决与相似三角形有关的问题时,可以通过面 积比和边长比的关系来建立方程或不等式,从而 找到问题的解决方案。
三角形的边、角、顶点、高、中线、 角平分线等。
三角形全等条件
全等三角形的定义
能够完全重合的两个三角形。
全等三角形的性质
全等三角形的对应边相等,对应角相等。
全等三角形的判定条件
SSS(三边全等)、SAS(两边和夹角全等)、ASA(两角和夹边全等)、AAS(两角和 一非夹边全等)和HL(直角边斜边定理)。
推论
如果两个三角形有两个对 应的角分别相等,则这两 个三角形相似。
对应边成比例性质
定义
当两个三角形的对应边成比例时,这两个三角形 相似。
性质
相似三角形的对应边成比例,即如果AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
推论
如果两个三角形有两边对应成比例,且夹角相等 ,则这两个三角形相似。
相似多边形概念
01
02
03
相似多边形的定义
两个多边形的对应角相等 ,对应边成比例,则这两比值 。
相似多边形的性质
相似多边形的对应角相等 ,对应边成比例,面积比 等于相似比的平方。
03
第27章相似三角形全章教案(共10份)

授课时间:年月日第周星期撰稿:赖庆益审核:李明课时序号一、课前导学:学生自学课本24-27页内容,并完成下列问题.1.观察下图的两个画面,他们的形状、大小有什么关系?象这样,我们把相同的叫做相似图形.【注意】两个图形相似,其中一个图形可以看作由另一个图形得到.2.两个边数相同的多边形,如果它们的角,边成比例,那么这两个多边形叫做相似多边形,相似多边形对应边的比叫做.3.如图,下面右边的四个图形中,与左边的图形相似的是()二、合作、交流、展示:1.相似图形、相似多边形、相似比的意义;相似比为1时,相似的两个图形有什么关系?2.相似多边形有哪些性质?相似多边形的对应角,对应边的比(对应边).3.如何判别两个多边形相似?对应角,且对应边的比的两个多边形的两个多边形相似.4.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的与另两条线段的相等,年级九年级课题27.1图形的相似课型新授教学目标知识技能1.理解并掌握两个图形相似的概念;了解相似比、成比例线段的概念;2.掌握相似多边形的性质;会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行简单的计算.过程方法经历相似性质的探究过程,培养学生的观察、分析的能力.情感态度激发学生学习数学的兴趣,感受成功的喜悦.教学重点相似图形的概念;相似多边形的性质与判别.教学难点相似多边形的性质进行相关的计算,相似多边形的判别.教法导学案学法探究、合作教学媒体多媒体FE HGD CBA如dcb a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位; (2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作dcb a =或a:b=c:d ; 5.例题: 例题1.下列说法正确的是( )A .所有的平行四边形都相似B .所有的矩形都相似C .所有的菱形都相似D .所有的正方形都相似 例题2例1、如图,四边形ABCD 和EFGH 相似, 求角βα和的大小和EH 的长度.例3.如图矩形草坪长20m,宽10m,沿草坪四周有1m 宽的环形小路,小路内外边缘所成的矩形EFGH 和矩形ABCD 是否相似?三、巩固与应用: 1.课本第25、27页练习2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A .3个 B .4个 C .5个 D .6个3.已知边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形A 1B 1C 1D 1的最短边的长是6cm ,那么四边形A 1B 1C 1D 1中最长的边长是多少?4.已知四边形ABCD 与四边形A 1B 1C 1D 1相似,且A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长5.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.6.如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F 分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值.四、小结::1. 相似多边形的意义; 2相似多边形的性质五、作业:必做:P27练习T1、2、3、4、. 选做:《作业精编》相应练习.六、反思:授课时间: 年 月 日 第 周 星 期 撰稿;李明 审稿:赖小华 课时序号一、课前导学:学生自学课本第29-31 页内容,并完成下列问题1.三个角分别对应 ,三条边对应 的两个三角形是相似三角形.A A '∠=∠,B B '∠=∠,C C '∠=∠2. 【实验探究1】:如图1,任意画两条直线1l , 2l ,再画三条与1l , 2l 相交的平行线3l ,4l ,5l 分别量度3l , 4l ,5l 在1l 上截得的两条线段AB, BC 和在2l , 上截得的两条线段DE, EF 的长度, :AB BC 与:DE EF 相等吗?任意平移5l , 再量度AB, BC, DE, EF的长度, :ABBC 与:DE EF 还相等吗?【归纳】平行线分线段成比例定理:两条直线被一组_______线所截,所得的对应..线段 .2. 【实验探究2】如果把图中1l,2l两条直线相交,交点A 刚落到3l ,4l 上,如图2、年级 九年级 课题 27.2.1相似三角形的判定(1) 课型 新授教 学 目 标知识 技能1. 掌握相似三角形的定义,掌握平行线分线段成比例定理和推论,能应用定理及推论解题. 2. 掌握相似三角形判定的预备定理,能运用它判定两个三角形相似. 过程方法经历定理的探索过程,培养观察、分析、探究、归纳能力。
相似三角形的判定教案模板

相似三角形的判定教案模板教案能够展现出教师在备课中的思维过程,并且显示出教师对课标、教材、学生的理解和把握的水平以及运用有关教育理论和教学原则组织教学活动的能力。
下面是给大家整理的相似三角形的判定教案5篇,希望大家能有所收获!相似三角形的判定教案1掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE 相似,则BF长为多少?在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形( )A.1对B.2对C.3对D.4对按照一定的顺序去寻找相似三角形. 活动3 课堂小结学生试述:这节课你学到了些什么?相似三角形的判定教案2相似三角形的判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例线段(1)教学目标:1.理解比例的基本性质。
2.能根据比例的基本性质求比值。
3.能根据条件写出比例式或进行比例式的简单变形。
教学重点、难点:教学重点:比例的基本性质教学难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等方法是本节教学的难点。
>知识要点:1.如果两个数的比值与另两个数的比值相等,那么这四个数成比例。
、b 、c 、d 四个实数成比例,可表示成a:b =c:d 或a b =cd ,其中b 、c 叫做内项,a 、d 叫做外项。
3.基本性质:a b =cd <=>ad =bc(a 、b 、c 、d 都不为零) 重要方法:1.判断四个数a 、b 、c 、d 是否成比例,方法1:计算a:b 和c:d 的值是否相等;方法2:计算ad 和bc 的值是否相等,(利用ad =bc 推出a b =cd )-2.“a c =b d <=>a b =cd ”的比例式之间的变换是抓住实质ad =bc 。
3.记住一些常用的结论: a b =c d =>a +b b =c +d d ,a b =a +cb +d。
教学过程:一、复习引入1、举例说明生活中大量存在形状相同,但大小不同的图形。
如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30°角的三角尺等。
2、美丽的蝴蝶身长与双翅展开后的长度之比约为.一些长方形的画框,宽与长之比也设计成,许多美丽的形状都与这个比值有关。
你知道这个比值的来历吗% 说明学习本章节的重要意义。
3.如何求两个数的比值 二、自学新课,探究结论 阅读思考题(1)什么是两个数的比2与—3的比;—4与6 的比。
如何表示其比值相等吗用小学学过的方法可说成为什么可写成什么形式(2)比与比例有什么区别(3) 用字母a,b,c,d 表示数,上述四个数成比例可写成怎样的形式你知道内项、外项和第四比例项的概念吗回答(1)2:(—3)=—23 ;—4:6=—46 =—23 ;2—3 =—46 ,2,—3,—4,6四个数成比例。
注意四个数字的书写顺序(2)比是一个值;比例是一个等式。
(3)a:b=c:d a b =cd ,a,d 叫做比例外项,b,c 叫做比例内项,d ,叫做a,b,c 的第四比例项。
注意这里的字母是泛指,概念只与位置有关,第四比例项必须描述清楚是谁的第四比例项。
补充练习:①指出x y =ef 的比例内项、比例外项及第四比例项。
②求3,4,5的第四比例项。
P96做一做1,2%(2答案:等式a b =c d 的两边同乘以bd ,可由a b =cd 推出ad =bc 。
反过来等式ad =bc 两边同除以bd ,即可由ad =bc 推出a b =cd )比例的基本性质:基本性质:a b =cd <=>ad =bc(a 、b 、c 、d 都不为零) 两内项之积等于两外项之积。
说明:由a b =c d =>ad =bc 的形式是唯一的,而由ad =bc=>a b =cd 的形式不唯一,有8个不同的比例式。
可以补充,但不出现更比定理的名称。
三、模仿与应用例1:根据下列条件,求a:b 的值。
(1)2a =3b ;(2) a 5 =b4比例的基本性质直接运用,其中第2小题两次运用了性质,初学时易差错,要求学生重视对变形结果的检验,即变形后是否仍然满足“两内项之积等于两外项之积”。
%例2:已知a b =cd ,判断下列比例式是否成立,并说明理由。
(1)a +b b =c +d d ;(2)a b =a +c b +d分析:(1)比较条件和结论的形式得到解题思路; (2)采用设比值较为简单。
这两个小题反映了在比例式的变形中的两种常用方法:一是利用等式的基本性质;二是设比值。
课堂练习:P97课内练习、作业题、条件活动(学生板演) 补充练习:(1)已知:x :(x+1)=(1—x):3,求x 。
(2)若2x-3y x+y =12 ,求yx 。
《(3) 若a +b b =65 ,求ab ,a -b b (4)若x 2-3xy+2y 2=0,求y(5)已知x 2 =y 3 =z 4 求2x+3y-z z+2y-3x ,x+y+zx (6)已知x:y:z=4:5:7,求235x y z z++,x y y z++(7)a :b :c=1:3:5 且a+2b —c=8求a 、b 、c (8)已知x :y=3:4,x :z=2:3,求x :y :Z 的值。
(9)若25a c e b d f ===,求a c b d --,234234a c e b d f +-+-(10)y+z x =z+x y =x+yz =k,求k 的值(两种情况)。
;(11)已知在△ABC 中,D 、E 分别是AB 、AC 上的点,AB =12,AE =6,EC =4,且AD DB =AEEC .求AD 的长。
(12)已知1, 2 ,2三个数,请你再添上一个数,写出一个比例式。
(13)操场上有一群学生在玩游戏,其中男生与女生的人数比例是3:2,后来又有6名女同学参加进来,此时女生与女生人数的比为5:4,求原来各有多少男生和女生四、课堂小结1.比例的概念,比例的基本性质;2.判断四个数成比例的基本方法;3.比例式变形的常用方法:(1)利用等式性质;(2)设比值。
五、作业:见作业本 %六、教后感比例线段(2)教学目标:1.了解两条线段的比和比例线段的概念;2.能根据条件写出比例线段;3.回运用比例线段解决简单的实际问题。
教学重点、难点教学重点:比例线段的概念。
\教学难点:例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点。
知识要点:1.两条线段的长度的比叫做两条线段的比。
2.四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即a b =cd ,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
重要提示:1.用方程思想寻找几何图形中四条线段成比例是常用方法。
2.四条线段成比例可以解决一些实际问题,如地图上的某两地之间的距离。
教学过程 }一、复习引入1.列举四个数成比例,并写出比例式,指出比例内项、外项、第四比例项。
2.说出比例的基本性质。
由ad =bc 可推出哪些比例式3.练习:(1)若3x =4y ,求x y 、xx -y 、x -2y x +y 的值。
(2)若a +b a =53 ,求a -2bb 的值。
(3)x:y:z =2:3:4,求x -y +z2x +3y -z的值。
(4)已知a:b:c =3:4:5,且2a +3b -4c =-1,求2a -3b +4c 的值。
(5)已知线段AB =15cm ,CD =20cm 。
求AB:CD 的值。
?(6)完成P98网格问题。
(问题建立在相似变换基础上,可复习相似变换) 二、设置问题,探究新课如何定义两线段的比呢什么是比例线段在同一长度单位下,a,b,两线段长度的比叫做这两线段的比。
记为a :b 或ab注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长,单位多种,但求比值必需在同一长度单位下比值一定是正数,比值与采用的长度单位无关。
(3)表示方式与数字的比表示类同,但它也可以表示为AB:CD.比例线段:一般地,四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 比,即a b =cd ,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
(老教材定义:如果四条线段的长度成比例,那么这四条线段叫做成比例线段,简称比例线段) {完成P99做一做 三、模仿与应用例题:已知线段a=10mm ,b=6cm ,c=2cm ,d=3cm.问:这四条线段是否成比例为什么 答:这四条线段成比例 ∵a=10mm=1cm ∴a c =12 ,d b =36 =12∴a c =db ,即线段a 、c 、d 、b 是成比例线段。
想一想:是否还可以写出其他几组成比例的线段.;反思:判断四条线段是否成比例的方法有两种:(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。
(2)查看是否有两条线段的积等于其余两条线段的积。
例3如图,在Rt △ABC 中,CD 是斜边AB 上的高。
请找出一组比例线段,并说明理由。
分析:(1)根据比例基本性质,要判断四条线段是否成比例,只要采取什么方法(看其中两条线段的乘积是否等于另两条线段的乘积)(2)已知条件中有三角形的高,我们通常可以把高与什么知识联系起来 (3)根据三角形的面积公式,你能得到一个怎样的等式根据所得 ` 的等式可以写出怎样的比例式。
例4如图,是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪一个方向到高雄市的实际距离A B C D注意:要设实际距离为s ;求角度时要注意方位。
解:从图上量出高雄市到基隆市的距离约35mm,设实际距离为s ,则 3519000000s =359000000s ∴=⨯=0(mm) 即s =315(km) 答:如果量得图中28α∠=︒,我们还能确定基隆市在高雄市的北偏东28︒的315km 处。
&课堂练习:P99课内练习、P100作业题(学生板演) 补充练习:1.已知线段a =30mm ,b =2cm ,c =45 cm ,d =12mm ,试判断a 、b 、c 、d 是否成比例线段。
2.已知a 、b 、c 、d 是比例线段,其中a =6cm ,b =8cm ,c =24cm,则线段d 的长度是多上 3.已知三角形三条边之比为a :b :c=2:3:4,三角形的周长为18cm ,求各边的长。
4.已知AB 两地的实际距离是60km ,画在图上的距离A 1B 1是6cm ,求这幅图的比例尺。
5.现在有一棵很高的古树,欲测出它的高度,但又不能爬到树尖上去直接测量,你有什么好的方法吗【类题:相同时刻的物高与影长成比例。
如果一电视塔在地面上影长为180m ,同一时刻高为2m 的竹竿的影长为3m ,那么电视塔的高是多少6.如图,已知AD ,CE 是△ABC 中BC 、AB 上的高线,求证:AD :CE=AB :BC7.如图,在Rt △ABC 中,CD ⊥AB ,DE ⊥AC,请找出一组比例线段,并说明理由。
8.如图,已知32AD AE DB EC ==,求,,AB EC ABDB AE AD 9.育美中学请张工程师设计学校的矩形花坛的平面图,这个花坛长为20m ,宽为12m 。
(1)在比例尺为1:100的平面图上,这个矩形花坛的长和宽各是多少 (2)在平面图上,这个花坛的长和宽的比是多少 (3)花坛长和宽实际比是多少 !(4)你发现这两个比有什么关系 四、课堂小结1.两条线段的比及比例线段的概念;2.方程思想的体现;3.比例线段在实际问题中的应用。