关于大学物理答案第全新章

合集下载

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。

(B) 匀速率圆周运动。

(C) 行星的椭圆轨道运动。

(D) 抛体运动。

(E) 圆锥摆运动。

2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理(上册)课后习题及答案

大学物理(上册)课后习题及答案
分离变量得: ,即 ,
因此有: ,∴
⑵由 得: ,两边积分得:

⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,

5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,

⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:

大学物理教材课后习题答案

大学物理教材课后习题答案

P31 第一章 习题答案3. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v4.有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间. 解: ct b t S +==d /d v c t a t ==d /d v()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=6.由楼窗口以水平初速度0v ϖ射出一发子弹,取枪口为原点,沿0v ϖ方向为x 轴,竖直向下为y 轴,并取发射时刻t 为0,试求:(1) 子弹在任一时刻t 的位置坐标及轨迹方程; (2) 子弹在t 时刻的速度,切向加速度和法向加速度. 解:(1) 2021gt y t x == , v 轨迹方程是: 202/21v g x y =(2) v x = v 0,v y = g t ,速度大小为: 222022t g y x +=+=v v v v方向为:与x 轴夹角 θ = tg -1( gt /v 0)22202//d d t g t g t a t +==v v 与v ϖ同向.xyOθ 0v ϖ t a ϖn a ϖg ϖ()222002/122/t g g a g a t n +=-=v v 方向与t a ϖ垂直.7. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i ϖ、j ϖ表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2) 由(1)导出速度 v ϖ与加速度 a ϖ的矢量表示式;(3)试证加速度指向圆心.解:(1) j t r i t r j y i x r ϖϖϖϖϖsin cos ωω+=+=(2) j t r i t r trϖϖϖϖ cos sin d d ωωωω+-==vj t r i t r ta ϖϖϖϖ sin cos d d 22ωωωω--==v(3) ()r j t r i t r a ϖϖϖϖ sin cos 22ωωωω-=+-= 这说明 a ϖ与 r ϖ方向相反,即a ϖ指向圆心8. 一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶,其加速度为a ,他向车前进的斜上方抛出一球,设抛球过程对车的加速度a 的影响可忽略,如果他不必移动在车中的位置就能接住球,则抛出的方向与竖直方向的夹角θ 应为多大?解:设抛出时刻车的速度为0v ϖ,球的相对于车的速度为/0v ϖ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移20121at t x +=∆v ① 球的位移 ()t x θsin /002v v +=∆ ② ()2/0221cos gt t y -=∆θv ③小孩接住球的条件 0221=∆∆=∆y x x ,即 ()t at /θsin 2102v = , ()t gt θcos 21/02v =两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ9.一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 抛出后上升高度9.4522='=gh v m/s离地面高度 H = (45.9+10) m =55.9 m (2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gt t t -+=v v v xyO ωr(x ,y )j ϖ iϖθa v 0/0v ρ08.420==gt v s 10.一球从高h 处落向水平面,经碰撞后又上升到h 1处,如果每次碰撞后与碰撞前速度之比为常数,问球在n 次碰撞后还能升多高? 解: g h /212v = ;;/21;/21222211ΛΛ v v g h g h ==g h n n /212v =由题意,各次碰撞后、与碰撞前速度之比均为k ,有v v v v v v 2122212222212/;;/;/-===n n k k k ΛΛ将这些方程连乘得出:nn n n n hkh h h k 2222//=== , v v又v v h h k //12212== 故()111//-==n n nn h h h h h h11.一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d v v v v ===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C ky y ky 222121 , d d v v v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v12 有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v ϖ的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点.解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,由题意可得 u x = 0u y = a (x -l /2)2+b 令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u 0, 代入上式定出a 、b,而得 ()x x l lu u y --=204 船相对于岸的速度v ϖ(v x ,v y )明显可知是 2/0v v =x y y u +=)2/(0v v , 将上二式的第一式进行积分,有 t x 20v =还有,y45 °v 0 u 0xlx y t x x y t y y d d 2d d d d d d 0v v ====()x x l lu --20042v 即 ()x x l l u x y--=020241d d v因此,积分之后可求得如下的轨迹(航线)方程:'32020032422x l u x l u x y v v +-= 到达东岸的地点(x ',y ' )为 ⎪⎪⎭⎫⎝⎛-=='='=003231v , u l y y l x lx13.当一列火车以36 km/h 的速率水平向东行驶时,相对于地面匀速竖直下落的雨滴,在列车的窗子上形成的雨迹与竖直方向成30°角.(1) 雨滴相对于地面的水平分速有多大?相对于列车的水平分速有多大? (2) 雨滴相对于地面的速率如何?相对于列车的速率如何? 解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向.(2) 设下标W 指雨滴,t 指列车,E 指地面,则有WE v ϖ = t W v ϖ+ v ϖtE , v tE =10 m/s v WE 竖直向下,v W t 偏离竖直方向30°,由图求得雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/s雨滴相对于列车的速率 2030sin ==οtEt W v v m/s14.一人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m .求在这50 s 内,(1) 平均速度的大小和方向; (2) 平均速率的大小.解:(1) ++=)45sin )45cos (18)10(30j i j i ϖϖϖϖ︒+︒-+-+= j i ϖϖ73.227.17+=,方向φ =8.98°(东偏北)=∆=∆∆=t t r //ϖ0.35 m/s方向东偏北8.98°(2) (路程)()181030++=∆S m=58m,16.1/=∆∆=t S v m/s15 河水自西向东流动,速度为10 km/h .一轮船在水中航行,船相对于河水的航向为北偏西30°,相对于河水的航速为20 km/h. 此时风向为正西,风速为10 km/h .试求在船上观察到的烟囱冒出的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)Wt v ϖWEv ϖtEvϖ30°OCAB东y 北φπ/4 西 南x解:记水、风、船和地球分别为w , f ,s 和e ,则水-地、风-船、风-地和船-地间的相对速度分别为we V ϖ、fs V ϖ、fe V ϖ和se V ϖ.由已知条件we V =10 km/h ,正东方向. fe V =10 km/h ,正西方向. sw V =20 km/h ,北偏西030方向.根据速度合成法则: se V ϖ=sw V ϖ+weV ϖ由图可得: se V =310 km/h ,方向正北.同理 fs V ϖ=fe V ϖ-se V ϖ, 由于fe V ϖ=-we V ϖ∴ fs V =sw V , fs V ϖ的方向为南偏西30°在船上观察烟缕的飘向即fs V ϖ的方向,它为南偏西30°.30ofs V ϖsw V ϖfe ϖweϖ北 东30o se V ϖ。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理习题答案第一章

大学物理习题答案第一章

大学物理习题答案第一章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN[习题解答]1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。

求汽车行驶的总路程和总位移。

解汽车行驶的总路程为;汽车的总位移的大小为∆r =位移的方向沿东北方向,与方向一致。

1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么解与在一般情况下是不相等的。

因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。

如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。

1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。

求:(1)第二秒内的平均速度;(2)第三秒末和第四秒末的速度;(3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。

(1)第二秒内的平均速度m⋅s-1;(2)第三秒末的速度因为,将t = 3 s 代入,就求得第三秒末的速度,为v3 = - 18 m⋅s-1;用同样的方法可以求得第四秒末的速度,为v4 = - 48 m⋅s-1;(3)第三秒末的加速度因为,将t = 3 s 代入,就求得第三秒末的加速度,为a3 = - 24 m⋅s-2;用同样的方法可以求得第四秒末的加速度,为v4 = - 36 m⋅s-2 .1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明:(1) v d v = a d s;(2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。

解(1);(2)对上式积分,等号左边为,等号右边为,于是得,即.1-7 质点沿直线运动,在经过时间t后它离该直线上某定点O的距离s满足关系式:s = (t-1)2 (t-2),s和t的单位分别是m和s。

大学物理(二)智慧树知到答案2024年武汉科技大学

大学物理(二)智慧树知到答案2024年武汉科技大学

大学物理(二)武汉科技大学智慧树知到答案2024年第一章测试1.在标准状态下,1m3理想气体在中含有的分子数等于()。

A:6.02×1023 B:8.02×1021 C:2.45×1025 D:2.69×1025答案:D2.如果在一固定容器内,理想气体分子的速率都提高为原来的二倍,那么()。

A:温度升高为原来的二倍,压强升高为原来的四倍 B:温度与压强都升高为原来的四倍 C:温度和压强都升高为原来的二倍 D:温度升高为原来的四倍,压强升高为原来的二倍答案:B3.如果在一固定容器内,理想气体分子速率都提高为原来的三倍,那么()。

A:温度升高为原来的二倍,压强升高为原来的四倍 B:温度与压强都升高为原来的9倍 C:温度升高为原来的四倍,压强升高为原来的二倍 D:温度和压强都升高为原来的二倍答案:B4.温度压强相同的氦气和氧气,它们分子的平均动能和平均平动动能关系为()。

A:和都相等 B:和都不相等 C:相等,而不相等 D:相等,而不相等答案:C5.气体的三种统计速率:最概然速率、平均速率、方均根速率,它们之间的大小关系为()。

A: B: C: D:答案:A第二章测试1.公式 (式中为定体摩尔热容量,视为常量,为气体摩尔数),则在计算理想气体内能变化量时,此式()。

A:只适用于一切准静态过程 B:只适用于等体过程 C:只适用于准静态的等体过程 D:适用于一切始末态为平衡态的过程答案:D2.一定质量的理想气体的内能E随体积V的变化关系为一直线(其延长线过E~V图的原点),则此直线表示的过程为()。

A:等温过程 B:等体过程 C:等压过程 D:绝热过程答案:C3.如图所示,一定量的理想气体,沿着图中直线从状态a(压强p1 = 4 atm,体积V1 =2 L )变到状态b (压强p2 =2 atm,体积V2 =4L ).则在此过程中()。

A:气体对外作正功,向外界放出热量B:气体对外作负功,向外界放出热量 C:气体对外作正功,内能减少 D:气体对外作正功,从外界吸热答案:D4.一定量理想气体的质量为m,该种理想气体的摩尔质量为M,理想气体经历等温膨胀,体积由V1增大到V2,则此过程中,理想气体的熵变为()。

大学物理课本课后习题答案

大学物理课本课后习题答案

大学物理课本课后习题答案大学物理课本课后习题答案作为大学物理课程的一部分,课后习题是学生巩固所学知识、培养解决问题能力的重要环节。

然而,很多学生在自学过程中会遇到一些难题,特别是对于一些较为复杂的习题,往往很难找到正确的答案。

为了帮助学生更好地理解和掌握物理知识,本文将提供一些大学物理课本课后习题的答案,供学生参考和学习。

第一章:运动的描述1. 一个物体在2秒内沿直线运动,初速度为2m/s,加速度为3m/s²。

求物体在2秒内的位移。

答案:利用公式s = ut + 0.5at²,代入已知数据得到s = 2 × 2 + 0.5 × 3 × 2² = 10m。

2. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,经过5秒后速度为10m/s。

求物体在这段时间内的位移。

答案:利用公式v = u + at,代入已知数据得到10 = 0 + 2 × 5,解得加速度为2m/s²。

再利用公式s = ut + 0.5at²,代入已知数据得到s = 0 × 5 + 0.5 × 2 × 5² = 25m。

第二章:力和运动1. 一个质量为2kg的物体受到一个10N的力,求物体的加速度。

答案:根据牛顿第二定律F = ma,代入已知数据得到10 = 2a,解得加速度为5m/s²。

2. 一个质量为3kg的物体受到一个5N的力,求物体的加速度。

答案:根据牛顿第二定律F = ma,代入已知数据得到5 = 3a,解得加速度为5/3m/s²。

第三章:牛顿定律和万有引力1. 一个质量为5kg的物体在水平面上受到一个10N的水平力和一个5N的竖直向下的重力,求物体的加速度。

答案:根据牛顿第二定律F = ma,水平方向上的合力为10N,竖直方向上的合力为5N,代入已知数据得到10 = 5a,解得加速度为2m/s²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。

解:单缝衍射中央明条纹的宽度为
代入数据得
17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。

解:单缝衍射极小的条件
依题意有
17-5 波长为20m 的海面波垂直进入宽50m 的港口。

在港内海面上衍射波的中央波束的角宽是多少?
解:单缝衍射极小条件为
依题意有 0115.234.0sin 5
2sin 20sin 50===→=--θθ
中央波束的角宽为00475.2322=⨯=θ
17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。

解:单缝衍射明纹条件为
依题意有
2
)122(2)132(21λλ+⨯=+⨯ 代入数据得 nm 6.428760057521=⨯==λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。

(1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。

星体在视网膜上像的角宽度多大?
(2)瞳孔到视网膜的距离为23mm 。

视网膜上星体的像的直径多大?
(3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。

星体的像照亮了几个这样的细胞?
解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为
(2)视网膜上星体的像的直径为
(3)细胞数目应为3.2105.14)104.4(52
3=⨯⨯⨯⨯=-πn 个
17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。

试问汽车离人多远的地方,眼睛恰能分辨这两盏前灯?设夜间人眼瞳孔直径为5.0mm ,入射光波长为550nm.。

解:
17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。

(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大?
(2)此照相机的孔径需多大?光的波长按500nm 计算。

17-10 一光栅每厘米刻有的?和?656nm 和410nm ,假定是正入射。

解: S 1
S 2
17-11 两束波长分别为450nm和750nm的单色光正入射在光栅上,它们的谱线落在焦距为1.50m的透镜的焦平面上,它们的第一级谱线之间的距离为6×10-2m,试求光栅常数为多少?
解:
17-12 以氦放电管发出的光正入射某光栅,若测得波长为668nm的单色光衍衍射角为200,如在同一衍射角下出现了更高级次的氦谱线,波长为447nm,问光栅常数最小应为多少?
解:
17-13 一束光线正入射到衍射光栅上,当分光计转过?角时,在视场中可看到第三级光谱内波长为440nm的条纹。

问在同一角?上,可看见波长在可见光范围内的其它条纹吗?
解:
17-14 某单色光垂直入射到一每厘米刻有6000条的光栅上,如果第一级谱线的偏角为200,试问入射光的波长如何?它的第二级谱线将在何处?
解:
17-15 波长600nm的单色光垂直入射在一光栅上,第二级明条纹分别出现在sin(=0.2处,第四级缺级,试问:
(1)此光栅常数多少?
(2)光栅上狭缝可能的最小宽度a多少?
(3)按上述选定的d、a值,试问在光屏上可能观察到的全部级数是多少?
解:
17-16 波长为500nm的单色光,垂直入射到光栅上,如果要求第一级谱线的衍射角为300,问光栅每毫米应刻几条线?如果单色光不纯,波长在0.5%范围内变化,则相应的衍射角变化范围??如何?如果光栅上下移动而保持光源不动,衍射角?有何变化?
解:
??=20/
(3)如果光栅上下移动而保持光源不动则衍射角不发生变化。

17-17 波长为500nm的单色光,以300入射角斜入射到光栅上,发现原正入射时的中央明条纹的位置现在改变为第二级光谱的位置。

求此光栅每毫米上共有多少条刻痕?最多能看到几级光谱?解:
17-18若单色光的波长不变,试画出下列几种情况下衍射的光强度分布曲线I-sin?示意图,并标出各图横坐标标度值。

(1)N=1;
(2)N=2,d/a=2(画出单缝衍射中央包络线的主极大即可)
(3)N=4,d/a=4(画出单缝衍射中央包络线的主极大即可)
(4)N=5,d/a=3(画出单缝衍射中央包络线的主极大即可)
解:
(1)
sinθ(λ/a)
(2)sinθ(λ/d)
(3)
sinθ(λ/d)(4
)sinθ(λ/d)
17-19 波长为600nm的单色光垂直入射在一光栅上,第2、3级明条纹分别出现在sin?=0.2与sin?=0.3处,第4级缺级。

若光栅的缝数为6,试画出单缝衍射中央包络线的主极大衍射的光强度分布曲线I-sin?示意图,并标出横坐标标度值。

解:
17-20 以波长为1.10×10-10m的X射线照射岩盐晶面,实验测得在X射线上晶面的夹角(掠射角)为11030/时获得第一级极大的反射光。

问(1)岩盐晶体原子平面之间的间距d为多大?(2)如以另一束待测的X射线照射岩盐晶面,测得X射线与晶面的夹角为17030/时获得第一级极大反射光,则待测的X射线的波长是多少?
解:
17-21 对于同一晶体,分别以两种X射线实验,发现已知波长为9.7nm的X射线在与晶体面成300掠射角处给出第一级极大,而另一未知波长的X射线在与晶体面成600的掠射角处给出第三级反射极大。

试求此未知X射线的波长。

解:
17-22 北京天文台的米波综合孔径射电望远镜由设置在东西方向上的一列共28个抛物线组成(如图)。

这些天线用等长的电缆连到同一
个接收器上(这样各电缆对各天线接收的电磁波信号不会产生附加相差),接收由空间射电源发射的232MH
的电磁波。

工作时各天线的作
Z
用等效于间距为6m,总数为192各天线的一维天线阵列。

接收器收到的从正天顶上的一颗射电源发来的电磁波将产生极大强度还是极小强度?在正天顶东方多大角度的射电源发来的电磁波将产生第一级极小强度?又在正天顶东方多大角度的射电源发来的电磁波将产生下一级极大强度?
解:。

相关文档
最新文档