第二讲 飞机的基本飞行性能
飞机基本飞行性能课件.讲义共57页文档

▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
57
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗不如乐之者。——孔子
飞机基本飞行性能课件.讲义
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
飞机的飞行性能

飞机的飞行性能在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。
简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。
速度性能最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。
这是衡量飞机性能的一个重要指标。
最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。
飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。
巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。
这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。
这是衡量远程轰炸机和运输机性能的一个重要指标。
当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。
高度性能最大爬升率:是指飞机在单位时间内所能上升的最大高度。
爬升率的大小主要取决与发动机推力的大小。
当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。
理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。
由于达到这一高度所需的时间为无穷大,故称为理论升限。
实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。
升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。
飞行距离航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。
在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。
活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。
飞行性能

式中, 零升阻力, 升致阻力, 式中,D0 —零升阻力,Di —升致阻力, 零升阻力 升致阻力 低速飞行时, 基本不随M数改变, 成正比, 低速飞行时,A基本不随M数改变,D0与速度V2成正比, Di 与速度V2成反比,如图2-2b中虚线。图中,实线为总阻力。 成反比,如图2 2b中虚线 图中,实线为总阻力。 中虚线。 最小, 称为有利速度 有利速度, 当D0=Di时,Tr最小,此时速度Vf称为有利速度,升阻比为Kmax。 2a, 点 升阻极曲线斜率最大) (图2-2a,a’点,升阻极曲线斜率最大) 当升力系数最大时(临界攻角, 2a最高点 最高点) 当升力系数最大时(临界攻角,图2-2a最高点) ,平飞速度最 2b, 小(图2-2b,b点)
2.速度特性 2.速度特性 指高度H 发动机转速n不变时,推力T 指高度H、发动机转速n不变时,推力T随V(M)变化关 系 速度增加时,先略有下降,再随M数增加而增加, 速度增加时,先略有下降,再随M数增加而增加, M>1后 数增加而下降(防止涡轮过热损坏, M>1后,随M数增加而下降(防止涡轮过热损坏,降 低油量的限制措施)。 低油量的限制措施)。 3.高度特性(虚线) 3.高度特性(虚线) 高度特性 推力随高度变化特性。 推力随高度变化特性。 图中H增大,空气密度下降, 图中H增大,空气密度下降, 发动机推力下降。 发动机推力下降。
Tr = D = 1 ρV 2 SCD 2
G=L=
1 ρV 2 SCL 2
两式相除, Tr / G = 1/ K , K = CL / CD , K—升阻比 两式相除, 升阻比越高,平飞需用推力越小。 Q G = Tr K 升阻比越高,平飞需用推力越小。
【南航】飞行原理(飞行性能)

起飞着陆性能
• 飞机的着陆滑跑距离取决于飞机的着陆接地速度和落地后的 减速性能。
• 着陆接地速度同样也由飞机的最小平飞速度决定。 • 为改善落地后的减速性能,飞机除了在机轮上安装刹车装置
外,通常还采用减速板、反推力、减速伞等装置。 ★★
反推力
减速板
减速伞
机动性能
机动性能 • 指飞机改变飞行速度、飞行高度和飞行方向的能力。 • 通常用过载来衡量飞机的机动性。★★ • 过载n定义为飞机上所受的外力与飞机重力之比。(通常所说
的过载多指法向过载,即飞机的升力与重力之比) • 过载越大,飞机机动能力越强。为保证飞机和飞行员的安全
,飞机过载不能过大。通常战斗机的最大过载在10左右。
爬升性能
爬升率 ★ 飞机的爬升率是指单位时间内飞机所上升的垂直高度,通
常以vy表示。 要提高最大爬升率vymax,除设法减小阻力和降低飞机重量
外,重要的措施是加大推力。
爬升性能
静升限:飞机能作水平直线飞行所能达到的最大高度。 理论静升限:飞机能够保持平飞的最大飞行高度,此时爬升率 等于零。 ★★ 实 用 静 升 限 : 飞 机 最 大 爬 升 率 等 于 0.5m/s ( 亚 声 速 飞 机 ) 或 5m/s(超声速飞机)时所对应的飞行高度。 ★★
速度性能
最大飞行速度 ★ 指飞机在某一高度上作水平飞行,发动机以最大可用推力
工作时飞机所能达到的最大飞行速度。
巡航速度 ★ 发动机每公里消耗燃油量最小情况下的飞行速度。一般为
最大飞行速度的70%~80%。
最小飞行速度 ★★ 在一定高度上飞机能维持水平直线飞行的最小速度。飞机
的最小平飞速度的大小,对飞机的起降性能有很大影响。
飞机的飞行性能、稳定与操纵

2.4 飞机的飞行性能、稳定与操纵2.4.1 机体坐标轴系研究飞机的飞行性能、稳定与操纵原理的时候,为了描述飞机的空间位置、速度、加速度、力和力矩等向量时,须采用相应的坐标系。
常用的坐标系有:地面坐标轴系、机体坐标轴系、气流坐标轴系、航迹坐标轴系、半机体坐标轴系、稳定坐标轴系等。
这些坐标系都是三维正交右手系。
为研究问题的方便,在讨论飞机的操稳特性时,我们选用机体坐标轴系作为参考坐标系。
图 2.4.1 机体坐标轴系机体坐标轴系(Oxyz)是固定在飞机上的坐标轴系,其原点O位于飞机的质心,纵轴x位于飞机参考面(对称面)内指向前方且平行于机身轴线(或翼根弦线),横轴y垂直于飞机参考面指向右方,竖轴z在飞机参考面内垂直于纵轴指向下方,如图2.4.1所示。
飞机绕机体横轴oy的转动(称为俯仰运动)以及沿纵轴ox和竖轴oz的移动,是发生在飞机对称面内的运动,通常称为纵向运动;而飞机绕机体纵轴ox的转动(称为滚转运动)和沿横轴oy的移动,是发生在飞机横截面内的运动,称为横向运动;飞机绕竖轴oz的转动(称为偏航运动)称为方向运动。
2.4.2飞机的飞行性能和机动飞行讨论飞机的飞行性能时,将飞机作为一个质点,其上所受到的力有:重力G、动力装置的推力T、升力L和阻力D,如图2.4.2所示。
在等速直线飞行时,这些力是平衡的。
图中为航迹速度与水平面的夹角,称为爬升角。
当航迹速度位于过原点的水平面之上时,为正。
为发动安装角,为飞行迎角。
发动安装角通常很小,近似认为=0。
飞机等速直线飞行的轨迹不外有3种情况:等速直线爬升(>0)、等速直线平飞(=0)和等速直线下滑(<0)。
这3种典型等速直线运动的飞行性能分别称为爬升(或上升)性能、平飞性能和下滑性能。
图2.4.2 作用在飞机上的力图2.4.3 爬升率飞机有各种飞行状态(如起飞/着陆、等速上升/下降、上升/下降转弯、巡航、机动飞行等),概括起来可将飞机的飞行性能分为类:(1) 等速直线飞行性能(基本飞行性能),(2) 续航性能,(3) 起飞着陆性能,(4) 机动飞行性能。
飞行力学第二章2.1-2.3-w

二、平飞需用推力的组成及变化规律
TR = D0 + ACL ) ρV 2S 2 1 2 AW2 =CD0 ρV S+ 1 2 2 ρV S 2
零升阻力D 零升阻力 0 升致阻力(诱 升致阻力 诱 导阻力)D 导阻力 i
2W ρV2S
性能指标
Vmax ( Mamax ) , Vmin, Hmax.a ,平飞包线 平飞包线
简单推力法求解 简单推力法求解 在近似公式的基础上, 在近似公式的基础上,根据 可用推力和需用推力曲线确 定性能的方法
飞行器飞行力学2010
一、最大平飞速度Vmax ( Mamax ) 最大平飞速度
定义
在某高度能定直平飞的最大速度, 该高度最大平飞速度. 在某高度能定直平飞的最大速度,称该高度最大平飞速度. 各高度V 最大者称为飞机的最大平飞速度 最大平飞速度。 各高度 max最大者称为飞机的最大平飞速度。
升力系数限制 Mamin
确定V 确定 min的步骤
2 1 2 飞 机 定 常 平 飞 性 能 的 确 定 . .
C L.a ρ S 2G 1 1) 取 个 , CL = 2 几 M 由 ρc S Ma2 CL C C a 得 D及 D ~ M ,
a 线 , 制 已 C 绘 在 知 L.a ~ M 曲 上 二 线 点 Ma 曲 交 为 a
L = W ⇒ V ↓ , 则C L ↑ ( H 不 变 )
C L ≤ CL.a
Vmin = max{Va ,Vmin.T}
作图说明
⇒ Vmin C = Va =
L.a
∆
2W CCL.a ρ S
飞行器飞行力学2010
Allowed lift coefficient
第二讲飞机的基本飞行性能讲义

第二讲飞机的基本飞行性能讲义一、引言飞机的基本飞行性能是指飞机在不同飞行阶段中的各种性能指标。
了解和掌握飞机的基本飞行性能对于飞行员和飞机设计师来说都是十分重要的。
本讲义将介绍飞机的基本飞行性能指标及其计算方法。
二、起飞性能起飞性能是飞机在地面开始起飞到到达安全飞行高度之间的性能指标。
主要包括起飞距离、起飞速度和最大爬升率。
1. 起飞距离起飞距离是指飞机从起飞开始到离地面50英尺高时所需的距离。
起飞距离计算公式如下:起飞距离 = 加速距离 + 抬轮距离 + 离地距离其中,加速距离是指飞机从静止到达起飞速度所需的距离;抬轮距离是指飞机从离地面50英尺高到离地面100英尺高所需的距离;离地距离是指飞机离开地面100英尺高时所需的距离。
2. 起飞速度起飞速度是指飞机在起飞时所需的最低速度。
起飞速度取决于飞机的重量和机翼的亮度。
一般来说,起飞速度随飞机重量的增加而增加,随机翼的亮度的增加而减小。
3. 最大爬升率最大爬升率是指飞机在起飞过程中爬升的最大速率。
最大爬升率取决于飞机的发动机推力、机翼提供的升力和飞机的阻力。
飞机的最大爬升率在不同高度下可能会有所不同。
三、巡航性能巡航性能是指飞机在巡航飞行阶段的性能指标。
主要包括巡航速度、巡航升力系数和巡航推力。
1. 巡航速度巡航速度是指飞机在巡航飞行阶段所保持的恒定速度。
巡航速度取决于飞机的气动性能和发动机的推力。
为了保持较低的燃料消耗和较长的航程,飞机会选择一个较低的巡航速度。
2. 巡航升力系数巡航升力系数是指飞机在巡航飞行阶段的升力与机翼面积、空气密度和飞机速度的比值。
巡航升力系数影响飞机的升力和阻力。
3. 巡航推力巡航推力是指飞机在巡航飞行阶段的发动机推力。
巡航推力决定飞机的速度和燃料消耗。
四、下降和着陆性能下降和着陆性能是指飞机从巡航飞行阶段到着陆的过程中的性能指标。
主要包括下降速度、下降距离和着陆距离。
1. 下降速度下降速度是指飞机从巡航飞行阶段开始向地面下降时的速度。
飞行原理和性能

飞行器的飞行原理和飞行性能飞行原理一、飞机的升力和阻力飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。
在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。
流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
连续性定理阐述了流体在流动中流速和管道切面之间的关系。
流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。
伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。
伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。
飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。
从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。
机翼上表面比较凸出,流管较细,说明流速加快,压力降低。
而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。
这里我们就引用到了上述两个定理。
于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。
这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。
机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。
飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。
按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北航 509
计算基本条件
1)基本气动外形 2)给定发动机工作状态(加力、最大、额定等)
第 二 章 引 言 北航 509
3)平均飞行重量或其它给定重量
求解方法
1)近似解析法 2)数值计算法
正常装载、半油的飞机重量 通过图解比较可用推力/功率(已知) 和需用推力/功率(由平飞条件Y=G 求出)得到飞机基本性能特点。
Q0 Qi K max Ppxmin 有利状态
小展弦比 2 1 2 Q M ,Qi 2 , A , C 基本不变, 0 大后掠角 x0 - M 薄翼型 1 M Myl,Q0 Qi,Qpf 最小, K Kmax 细长机身 飞 机 跨音速面 ) 定 M lj M 1.2 ~ 1.3(跨音速范围 积律等 常 M Ppx C x 0 ,A , 平 飞 此时,波阻为主(音障),应采用低波阻构形。 需 用 M 1.2 ~ 1.3(超音速范围 ) 推 力 C x 0 1 / M 2 1,Q0 M,Qi可逐渐忽略 曲 Ppx增加较跨音速区缓慢。 线 为了兼跨不同M数下的要求,采用变后掠、切尖三角翼加 北航 边条等先进气动技术。
北航 509
平飞需用推力的计算
1 2 P Q C V S px pf x Qpf Cx 1 G 2 Ppx Qpf Y Cy K K 1 2 G Y C y V S 2
K max Ppx min Vyl , yl , C yyl
V
θ
Vy dH dt
Vy
V sin V
V y max
(VP ) max G
P G
一般H , V y max
2 - 3 飞 机 定 常 上 升 和 下 滑 性 能 的 确 定
北航 509
理论静升限Hmax.ll和实用静升限Hmax.sy
Hmax.ll 特定重量、构形,发动机满油门 (最大、加力、全加力)时,飞机 能够定直平飞的最大高度,此时 Vymax=0。 Hmax.sy 对应于Vymax=5m/s (亚音速飞机)或 0.5m/s (超音速飞机)的飞行高度。 Vymax
H增加
Kmax
Mlj
M
M
低速: Qi为主 中低空高速: Q0为主
接近升限高空: Qi作用又加强 (Q0和Qi大小几乎相等 )
2 - 2 飞 机 定 常 平 飞 性 能 的 确 定
北航 509
定常平飞基本关系
Y=G Pky=Q 调整α 调整n
yx ( ) yx
n慢 n nmax (加力/ 不加力 )
在某H、V平飞 重量、构形确定
性能指标
Vmax ( Mmax ) , Vmin, Hmax ,平飞包线
简单推力法求解
2 - 2 飞 机 定 常 平 飞 性 能 的 确 定
北航 509
最大平飞速度Vmax ( Mmax )
定义
在某高度能定直平飞的最大速度,称该高度最大平飞速度。 各高度Vmax最大者称为飞机的最大平飞速度。
Mmax
升限Hmax
随H增加,包线的速度 范围收缩,直至某高度 收缩为一点,此为Hmax。 动压限制:结构强度的需要
qmax M
M数限制:操纵性、发动机工作及热 强度方面的需要
2 - 2 飞 机 定 常 平 飞 性 能 的 确 定
北航 509
术语:表速
驾驶员读出的仪表指示速度。 若空速系统为理想的,则该速度为将测量所得的动 压PT按海平面标准大气进行换算得到的速度。 不计压缩性修正量时,表速和真空速的关系为:
北航 509
平飞需用推力随飞行速度的变化规律
Ppx Qpf 1 (C x 0 AC y ) V 2 S 2 2 1 AG C x 0 V 2 S 1 2 V 2 S 2 Q0 Qi
2
A Cx0
Qpf Q 0 Qi Myl Mlj 1.3 M
零升阻力
升致阻力 (诱导阻力)
计算步骤 — 求给定高度H和速度V下的平飞需用推力
1)计算G,Gpj = Gqf - W/2 查标准大气表 ρ、a 2)给定H 3)给定M(V) 计算
查极曲线
Cx
2Gpj 2Gpj Cy 2 V S ( aM ) 2 S Gpj Cy P Q K px pf K Cx
2 - 1 飞 机 定 常 平 飞 需 用 推 力 曲 线
3)图解法
•简单推力法:适用于喷气式飞机(用直接推力式发动机) •功率法:适用于螺旋桨飞机(用功率式发动机)
2 概念 - 1 飞 基本 机 定 关系式 常 平 飞 需 用 推 力 一般 曲 约定 线
北航 509
飞机进行等速平飞(dV/dt=0) 时,发动机推力用 以克服阻力,称该阻力为定常平飞需用推力Ppx。
图解确定Vmax ( Mmax )
满油门(最大状态、部分加力、 全加力)的Pky ~M与Ppx ~M曲线 的右交点。
M> Mmax,不能等速平飞 M< Mmax,可等速平飞(收油门)
H给定
P px(Qpf) Pky (开加力)
Mmax
M
2 - 2 飞 机 定 常 平 飞 性 能 的 确 定
北航 509
P cos( P ) Q 0 P sin( P ) Y mg 0 近似
P Q 要求一定的油门位臵 Y mg 要求一定的迎角
1) 飞机为净外形
2) G Gpj Gqf W / 2 , W : 燃油重量。
2 - 1 飞 机 定 常 平 飞 需 用 推 力 曲 线
H , 则Vmin , Mmin H
低空受Vminyx 约束 高空受Vminp约束
升力限制
Mmin
2 - 2 飞 机 定 常 平 飞 性 能 的 确 定
北航 509
确定Vmin的步骤
1) 取几点M,由C y 得C ypx及C ypx 2G 1 a 2 S M 2 ~ M,
Cy
适用 方程 下 滑 角 θxh
Q G sin xh Y G cos xh
Y
R
xh
Q
xh tan 1 ( ) tan 1
xh. min
Q Y tan 1
1 K 1
1 滑翔比 K
教师姓名:周国庆 教研室:飞行器设计与工程
内容
引言 2-1 飞机定常平飞需用推力曲线 2-2 飞机定常平飞性能的确定 2-3 飞机定常上升和下滑性能的确定 2-4 飞机的飞行状态及其与操纵的关系 2-7 超音速飞机基本飞行性能的主要特点 2-8 有关参数对基本飞行性能的影响 小结
概念:基本飞行性能 适用方程
第 二 章 : 引 言
飞行参数不 随时间变化
飞机最基本的(准)定常直线运动的性能。
Y G cos G Y Q Pky G 0 Pky Q G sin
运动形式
( 0) 性能指标Vmin , Vmax,平飞速度范围 定常平飞 ( 0) max , V y max , H max (, t min , Lss ) 定常上升 定常下滑( 0) xh.min , Vxh.max (, t xh.max , Lxh.max )
1 1 2 PT 0V表 V 2 2 2
V V表 /
0
不论H如何,表速相同表明飞机飞行在相同的动压下
2 max , V y max , H max (, t min , Lss ) 满油门 性能指标 - xh.min , Vxh.max (, t xh.max , Lxh.max ) 慢车 3 飞 上升性能 机 Pky Ppx G sin P 定 适用方程 Y G 常 上 ΔPmax ( , [ p ]不大) 升 和 上升角θ和最大上升角θmax 下 (VΔP ) max P P 1 滑 sin sin ( ) G G 性 Myl Mθ Mks M P 能 max sin 1 ( max ) 剩余推力 的 G 确 给定H,构形,G下的最大上升角 定
H
Hmax.ll Hmax.sy
2 - 3 飞 机 定 常 上 升 和 下 滑 性 能 的 确 定
北航 509
最短上升时间tmin
保持Vks(H),以Vymax上升,所需时间最短。
dH 从H 1 H 2,dt , V y max
t min dH H1 V y max
H2
1/Vymax
北航 509
θmaxΔPmax Mθ (陡升M数,一般Mθ>Myl)
2 - 3 飞 机 定 常 上 升 和 下 滑 性 能 的 确 定
北航 509
上升率Vy和最大上升率Vymax
上升率Vy:飞机在单位时间上升的高度。 某高度最大上升率Vymax: 该高度、指定构形、G下 可能的最大上升率。 相应速度为快升速度Vks(Mks)。 最大上升率: 所有H中Vymax最大者。
M
2 - 2 飞 机 定 常 平 飞 性 能 的 确 定
北航 509
定常平飞速度范围——飞行包线
理论 在H~M(V)平面上,Mmax~H与Mmin~H线所勾划出 飞行 的封闭曲线。其内飞机可定直平飞/等速爬升/加 减速飞行;其上可定直平飞。 包线
允许飞行包线
考虑实际使用限制 后得到的飞行包线。
H H max
Vmax ( Mmax ) ~H 关系 P H增加
11km 亚音速 跨音速 超音速 飞机 H 飞机 飞机
Mmax M 同样推力变化,右交点移动量跨音速区<亚音速区<超音速区
Qpf曲线右移且变平坦 H Pky曲线下移
2 - 2 飞 机 定 常 平 飞 性 能 的 确 定