6 细胞的基本功能-骨骼肌的收缩功能
医学培训执业医师生理笔记

医学培训执业医师生理笔记生理学(15分以内)第一节细胞的基本功能一、细胞的基本功能1、单纯扩散:脂溶性小分子物质高浓度向低浓度一侧移动,如氧、二氧化碳等。
2、易化扩散:(1)经载体扩散:葡萄糖、氨基酸等营养物质,具有高特异性、有饱和现象,竞争性抑制的特点。
(2)经通道扩散:Na/K/CL/Ca等离子,特异性不高,无饱和现象。
3、主动转运:分子等从低浓度一侧移向高浓度一侧,消耗ATP。
(1)原发性主动转运:钠泵激活,胞内Na增加和胞外K增加。
每分解一个ATP,移出3个Na,移入2个K。
钠泵(钠钾泵、Na-K依赖性ATP)的意义:(1)造成膜内外Na和K的浓度差;(2)维持细胞的正常形态、胞质渗透压、体积;(3)造成膜内高K,为细胞代谢的必需条件。
(4)钠泵活动造成的膜内外Na浓度势能差是其他物质继发性主动转运的动力。
(2)继发性主动转运:不直接利用ATP分解的能量,典型如葡萄糖、氨基酸在小肠黏膜上皮的主动吸收。
4、出胞入胞(也属于主动转运):大分子物质(细菌、病毒、异物、脂类物质等),耗能。
二、细胞的兴奋性和生物电现象(一)静息电位和动作电位及其产生机制1、静息电位产生机制:主要由K外流形成,接近K的电-化学平衡电位;细胞膜呈外正内负电位差。
2、动作电位产生机制:主要由Na内流形成,Na平衡电位根据Nernt公式计算的数值>实际测得的动作电位超射值。
①静息电位K+的外移停止(K+通道开放),几乎没有Na+的内移(Na+通道关闭)②阈电位造成细胞膜对Na+通透性突然增大的临界膜电位兴奋的标志动作电位或锋电位的出现③动作电位升支膜对Na+通透性增大,超过了对K+的通透性。
Na+向膜内易化扩散(Na+内移)④锋电位大多数被激活的Na+通道进入失活状态,不再开放。
是动作电位的主要组成部分绝对不应期Na+通道处于完全失活状态相对不应期一部分失活的Na+通道开始恢复,一部分Na+通道仍处于失活状态⑤动作电位降支Na+通道失活,K+通道开放(K+外流)⑥负后电位为后电位的前半部分,是膜电位小于静息电位的成分⑦正后电位为后电位的后半部分,是膜电位大于静息电位的成分极化是指静息状态下,细胞膜电位外正内负的状态(正常膜电位内负外正的状态)超极化是指细胞膜静息电位向膜内负值加大的方向变化。
生理学——骨骼肌的收缩功能ppt课件

电刺激神经纤维达阈值 神经纤维兴奋,产生动作电位 动作电位以局部电流形式传到神经末梢 Ca²+进入轴突末梢 轴突末梢量子式释放递质ACh 递质经过接头间隙与终板膜上N2受体结合
兴奋 收缩 耦联
收缩 过程
终板膜对Na+(还有K+)通透性增高而产生终 板电位
ACh被胆碱酯酶破坏 邻近肌膜去极化达阈电位而产生肌膜动作电位 肌膜动作电位沿横管传到细胞内部 肌质网终末池释放Ca²+入肌浆 Ca²+与肌钙蛋白结合,暴露肌纤蛋白上与粗肌 丝结合的位点 粗、细肌丝间形成横桥连接,细肌丝沿粗肌丝 向M线滑行,使肌小节缩短
2、肌管系统 (sarcotubular system)
横管系统(transverse tubule)
{ 纵管系统(longitudinal tubule) 肌质网 (sarcoplasmic reticulum)
三联管结构:由每一横管与来自两侧的纵管的 终末池组成的结构。其作用是把横管传来的电 信号与终末池Ca2+释放两个过程联系起来。完 成横管向肌浆网的信息传递。
舒张 过程
没有动作电位传来时 Ca²+被泵回肌质网
Ca²+脱离肌钙蛋白
粗、细肌丝间的相互作用停止, 细肌丝弹性回位
二、骨骼肌收缩的外部表现和力学分析 (一)骨骼肌的收缩形式
1、等长收缩(isometric contraction) 等张收缩( isotonic contraction)
2、单收缩和复合收缩
终板电位引 发动作电位
电压依从性 Na+通道开放
阈电位
Na+
3、神经-肌肉接头兴奋传递的特征
(1)单向性传递 (2)1对1传递 (3)兴奋传递有一定的时间延搁。 (4)易受药物和其他环境因素的影响
生理学——骨骼肌的收缩功能

生理学——骨骼肌的收缩功能骨骼肌是人体内最常见的肌肉组织,也是最重要的肌肉组织之一、它不仅具有支撑和保护的功能,还能通过收缩产生力量并推动我们的骨骼运动。
骨骼肌的收缩是通过肌肉纤维的收缩来完成的,以下将详细介绍肌肉收缩的过程以及与之相关的生理学知识。
肌肉收缩的过程可以分为四个主要步骤:兴奋-收缩-释放-恢复。
首先,神经冲动通过神经末梢传递给肌肉纤维,这个传递的过程称为兴奋。
神经冲动到达肌肉纤维后,会引发细胞内的一系列电生理反应,最终导致细胞内的钙离子释放。
当钙离子释放到肌肉纤维的细胞质中时,它们会与肌球蛋白结合在一起,这个过程被称为肌球蛋白和钙离子的结合。
肌球蛋白位于肌肉纤维中,并由两个部分组成:肌球蛋白I和肌球蛋白T。
钙离子结合到肌球蛋白I 上,使其发生构象改变,从而将粘着蛋白暴露出来。
接下来的步骤是收缩,也就是肌肉纤维产生力量并缩短。
肌球蛋白的构象改变会引起肌球蛋白和肌动蛋白之间的相互作用。
肌动蛋白是另一种蛋白质,负责肌肉纤维的收缩。
当肌动蛋白和肌球蛋白相互作用时,肌动蛋白会拉动肌球蛋白,使肌肉纤维缩短。
这个过程不断地发生,直到肌肉纤维达到最大的收缩程度。
完成收缩后,肌肉纤维需要重新松弛。
这个过程被称为释放。
释放过程中,钙离子被重新吸收到肌肉纤维内的储钙体中。
这让肌球蛋白恢复到初始状态,使肌动蛋白和肌球蛋白之间的相互作用断开。
最后一个步骤是恢复,也就是肌肉纤维回到初始状态。
在恢复过程中,肌球蛋白和肌动蛋白之间的相互作用断开,肌动蛋白返回到肌球蛋白表面以等待下一次收缩。
肌肉纤维的收缩过程是一个高度协调的过程。
它是由神经系统通过神经冲动控制的,神经冲动通过神经末梢到达肌肉纤维后,会引发一系列电生理反应,最终导致肌肉纤维的收缩。
这种神经冲动的传递是由神经递质介导的,其中最重要的神经递质是乙酰胆碱。
乙酰胆碱通过神经递质的释放使得肌肉纤维收缩。
肌肉收缩的力量大小与肌肉纤维的数量和激活程度有关。
每个肌肉纤维都是由许多肌原纤维组成的,每个肌原纤维内有成千上万个肌纤维。
细胞的基本功能—肌细胞的收缩功能(人体解剖生理学)

2.结构基础: 肌管系统 :
横管 (T管) 纵管 (肌质网)
纵行肌质网 LSR 连接肌质网 JSR 终池
三联管:骨骼肌的T管与其两侧的 终池
(耦联的关键结构)
三、具体过程
1.肌膜上AP沿肌膜和T管 传向肌细胞深处;
2.三联管结构处的信息传 递;
轻负荷:横桥摆动及其与肌动蛋白解离速度快(缩短 速度快);处于张力状态的横桥数目少(收缩张力小)
重负荷:横桥摆动速度慢,横桥周期延长(缩短速度慢); 较多横桥处于张力状态(收缩张力增加)
(三)肌肉的收缩能力
1.定义:是指与负荷无关,但可影响肌肉收缩效能的肌肉的 内在特性和功能状态。
2.影响因素: (1)兴奋-收缩耦联过程,特别是[Ca2+]; (2)肌肉蛋白质或横桥功能特性的改变,
Ca2+ 接头间隙
AP
Ca2+通道
突触小体
Na+
AP Na+
ACh
N2型Ach受体阳
AP
离子通道
Na+
三、传递的特点
(一)单向传递
(二)时间延搁
实质:电-化学-电的过程
(三)易受内环境影响
一、骨骼肌细胞的收缩
AP在运动神经纤维上的传导 N-M接头处兴奋的传递 AP在骨骼肌cell上的传导(局部电流) 骨骼肌的兴奋-收缩耦联 骨骼肌的肌丝滑行收缩
特别是ATP酶活性; (3)神经、体液、药物及病理因素。
兴奋收缩耦联过程 蛋白质或横桥功能特性
缺氧 酸中毒 能源缺乏
降低收缩效果
Ca2+ 咖啡因 肾上腺素
提高收缩效果
一、神经-肌接头的结构 接头前膜 接头间隙 接头后膜
执业兽医资格考试生理学第二单元 细胞的基本功能【cell physiology】

阈上刺激——大于阈刺激的刺激强度。 ห้องสมุดไป่ตู้下刺激——小于阈刺激的刺激强度。
阈下刺激不能引起动作电位或组织、细胞的兴奋,但并 非对组织细胞不产生任何影响。
兴奋的引起
兴奋的传导
兴奋性的变化
细胞生理
第二节、骨骼肌的收缩功能
肌 肉
1、神经肌肉间的兴奋传递:
(1)神经—肌肉接头(运动终板) (2)神经—肌肉的兴奋传递过程 (3)肌肉收缩全过程总结
肌球蛋白的外形 为一根主干,头部有 两个圆球,似“豆芽 形”。 组成粗肌丝的肌球蛋白杆状部分与纤维长轴平行排列, 形成主干,而头部膨大部暴露在外,形成横桥。横桥上含有 ATP酶,在肌肉收缩时能与肌动蛋白结合。
肌 肉
长链状的螺旋结构。 静息状态时,阻碍肌 动蛋白与肌球蛋白横 桥的结合。
覆于原肌球蛋白 上的球形蛋白质 (C、T和I亚基) 球形大分子物质。 在肌浆中无数肌动 蛋白聚合呈串球状 双螺旋结构。
肌 肉
(1)静息时,肌球蛋白与 肌动蛋白之间受肌钙蛋白原肌球蛋白的抑制不能结合。
(2)动作电位产生并传入肌 细胞后,肌浆中钙离子浓度 升高,肌钙蛋白的C亚基与钙 离子结合,使肌钙蛋白的构 型发生改变。I亚单位将此信 息传递给原肌球蛋白,原肌 球蛋白的构型发生改变。
(3)原肌球蛋白的抑制作用解 除,肌球蛋白与肌钙蛋白的结 合位点暴露。肌动蛋白与横桥 结合。横桥上的ATP酶被激活, 降解ATP。
去极化(Depolarization)——膜电位绝 对值逐渐减小的过程。 超极化(Over-polarization)——膜电 位绝对值高于静息电位的状态。
复极化(Repolarization)——膜电位去 极化后逐步恢复极化状态的过程。
术语
肌细胞的收缩功能概述

(二)影响收缩因素
1.前负荷:
∵前负荷→肌节初长度→粗 细肌丝的重叠程度 Nhomakorabea肌张力。
肌 节 最 适 初 长 ( 2.0-2.2m ) 时,粗细肌丝重叠佳,肌缩速 度、幅度和张力最大;
∴ 前负荷↑或↓→肌节初长 ↑或↓→肌张力↓。
2.后负荷:
在等张收缩条件下观察
后 负 荷 为 0→ 肌 缩 速 度 、 幅度↑和张力最小;
↓
ACh释放入接头间隙
↓
ACh与终板膜受体结合
↓
受体构型改变
↓
终板膜对Na+、K+(尤其Na+) 的通透性增加
↓
产生终板电位(EPP)
↓
EPP引起肌膜AP Ach被AChE水解
↓
肌膜AP沿横管膜传至三联管
↓
终池膜上的钙通道开放 终池内Ca2+进入肌浆
↓
Ca2+与肌钙蛋白结合 引起肌钙蛋白的构型改变
↓
终板膜对Na+、K+ (尤其是Na+)通透性↑
3.影响N-M接头处兴奋传递的因素:
(1)阻断ACh受体:箭毒和α银环蛇毒,肌 松剂(驰肌碘)。
(2)抑制胆碱酯酶活性:有机磷农药,新 斯的明。
(二)骨骼肌细胞的结构
1.肌管系统:
横管系统:T管 纵管系统:L管 三联管
2.肌小节: 是肌细胞收缩的基本结构和功能单位。
2.等长收缩与等张收缩
等长收缩:肌肉收缩时,只有张力增加而长度不
变的收缩,称为等长收缩。
等张收缩:肌肉收缩时,只有长度缩短而张力不
变的收缩,称为等张收缩。
注:①当负荷小于肌张力时,出现等张收缩; ②当负荷等于或大于肌张力时,出现等长收缩; ③正常人体骨骼肌的收缩大多是混合式的,而
肌细胞的收缩功能

一、神经—肌接头处的兴奋传递 (一)神经-肌接头的结构
• 运动神经纤维在到达骨骼肌细胞时,其末梢失去髓鞘,嵌入骨骼肌细 胞膜,靠近肌细胞膜的轴突末梢为接头前膜,而与接头前膜相对应的 肌细胞膜为接头后膜,又称终板膜。
终池膜上的钙通道开放 终池内的Ca2+进入胞质
Ca2+与肌钙蛋白结合
原肌球蛋白变构,暴露出 肌动蛋白上的活化位点
处于高势能状态的横桥与 肌动蛋白结合
横桥头部发生变构并摆动 细肌丝向粗肌丝滑行 肌节缩短
• 骨骼肌的收缩实质上是肌小节的缩短,准确的说是细肌丝 向着粗肌丝的M线方向滑行的结果。
• 在肌丝滑行的过程中,肌动蛋白和肌纤蛋白直接参与肌肉 的收缩,称之为收缩蛋白,原肌凝蛋白和肌钙蛋白虽然不 直接参与肌细胞的收缩,但对收缩的过程有着调控作用, 所以称之为调节蛋白。
(二)神经-肌接头兴奋传递的过程
神经纤维动作电位 接头前膜去极化
电压门控钙通道开放
Ca2+进入神经末梢
囊泡与接头前膜融合、 ACh释放 ACh结合并激活ACh受体通道 终板膜对Na+、K+ 通透性↑ 终板电位
肌膜动作电位
(三)神经-肌接头兴奋传递的特征 • 1.化学性传递 • 2.单向传递 • 3.时间延搁 • 4.易受药物和环境因素的影响
3.肌肉收缩能力
• 肌肉收缩能力(contractility)指与前、后负荷无关的肌肉 本身的功能状态和内在的收缩特性。
Байду номын сангаас
骨骼肌的结构与功能

⾻骼肌的结构与功能任何的体育活动,都是⾻骼肌(skeletal muscles)收缩的成果,⼈体共有600多条⾻骼肌,约佔全⾝重量的40%。
肌⾁的⼒量和耐⼒,都直接影响到运动时的表现,编排这两⽅⾯的锻炼时,对⾻骼肌的结构和功能要有充分的认识,也就显得⾮常重要了。
⾻骼肌的结构 ⾻骼肌(在此之后只称作肌⾁)是由数以千计,具有收缩能⼒的肌细胞(由於其形状成幼长的纤维状,所以亦称作肌纤维)所组成,并且由结缔组织(connective tissue)所覆盖和接合在⼀起。
每⼀条肌纤维(亦即每⼀个肌细胞)均由⼀层称為肌内膜(endomysium)的结缔组织所覆盖,多条肌纤维组合⼀起便构成了⼀个肌束(muscle bundle或fasciculus),并由⼀层称為肌束膜(perimysium)的结缔组织所覆盖和维繫。
每条肌⾁可以由不同数量的肌束所组成,再由⼀层称為肌外膜(epimysium)的结缔组织所覆盖和维繫。
这个在肌⾁内由结缔组织所形成的⽹络最后联合起来,并连接到肌⾁两端由致密结缔组织(dense connective tissue)构成的肌腱,再由肌腱把肌⾁间接地连接到⾻骼上。
肌⾁内有⼤量的⾎管和微⾎管,动脉和静脉沿著结缔组织进⼊肌⾁之后,便在肌内膜之中和周围不断分⽀成更细⼩的⾎管和微⾎管,形成了⼀个⾮常庞⼤的⽹络,以确保每条肌纤维都能够得到充⾜的养分,与及把有害的废物如⼆氧化碳等排出肌细胞之外。
根据Inger(1978)及Saltin等研究员(1977),习惯坐著不动的⼈平均每条肌纤维只有3⾄4条微⾎管环绕著,但经常参与体育锻炼的⼈却可以有5⾄7条之多。
进⾏剧烈运动时,肌⾁所需的⾎液可以是安静时的100倍或以上,环绕著每条肌纤维的微⾎管数⽬当然会影响到⾎液的供应。
除此之外,⼈体还会作出⼀些其他改变,以满⾜剧烈运动时肌⾁对⾎液供应的需求。
这些改变包括:(1)活耀肌⾁交替地收缩及放鬆,週期性地对⾎管进⾏挤压,加速⾎液回流⼼臟,也就加快了⾎液重新供应到肌⾁的速度;(2)收窄供应⾎液到⾝体⾮活跃部位(如内臟、肾、⽪肤)的⾎管,另⼀⽅⾯却扩张供应⾎液到运动肌⾁的⾎管,以调节⾎液的流量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)影响N-M接头处兴奋传递的因素
1)阻断ACh受体:箭毒和α 银环蛇毒,肌松剂 (驰肌碘)。 2)抑制胆碱酯酶活性:有机磷农药,新斯的明。 3)自身免疫性疾病:重症肌无力(抗体破坏ACh 受体),肌无力综合征(抗体破坏N末梢Ca2+通 道)。 4)接头前膜Ach释放↓:肉毒杆菌中毒。
二、骨骼肌的收缩
肌球蛋白分子(豆芽形)
—头部(ATP酶)
—杆部
横桥特性: 1 与肌纤蛋白结合,扭动、解离、复 位、再结合…. 2 有ATP酶活性
细肌丝 (三种蛋白分子组成)
肌动蛋白
原肌球蛋白
肌钙蛋白
肌动蛋白
•肌动蛋白:表面有与横桥结合的位点,静息时 被原肌球蛋白掩盖;
肌动蛋白单体 —位点(能与肌球蛋白结合)
2.兴奋-收缩耦联—— 三个主要步骤:
①肌膜电兴奋的传导:指肌膜产生AP后,AP由横管系统迅速传向 肌细胞深处,到达三联管和肌节附近。 • ②三联管处的信息 传递:③肌浆网(纵管系统)中Ca2+的释放:指终池膜上的钙 通道开放,终池内的Ca2+ 顺浓度梯度进入肌浆,触发肌丝滑 行,肌细胞收缩。 ∴Ca2+是兴奋-收缩耦联的耦联物
影响肌肉收缩的因素:
1、前负荷对肌肉收缩的影响
前负荷:肌肉 收缩前遇到的 负荷。
前负荷使肌肉在收缩前就被
拉长,具有一定的初长度.
前负荷对肌肉收缩的影响
1、在一定范围内, 前负荷愈大,初长度 愈长,收缩力愈大; 2、最适初长度时, 肌肉收缩能使肌肉产 生最大张力;
3、前负荷过大,初 长度过长,收缩力降 低。
泡→乙酰胆
碱;
(二).N-M接头处的兴奋传递过程
当神经冲动传到轴突末
膜Ca2+通道开放,膜外Ca2+向膜内流动 接头前膜内囊泡移动、融合、破裂, 囊泡中的ACh释放(量子释放)
ACh与终板膜上的N2受体结合, 受体蛋白分子构型改变
终板膜对Na+、K+ (尤其是Na+)通透性↑ 终板膜去极化→终板电位(EPP) EPP电紧张性扩布至肌膜 去极化达到阈电位
肌小节: 是肌细胞收缩的基本结构和功能 位。 =1/2明带+暗带+1/2明带 = 2条Z 线间的区域
2、肌原纤维
肌小节: 1/2明带 暗带 1/2明带
3、肌丝的分子组成
粗肌丝: 由肌球或称肌凝蛋白组成,其头部有一 膨大部——横桥:①能与细肌丝上的结合位点发生 可逆性结合;②具有ATP酶的作用,与结合位点结 合后,分解ATP提供横桥扭动(肌丝滑行)和作功 的能量。
(二)骨骼肌收缩机制
1. 肌丝滑行 2.兴奋-收缩耦联
终池膜上的钙通道开放 终池内的Ca2+进入肌浆
1.肌丝滑行
Ca2+与肌钙蛋白结合 肌钙蛋白的构型
原肌球蛋白位移, 暴露细肌丝上的结合位点 横桥与结合位点结合, 分解ATP释放能量
横桥摆动
牵拉细肌丝朝肌节中央滑行
肌节缩短=肌细胞收缩
滑行过程:
骨骼肌舒张机制
兴奋-收缩耦联后 肌膜电位复极化
终池膜对Ca2+通透性↓ 肌浆网膜Ca2+泵激活 肌浆 [Ca2+]↓ 原肌凝蛋白复盖的 横桥结合位点
Ca2+与肌钙蛋白解离
骨骼肌舒张
(三)骨骼肌收缩的外部 表现
相关名词 等长收缩: 肌肉收缩时长度不变, 只有张力的增加。 等张收缩: 肌肉收缩时张力不变, 而长度发生缩短。
第四节 骨骼肌的收缩功能
一、神经肌肉接头处的兴奋传递
(一)、N-M接头的结构 接头前膜:囊泡内含 ACh,并以囊泡为单位释 放ACh(称量子释放)。 接头间隙:约50-60nm。 接头后膜:又称终板膜。 存在ACh受体(N2受 体),能与ACh发生特 异性结合。无电压门控 钠通道。
突触小泡:
圆形清亮小
许多神经递质,体液物质、病理因素和药物 都可影响肌肉收缩能力。 收缩能力 收缩能力 收缩效果 收缩效果
单收缩和复合收缩
单收缩:肌肉受低频刺激而出现的独立收缩。
收缩的总和
不完全强直收缩:刺 激频率增加时,单收缩 就会发生总和,总和过 程发生在舒张期,会出 现不完全强直收缩,表 现为锯齿状的收缩曲线。 完全强直收缩:刺 激频率进一步增加时, 总和过程发生在收缩期, 就出现完全强直收缩。 强直收缩产生的张力是 单收缩的3~4倍。
长度-张力曲线
2、后负荷对肌肉收缩的影响
后负荷:肌肉收缩时才遇到的负荷。
后负荷影响
后负荷愈大,张力 愈大,缩短出现愈 迟,缩短的初速度 和总长度愈小
张力-速度曲线
3、肌肉收缩能力对肌肉收缩的影响
概念:能影响肌肉收缩效果的肌肉 内部功能状态。源自是决定肌肉收缩效能的内在特性。
肌肉收缩能力的高低主要决定于兴奋-收缩 耦联期间胞浆内Ca2+的水平和肌球蛋白ATP 酶的活性。
(一)骨骼肌细胞的结构
1. 肌管系统
横管系统:T管 (肌膜内凹而 成。肌膜AP沿T 管传导)。 纵管系统:L管 (也称肌浆网。 肌节两端的L管 称终池,富含 Ca2+)。 三联管:T管+终 池×2
肌管系统
纵管及横管
三联管
肌管的作用
横 管:传AP至肌细胞深部 纵 管:贮存、释放、聚积钙 三联管:兴奋- 收缩耦联部位
原肌球蛋白
双股螺旋丝状多肽链
原肌球蛋白:静息时掩盖横桥结合位点;
肌原蛋白
肌钙蛋白: 由三个亚单位组成, T亚单位,与原肌球蛋白结合, I亚单位传递信息, C亚单位与Ca2+结合。
—TnI TnC—
(能与Ca2+结合)
—TnT
•肌钙蛋白:与Ca2+结合变构后,使原肌球蛋白 位移,暴露出结合位点。
肌丝滑行几点说明: 1.肌细胞收缩时肌原纤维的缩短,
并不是肌丝本身缩短,而是细肌丝向肌节中央(粗 肌丝内)滑行。因①相邻Z线靠近,即肌节缩短; ②暗
带长度不变,即粗肌丝长度不变; ③明带和H带变窄。
2.横桥的循环摆动,细肌丝向肌节中央(粗 肌丝内)滑行,滑行中由于肌肉的负荷而 受阻,便产生张力。 3.横桥的循环摆动在肌肉中是非同步地, 从而肌肉产生恒定的张力和连续的缩短。 4.横桥循环摆动的参入数目及摆动速率, 是决定肌肉缩短程度、速度和肌张力的 关键因素
2.兴奋-收缩(肌丝滑行)耦联
↓
肌膜AP沿横管膜传至三联管 ↓ 终池膜上的钙通道开放 终池内Ca2+进入肌浆 ↓ Ca2+与肌钙蛋白结合 引起肌钙蛋白的构型改变 ↓ 原肌凝蛋白发生位移 暴露出细肌丝上与横桥结合位点 ↓ 横桥与结合位点结合 激活ATP酶作用,分解ATP ↓ 横桥摆动 ↓ 牵拉细肌丝朝肌节中央滑行 ↓ 肌节缩短=肌细胞收缩
小结:骨骼肌收缩全过程
1.兴奋传递
运动神经冲动传至末梢 ↓ N末梢对Ca2+通透性增加 Ca2+内流入N末梢内 ↓ 接头前膜内囊泡 向前膜移动、融合、破裂 ↓ ACh释放入接头间隙 ↓ ACh与终板膜受体结合 ↓ 受体构型改变 ↓ 终板膜对Na+、K+(尤其Na+)的通透性增加 ↓ 产生终板电位(EPP) ↓ EPP引起肌膜AP •
EPP的特征: •无“全或无”现 象; •无不应期; •有总和现象; •EPP的大小与Ach 释放量呈正相关。
爆发肌细胞膜动作电位
(三)N-M接头处的兴奋传递特征:
(1)是电-化学-电的过程: N末梢 AP→ACh+受体→EPP→肌膜AP (2)单向传递 (3)时间延搁 (4)易受药物和环境因素的影响