二代测序在微生物领域的应用

二代测序在微生物领域的应用
二代测序在微生物领域的应用

几种常见的基因测序技术的优缺点及应用复习过程

几种常见的基因测序技术的优缺点及应用

随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以 Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不

NGS在临床中的应用

高通量测序在临床分子诊断中的应用与展望 对于单基因遗传病,以往临床实验室主要借助于Sanger测序、等位基因特异性聚合酶链反应(allele-specific polymerase chain reaction,AS-PCR)、荧光原位杂交、DNA印记杂交等技术进行检验。NGS技术针对癌症、心血管疾病、肾病、糖尿病等复杂性疾病的遗传学筛查与诊断提供了便捷的途径。另外,NGS技术在病原微生物的快速鉴定、药物的靶向治疗以及产前筛查等多个领域具有潜在的应用优势。 1 测序技术的发展及性能比较 2006年,Illumina公司推出了Solexa测序平台。目前,该公司已经推出了多种型号的测序平台,如MiSeq、HiSeq、NextSeq等系列,其中MiSeq系列适合于小型基因组测序,HiSeq系列适用于大型基因组测序。2007年,美国应用生物系统公司推出SOLiD测序平台。该平台采用五轮测序法以4色荧光标记寡核苷酸的连接合成为基础,测序准确性得以提高。2010年,美国生命科学公司和太平洋生物科学公司分别发布了半导体测序平台和第3代单分子实时(single molecule realtime,SMRT)DNA测序平台。这2种测序技术与以往的基于光学信号的检测技术不同,半导体测序平台通过半导体芯片直接感应在序列合成过程中磷酸二酯键3'OH基团释放的质子;第3代测序仪通过纳米孔技术记录单个聚合酶在不受干扰情况下连续合成,其中PacBio RS II每次运行能够产生60 000×16条序列,每条序列的平均长度达8 500 bp。 一般来说,以上每种测序仪在序列读段长度、准确性、测序通量、价格等多个方面存在一定的差异。焦磷酸测序平台测序读段较长,测序通量较低,成本相对较高;Illumina系列平台产生的读段相对较短,测序费用相对较低,应用比较广泛;SOLiD测序平台在通量和准确性方面相对以上2种类型的测序平台有明显改善,但是测序长度更短;半导体测序平台以及SMRT测序平台相比其他测序平台运行时间较短,另外单分子测序平台减少了测序前的扩增准备工作,测序读段较长,但是测序成本和错误率都相对较高[8-10]。一些常用的测序仪的测序原理和性能见表1。

新一代DNA测序技术总览

作者:尹银亮、陈会平、毛良伟译来源:生物谷 原文刊登于《分析化学》综述Analytical Chemistry 原文标题:Landscape of Next-Generation Sequencing Technologies 索引信息:https://www.360docs.net/doc/191489434.html,/10.1021/ac2010857 | Anal. Chem. 2011, 83, 4327–4341 原文作者:Thomas P. Niedringhaus, Denitsa Milanova, Matthew B. Kerby, Michael P. Snyder,and Annelise E. Barro 译者资料: 尹银亮,香港华大基因研发中心有限公司email:stevenyinbio@https://www.360docs.net/doc/191489434.html, 陈会平,毛良伟,武汉华大基因科技有限公司 【内容】 第二代测序 第二代测序成本 第三代测序技术 单分子测序法 边连接边测序法 边合成边测序法 纳米孔测序技术 蛋白质纳米孔测序法 固态纳米孔测序法 长距离阅读DNA的扩展方法 总结性评论 DNA测序正处在技术上天翻地覆剧变的阵痛之中,其突出特点是,测序通量(测序数据量)的大幅增长,原始数据中每个碱基的测序成本急剧下跌,并伴随着以巨资购买仪器以引进新技术的需求。以前看似高不可攀的奢侈性研究活动(如个人基因组测序,宏基因组学研究,以及对大量重要物种的测序),在短短几年之间,正以急速的步伐而变得越来越切实可行了。本篇综述将集中讨论在第三,第四代测序方法背后的故事:它们所面临的挑战;各种方法的局限性;以及它们带给我们的充满诱惑的前景。 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 在1977年,桑格测定了第一个基因组序列,是噬菌 体X174的,全长5375个碱基。其测序方法和历史过程以前已做过详细回顾。 后来的四色荧光桑格测序法(每一种荧光代表四种碱基中的一种)被用在自动毛细管电泳测序系统中,此系统由应用生物系统有限公司(Applied Biosystems Inc.)推上市场,后来该公司被整合入生命技术公司(Life Technologies)和贝克曼.考尔特公司(Beckman Coulter inc.)(见表1)。发表于2001年的第一个人类基因组

高通量测序:第二代测序技术详细介绍

高通量测序:第二代测序技 术详细介绍 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96 或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa 高通量测序原理 --采用大规模并行合成测序法(SBS, Sequencing-By-Synthesis)和可逆性末端终结技术(Reversible Terminator Chemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经 PCR 扩增后制成 Library 。 ----随后在含有接头(单链引物)的芯片( flow cell )上将已加入接头的 DNA 片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段 = 一个磁珠 = 一条读长(One fragment =One bead = One read)”

几种常见的基因测序技术的优缺点及应用

几种常见的基因测序技术的优缺点及应用 发布时间:2014-07-19 来源:毕业论文网 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和Walter Gibert 发明了Sanger 测序法,并在此后的10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当DNA 链加入分子ddNTP,延伸便终止。每一次DNA 测序是由4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的DNA 片段存在于反应体系中,具有单个碱基差别的DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用Sanger 直接测序FGFR 2 基因证实单基因Apert 综合征和直接测序TCOF1 基因可以检出多达90% 的与Treacher Collins 综合征相关的突变。值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行PCR 直接扩增测序。

高通量测序:第二代测序技术详细介绍

在过去几年里,新一代DNA测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger测 序而言的。Sanger测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷 是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新 一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA片段,然后拼接成一幅完整的图 画。 Sanger测序大家都比较了解,是先将基因组DNA片断化,然后克隆到质粒载体上,再转化大肠杆菌。对 于每个测序反应,挑出单克隆,并纯化质粒DNA每个循环测序反应产生以ddNTP终止的,荧光标记的产 物梯度,在测序仪的96或384毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR克隆阵列(polony )。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的 荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片 段。 DNA hnginetilntion DNA fraqmentnlion fn vivo cloning and amplification Cycle sequencing 3'-... GACTAGATACGAGCGTGA.. .-5* (template) 彳-…CTGAT O 曲爭i .CTGATC^A ...CTGATCT"*^ …CTG町CTA先 _________ > .,,CTGATCTAT ..CTGATCTATC ,.CTGATCTATGC ..CTGATCTATGCT ...CTGATCTATGCTC ..CTGATCTATGCTCG — Electro pho rsesis (1 read/cnpU(ary) Cyclic array sequencing Cycle 1 (>10? reads/array) Cycle 2 Cyde 3 B- A A A Is O 0 O? What IS Ibas# 1 ? Whar is bast 卍 in vitro ndaptor ligation Generf^tiorii ol ipolony array Polymerase dNTPs Lat>0led ddNTPs

一、二、三代测序技术

一代、二代、三代测序技术 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa

technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序 被称为第三代的测序的He-licos单分子测序仪,PacificBioscience的SMRT技术和 Oxford Nanopore Technologies 公司正在研究的纳米孔单分子测序技术正向着高通量低成本长读取长度的方向发展。不同于第二代测序依赖于DNA模板

《二代测序技术在NSCLC中的临床应用中国专家共识(2020版)》要点

《二代测序技术在NSCLC中的临床应用中国专家共识 (2020版)》要点 1 引言 肺癌是目前全球最常见、致死率最高的恶性肿瘤。2018年全球肺癌新发病例近209.4万例,占所有恶性肿瘤的11.6%,死亡病例176.1万例,占所有恶性肿瘤的18.4%。全国肿瘤登记中心数据显示,2014年我国新发肺癌患者数为78.1万,死亡数达到62.6万,居所有恶性肿瘤发病和死亡人数首位。 随着对疾病认识的不断加深,肿瘤的治疗模式也在发生变革,个体化精准治疗模式逐渐成为主流。在非小细胞肺癌(NSCLC)领域,随着基因检测技术的进步和一系列新药临床研究的突破,近10年间新发现的肿瘤驱动基因不断增多,推动了NSCLC靶向治疗药物的研发和临床应用。近年来兴起的免疫治疗是肿瘤治疗领域的革命性突破。NSCLC的免疫治疗研发和应用速度进步显著,目前已有多个针对NSCLC患者的免疫治疗方案获批。但如何筛选出可从免疫治疗中获益的人群,仍是该疗法在临床应用中的一大挑战。研究表明,全面的分子生物学检测信息可为肺癌患者免疫治疗的方案选择、预后判断,以及为临床试验入组提供依据。 二代基因测序(NGS)又称为高通量测序,该技术能够同时对上百万

甚至数十亿 个DNA进行分析,实现了高通量测序的目标。 2 NGS检测的适用人群 2.1 常规推荐进行NGS检测的NSCLC患者 【共识1】:推荐所有病理诊断为肺腺癌、含有腺癌成分的肺癌以及不能分型的晚期新发或术后复发的NSCLC患者常规进行基因检测。[级推荐] 对经小标本活检诊断为含有腺癌成分或具有腺癌分化的混合型鳞癌,以及年轻或不吸烟/少吸烟肺鳞癌患者,也推荐进行基因检测。[级推荐] 2.2 NGS和传统检测方法的比较 【共识2】:针对敏感型突变发生率高的NSCLC患者(见“共识1”),常规基因检测结果为阴性时,建议使用中国国家药品监督管理局(NMPA)或美国食品药品监督管理局(FDA)批准的NGS产品进行复检。[级推荐] 3 晚期新发或术后复发NSCLC患者首次进行基因检测的

NGS在临床中的应用

N G S在临床中的应用集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

高通量测序在临床分子诊断中的应用与展望对于单基因遗传病,以往临床实验室主要借助于Sanger测序、等位基因特异性聚合酶链反应(allele-specificpolymerasechainreaction,AS-PCR)、荧光原位杂交、DNA印记杂交等技术进行检验。NGS技术针对癌症、心血管疾病、肾病、糖尿病等复杂性疾病的遗传学筛查与诊断提供了便捷的途径。另外,NGS技术在病原微生物的快速鉴定、药物的靶向治疗以及产前筛查等多个领域具有潜在的应用优势。 1测序技术的发展及性能比较 2006年,Illumina公司推出了Solexa测序平台。目前,该公司已经推出了多种型号的测序平台,如MiSeq、HiSeq、NextSeq等系列,其中MiSeq系列适合于小型基因组测序,HiSeq系列适用于大型基因组测序。2007年,美国应用生物系统公司推出SOLiD测序平台。该平台采用五轮测序法以4色荧光标记寡核苷酸的连接合成为基础,测序准确性得以提高。2010年,美国生命科学公司和太平洋生物科学公司分别发布了半导体测序平台和第3代单分子实时(singlemoleculerealtime,SMRT)DNA 测序平台。这2种测序技术与以往的基于光学信号的检测技术不同,半导体测序平台通过半导体芯片直接感应在序列合成过程中磷酸二酯键 3'OH基团释放的质子;第3代测序仪通过纳米孔技术记录单个聚合酶在不受干扰情况下连续合成,其中PacBioRSII每次运行能够产生60000×16条序列,每条序列的平均长度达8500bp。

高通量测序:第二代测序技术详细介绍

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa高通量测序原理 --采用大规模并行合成测序法(SBS,Sequencing-By-Synthesis)和可逆性末端终结技术(ReversibleTerminatorChemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经PCR扩增后制成Library。 ----随后在含有接头(单链引物)的芯片(flowcell)上将已加入接头的DNA片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段= 一个磁珠= 一条读长(One fragment =One bead = One read)”

分子机制-核酸检测-二代DNA测序技术

主题:第二代DNA测序技术 概述: 第一代测序(缺点:通量低1000个核苷酸/反应,费用高) ?化学降解法 ?双脱氧链终止法(Sanger法) ?荧光自动测序技术 ?杂交测序技术 高通量测序: 第二代测序(next-generation sequencing,NGS) 第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454FLX、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。这三个技术平台各有优点,454FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数据量相同的情况下,成本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而在15X覆盖率时的准确度可以达到99.999%,是目前第二代测序技术中准确度最高的。虽然第二代测序技术的工作一般都由专业的商业公司来完成,但是了解测序原理、操作流程等会对后续的数据分析有很重要的作用,下文将以Illumina/Solexa Genome Analyzer测序为例,简述第二代测序技术的基本原理、操作流程等方面。 原理: Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。 Illumina Solexa测序仪特点:

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

2020版:中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识(完整版)

2020版:中国宏基因组学第二代测序技术检测感染病原体的临床应 用专家共识(完整版) 病原学诊断始终是感染性疾病诊断中最重要的环节。传统的病原学诊断是临床医师根据患者的临床表现做出一系列鉴别诊断,然后针对这些进行检测,通常一项检测只能对应一种病原体,而宏基因组学第二代测序(metagenomics next generation sequencing,以下简称二代测序)技术检测能覆盖更广范围的病原体。本专家共识就二代测序的临床应用范围、样本采集、分析解读和诊断效能等方面进行证据总结和意见推荐。 一、证据强度和证据质量的分级定义 证据强度:A为强烈推荐;B为推荐,但其他替代方案也可接受;C为推荐强度低,寻求替代方案;D为从不推荐。证据质量:Ⅰ为证据来自随机对照试验,Ⅱ为证据来自非随机对照试验,Ⅲ为证据仅来自专家意见。 二、二代测序的临床需求与应用范围 (一)背景及概述 推荐意见1:若怀疑细菌、真菌、DNA病毒、寄生虫、不典型病原体感染且需进行二代测序检测时,建议采用DNA检测;若怀疑RNA病毒感染时,则建议采用RNA检测(A,Ⅱ)。 推荐意见2:对于临床疑似感染的病重、病危或免疫抑制、免疫缺陷患者,建议在完善传统实验室及分子生物学检测的同时,采集疑似感染部位的标本进行二代测序(B,Ⅱ)。

二代测序检测能覆盖较大范围的病原体,病毒、细菌、真菌、寄生虫都能被同时检测,不论临床样本培养成功与否,只要含有可检测到的DNA 或RNA即可[1,2,3,4,5,6]。从接收样本至完成数据分析,二代测序的周转时间根据测序技术、方法和生物信息学分析方法的不同而不同,已有报道为6 h至7 d不等(平均48 h)[7,8]。 二代测序在感染性疾病诊断领域中的优势在于其能检测到其他传统手段无法检测到的病原体。因此,二代测序可能在应用于临床疑难杂症或免疫抑制患者时有更大意义。另外,二代测序也被报道可用于"排除"检测,即检测阴性有助于排除感染性疾病的诊断,但前提条件是测序覆盖度足够高,能确保样本中存在的病原微生物被检测出来[1]。二代测序的其他潜在应用还包括病原体的耐药基因检测、医院感染控制的监测,以及社区传染性疾病暴发的监测,但这些应用通常需要极高的覆盖深度[9]。 从传统培养转向分子生物学诊断需要临床医师及临床微生物学家的思维转变。传统的微生物学是建立在体外分离培养的基础上,而实际上许多环境中或人体的致病微生物难以被培养,或许只能通过二代测序才能被发现[4]。所以临床医师及临床微生物学家很有必要熟悉这个新工具,知晓其优势和局限性。 目前,尚鲜见针对二代测序结果解读的规范,包括序列数阈值,以及灵敏性、特异性评估的统一临床标准等。就像所有其他新技术,在解释数据和报告数据方面仍有很大的困难与挑战[10]。如能进一步规范二代测序在临床感染性疾病中的应用,就可给予临床实践非常重要的线索和信息,协助临床诊断。

测序技术及测序仪器的比较

河南农业大学 本科生毕业论文(设计) 题目现阶段的测序技术及测序仪器的比较 学院生命科学学院 专业班级2007级生物技术4班 学生姓名徐志超 指导教师高玉千 撰写日期:2011年5月5日

现阶段的测序技术及测序仪器的比较 徐志超 生命科学学院 摘要:自sanger测序技术发明以来,经人类基因组计划的促进,测序技术有了跨越式的发展,以实验方法与实验仪器的改进为标志,测序技术经历了三代的发展,同时测序技术向着高通量测序,单分子测序,低价格测序的方向发展,目前测序技术已成为分子生物学实验中的重要的实验手段。本文主要简单回溯了测序技术的发展历史,介绍了现阶段主流测序仪器IlluminaGA,ROCH-454,ABI 3730XL,ABI SOLID及HeliScope的原理及工作流程。 关键词:测序技术;测序仪;IlluminaGA;ROCH-454;ABI-3730XL;ABI-SOLID;HeliScope Studies on sequencing technology and sequencer XU Zhi-chao College of Life Sciences Abstract:Sequencing technology has leaping developed promoted by the Human Genome Project since the Sanger sequencing technology been invented.Sequencing technology has gone through three generation by the improvement of sequencing methods and sequencer, at the same time, sequencing technology developed towards high-flux, single molecule sequencing and lower price. Sequencing technology has become the most important experimental means in molecular biology experiments currently. This paper simply reviews the historical development of sequencing technology,introduces the principle and workflow of the main sequencer. Keywords: sequencer;IlluminaGA;ROCH-454;ABI-3730XL;ABI-SOLID;HeliScope 1953年Watson和Crick揭示了DNA的双螺旋结构[1],这大大激励了人们对DNA 序列的探索。于是DNA测序技术应运而生,是现代分子生物学中重要的实验手段。DNA测序技术及伴随产生的基因操纵技术它极大地推动了生命科学的发展[2][3]。先介绍一下DNA测序技术的发展历史。 一、DNA测序技术的发展历史 DNA测序技术迄今经历了三代的发展。DNA测序技术成熟于上世纪70年代中

二代测序技术在血液肿瘤中的应用中国专家共识(2018年版)

血液肿瘤是一类具有高度异质性的疾病,其诊疗需要结合形态学、免疫学、遗传学和分子生物学进行综合分析。二代测序(Next-generation sequencing, NGS)作为新的分子生物学技术,具有通量高、灵敏度高、成本低等优势,是探索血液肿瘤的分子发病机制并指导临床诊疗的重要手段。为推动NGS在血液肿瘤诊疗中的应用,提高诊疗水平,中国抗癌协会血液肿瘤专业委员会、中华医学会血液学分会、中华医学会病理学分会组织国内相关的血液、病理和检验专家,结合国外权威资料和已积累的大样本数据,制订了NGS在血液肿瘤中应用的中国专家共识。 血液肿瘤中常见的分子生物学异常主要包括基因突变、融合基因及基因异常表达。目前NGS在基因突变的检测方面应用最为广泛和成熟,本共识仅涉及基因突变的检测。 一、NGS在血液肿瘤诊疗中的应用价值 1.诊断分型: 基因突变的检测在急性髓系白血病(AML)伴重现性遗传学异常、遗传易感性髓系肿瘤、骨髓增殖性肿瘤(MPN)、骨髓增生异常综合征伴环形铁粒幼红细胞(MDS-RS)、毛细胞白血病(HCL)和淋巴浆细胞淋巴瘤/华氏巨球蛋白血症(LPL/WM)的诊断中具有关键性的作用,对于其他血液肿瘤则起到辅助诊断的作用[1,2,3,4,5,6,7,8]。 2.预后判定:

基因突变是各类血液肿瘤预后判断的重要依据,目前NCCN指南已提出了基于基因突变的AML预后分层体系[1]。此外,MDS、MPN、MDS/MPN、急性淋巴细胞白血病(ALL)、慢性淋巴细胞白血病/小淋巴细胞淋巴瘤(CLL/SLL)、LPL/WM、大颗粒淋巴细胞白血病(LGLL)中,已经证实了一些具有明确预后意义的突变基因[2,3,4,5,6,7,8]。其他血液肿瘤中突变基因的预后意义尚有待于进一步研究。3.指导治疗: 一方面,基因突变检测可提供分子治疗靶点,对应靶向药物进行治疗,目前已有基于突变基因的靶向药物应用于临床或处于临床试验阶段,其中FLT3、IDH1/2、BRAF及JAK-STAT信号通路相关的突变基因已有靶向药物上市[1,4,5];另一方面,基因突变可以导致对某些药物的敏感或者耐受,及时检测有助于治疗方案的调整。例如,TP53突变的CLL/SLL患者对常规化疗反应差,MYD88和CXCR4基因突变可影响伊布替尼在LPL/WM中的治疗效果,ABL1激酶区突变是慢性髓性白血病(CML)和Ph ALL酪氨酸激酶抑制剂(TKI)耐受的主要机制之一[4,7,8]。4.微小残留病(MRD)监测: 基因突变是MRD监测的分子标志物之一[9]。虽然实时定量PCR方法和流式细胞学是目前主流的MRD监测方法,但是由于NGS灵敏度随测序深度加深可进一步提高,在MRD监测方面具有更大的优势。 5.克隆演变:

二代测序技术在NSCLC中的临床应用中国专家共识(2020版)

二代测序技术在NSCLC中的临床应用中国专家共识 (2020版) 二代基因测序(next generation sequencing, NGS)又称为高通量测序,该技术能够同时对上百万甚至数十亿个DNA进行分析,实现了高通量测序的目标。 NGS检测的适用人群 共识1:推荐所有病理诊断为肺腺癌、含有腺癌成分的肺癌以及不能分型的晚期新发或术后复发的NSCLC患者常规进行基因检测。【I级推荐】对经小标本活检诊断为含有腺癌成分或具有腺癌分化的混合型鳞癌,以及年轻或不吸烟/少吸烟肺鳞癌患者,也推荐进行基因检测。【II级推荐】 注:虽然单纯肺鳞癌患者中有4%的表皮生长因子受体(EGFR)突变率,但尚无证据支持肺鳞癌患者使用靶向EGFR酪氨酸激酶抑制剂(TKI)显著获益,因此不推荐对单纯肺鳞癌患者进行EGFR基因检测。 共识2:针对敏感型突变发生率高的NSCLC患者(见“共识1”),常规基因检测结果为阴性时,建议使用中国国家药品监督管理局(National Medical Products Administration, NMPA)或美国食品药品监督管理局(Food and Drug Administration,FDA)批准的NGS产品进行复检。【III级推荐】 晚期新发或术后复发NSCLC患者首次进行基因检测的共识意见

共识3:针对晚期新发或术后复发的NSCLC患者,首次检测建议采用NMPA批准的检测产品,检测至少包括NSCLC常见驱动基因: EGFR突变(应涵盖18号、19号、20 号、21号外显子),以及ALK融合、ROS1融合。【I级推荐】 共识4:针对晚期新发或术后复发的NSCLC患者,结合患者实际临床情况,如需获得更多的潜在靶点信息,首次检测建议采用NMPA或FDA 批准的检测产品,检测包括BRAF V600E、KRAS(如G12C等)、NTRK1/2/3融合、MET14号外显子跳跃突变和MET扩增、ERBB2 20号外显子插入、RET融合等少见驱动基因变异。【II级推荐】 共识5:共识3和共识4中基因检测均为阴性的NSCLC患者再次检测时,建议采用NMPA或FDA批准的NGS产品,检测包含EGFR罕见变异形式(包括激酶区重复和融合)、BRAF罕见变异形式(包括激酶区重复和融合)、MET罕见变异形式(包括激酶区重复和融合)、ERBB2融合等罕见变异形式。【III级推荐】 共识6:结合患者实际临床情况,如需获取免疫治疗相关的分子标志物信息,晚期新发或术后复发的NSCLC患者,建议采用NMPA或FDA 批准的NGS产品进行检测,检测包含MSI、tTMB、免疫治疗正负向相关基因和免疫治疗超进展相关基因在内的免疫治疗相关分子标志物。【III级推荐】

相关文档
最新文档