磁场,感应计算题

合集下载

磁场强度、磁通量及磁感应强度的相互关系及计算

磁场强度、磁通量及磁感应强度的相互关系及计算

磁场强度、磁通量及磁感应强度的相互关系及计算1. 磁场强度磁场强度(H)是指单位长度上的磁力线数目,用来描述磁场的强弱。

磁场强度是一个矢量量,具有大小和方向。

在国际单位制中,磁场强度的单位是安培/米(A/m)。

磁场强度的计算公式为:[ H = ]其中,N 表示单位长度上的磁极数目,I 表示通过每个磁极的电流,L 表示磁极之间的距离。

2. 磁通量磁通量(Φ)是指磁场穿过某个面积的总量。

磁通量也是一个矢量量,具有大小和方向。

在国际单位制中,磁通量的单位是韦伯(Wb)。

磁通量的计算公式为:[ = B A () ]其中,B 表示磁场强度,A 表示面积,θ 表示磁场线与法线之间的夹角。

3. 磁感应强度磁感应强度(B)是指单位面积上的磁通量。

磁感应强度用来描述磁场在某一点上的分布情况。

在国际单位制中,磁感应强度的单位是特斯拉(T)。

磁感应强度的计算公式为:[ B = ]其中,Φ 表示磁通量,A 表示面积。

4. 相互关系磁场强度、磁通量和磁感应强度之间存在紧密的相互关系。

根据法拉第电磁感应定律,磁通量的变化会产生电动势,从而产生电流。

因此,磁场强度和磁感应强度可以相互转化。

当电流通过导体时,会产生磁场。

这个磁场的磁感应强度与电流强度成正比,与导线的长度成正比,与导线之间的距离成反比。

因此,磁场强度、磁感应强度和电流之间也存在相互关系。

5. 计算实例假设有一个长直导线,长度为 1 米,电流为 2 安培。

求该导线产生的磁场强度和磁感应强度。

首先,根据磁场强度的计算公式,可以求出导线产生的磁场强度:[ H = = = 2 ]然后,假设在导线附近有一个平面,面积为 1 平方米。

根据磁感应强度的计算公式,可以求出该平面上的磁感应强度:[ B = = = 2 ]因此,该导线产生的磁场强度为 2 A/m,磁感应强度为 2 T。

6. 总结磁场强度、磁通量和磁感应强度是描述磁场的基本物理量。

它们之间存在相互关系,可以通过相应的计算公式进行计算。

磁场,感应计算题有详细答案(快考试了,希望对同学们有所帮助)

磁场,感应计算题有详细答案(快考试了,希望对同学们有所帮助)

稳恒磁场计算题144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O点的磁感应强度.解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中:DC 产生 )21(4)2sin 4(sin45cos 40001-=-=RI R IB πμπππμ 方向向里 CB 产生 RIR I B 16224002μμππ== 方向向里 BA 产生 03=BRIR I B B B B O 16)12(400321μπμ+-=++= 方向向里145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。

若导线的流过电流I ,求圆心O 处的磁感应强度。

解:两段直电流部分在O 点产生的磁场01=B弧线电流在O 点产生的磁场 RIB 2202μπα=RI R I B B B O παμπαμ42220021==+=∴146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生01=B大半圆 产生1024R IB μ=方向向里小半圆 产生2034R IB μ=方向向里竖直直电流产生2044R I B πμ=方向向外4321B B B B B O +++=∴ )111(44442210202010R R R I R I R IR IB O πμπμμμ-+=-+=方向向里147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求空间磁感应强度分布,指明方向和磁感应强度为零的点的位置.、解:取垂直纸面向里为正,如图设X 轴。

)1.0(102102)(2272010x x xx d I x I B --⨯=-+=-πμπμ 在电流1I 左侧,B方向垂直纸面向外在电流1I 、2I 之间,B方向垂直纸面向里在电流2I 右侧,当m x 2.0<时,B方向垂直纸面向外当m x 2.0>时,B方向垂直纸面向里当0=B 时,即0)1.0(1021027=--⨯-x x x则 m x 2.0=处的B为0。

14磁场

14磁场

第十一章 磁感应强度计算题171: 如图,一无限长薄平板导体,宽为a ,通有电流I ,求和导体共面的距导体 一边距离为d 的P 点的磁感应强度。

2: 半径 R 的一个载流圆线圈,通有电流I ,求:轴线上与圆心的距离为 a 的P 点的磁感应强度。

3: 一半径R 的圆盘,其上均匀带有面密度为σ 的电荷 ,圆盘以角速度ω 绕通过盘心垂直于盘面的轴转动,求:感强度。

4: 在半径为R 的“无限长”的半圆柱形金属 薄片中,有电流I 自下而上通过。

如图所示。

试求:圆柱轴线上一点 P 的磁感应强度。

5: 一根很长的铜导线载有电流10A ,在导线内部作一平面S ,如图。

现沿导线长度方向取长为 的一段,试计算通过平面S 的磁通量。

铜的磁导率μ≈μ0。

6: 矩形截面的螺绕环总匝数为N ,尺寸如图所示,求螺绕环内的磁感强度B 和通过环截面的磁通量Φm 。

7: 如图,有一边长为a 的正方 形导线回路,载有电流I,求正方形中心处的磁感应强度的大小和方向。

× × a × × × × × d P I P8: 将通有电流I 的导线弯成如图所示的形状, 求O 点处的磁感强度B 。

9: 在半径为2a 的无限长金属圆柱体内挖去一半径为 a 无限长圆柱体 ,两圆柱体的轴线平行,相距为 a ,如图所示。

今有电流沿空心柱体的的轴线方向流动,电流均匀分布在空心柱体的横截面上,设电流密度为δ 。

求 P 点及O 点的磁感应强度。

10: 将通有电流I 的导线弯成如图所示的形状, 求O 点处的磁感强度B 。

11: 如图所示,电荷Q 均匀分布在长为b 的细杆上,杆以角速度ω绕垂直于纸面过 O 点的轴转动 。

O 点在杆的延长线上,与杆的一端距离为a ,求O 点处的磁感应强度B 的大小。

12: 将通有电流I 的导线弯成如图所示的形状, 求O 点处的磁感强度矢量B的大小和方向。

13:如图,两段共心圆弧与半径构成一闭合载流回路,对应的圆心角为θ(rad),电流强度为I 。

电磁感应一解答

电磁感应一解答

回路旋转时,OC、OD段交替切割磁场线,二者产生的E大小相等、方向相反。E的大小为
OC切割时UO>UC
OD切割时UO>UD
3.如图,导体棒AB在均匀磁场B中绕通过C点的垂直于棒长且沿磁场方向的轴OO’转动(角速度w与B同方向),BC的长度为棒长的1/3,则 (A) A点比B点电势高. (B) A点与B点电势相等. (C) A点比B点电势低. (D) 有稳恒电流从A点流向B点.
一、选择题
1. 一无限长直导体薄板宽为 l,板面与 z 轴垂直,板的长度方向沿 y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为 B 的均匀磁场中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度 u 向 y 轴正方向移动,则伏特计指示的电压值为
(A) 0
(B) uBl/2
(C) uBl
无感应电流
无感应电流
无磁通量变化.
a>>r时,圆环中心的磁场可视为均匀的
2.如图,一半径为r的很小的金属圆环,在初始时刻与一半径为a(a>>r)的大金属圆环共面且同心.在大圆环中通以恒定的电流I,方向如图.如果小圆环以匀角速度w绕其任一方向的直径转动,并设小圆环的电阻为R,则任一时刻 t 通过小圆环的磁通量F =______.小圆环中的感应电流 i =_____________________.
z轴正方向
1.如图,一根长为L的金属细杆ab绕竖直轴O1O2以角速度w在水平面内旋转,O1O2在离细杆a端L/5处.若已知地磁场在竖直方向的分量为B .求ab两端间的电势差Ua-Ub.
解: 由右手螺旋法则知,a端、b端的电位均高于O点
由法拉第电磁感应定律有
三、计算题
2.长为L、质量为m的均匀金属细棒,以棒端O为中心在水平面内旋转,棒的另一端在半径为L的金属环上滑动,棒端O和金属环之间接一电阻R,整个环面处于均匀磁场B中,B的方向垂直于纸面向外,如图.设t=0时初角速度为w0 .忽略摩擦力及金属棒、导线和圆环的电阻.求(1)当角速度为w时金属棒内的动生电动势的大小.(2)棒的角速度随时间变化表达式.

磁学中的磁感应强度和磁场强度计算题

磁学中的磁感应强度和磁场强度计算题

磁学中的磁感应强度和磁场强度计算题磁学是物理学的一个重要分支,研究磁场的发生、性质和变化规律。

在磁学中,磁感应强度和磁场强度是两个重要的物理量。

本文将介绍磁感应强度和磁场强度的概念以及如何计算这两个物理量。

一、磁感应强度(B)的概念和计算方法磁感应强度是一个表示磁场强度大小的物理量,用字母B表示。

它与电流元、磁化强度和磁路的面积有关。

磁感应强度的单位是特斯拉(T)。

磁感应强度的计算公式为:B = μ0 * μr * (H + M)其中,μ0是真空中的磁导率,μr是相对磁导率,H是磁场强度,M是磁化强度。

例如,某个磁体中的磁场强度为0.05A/m,磁化强度为100A/m,真空中的磁导率为4π * 10^-7 H/m,相对磁导率为1。

那么该磁体中的磁感应强度可以通过以下计算得到:B = (4π * 10^-7) * 1 * (0.05 + 100) = 0.05π * 10^-5 T二、磁场强度(H)的概念和计算方法磁场强度是一个表示磁场的物理量,用字母H表示。

它与磁铁磁化强度、电流元和磁路的长度有关。

磁场强度的单位是安培/米(A/m)。

磁场强度的计算公式为:H = (N * I) / l其中,N是电流元的匝数,I是电流元的电流,l是磁路的长度。

举例来说,一个长直导线通有电流为3A,导线的长度为4m,那么该导线周围的磁场强度可以通过以下计算得到:H = (1 * 3) / 4 = 0.75 A/m三、磁感应强度和磁场强度的关系在一定条件下,磁感应强度和磁场强度之间存在线性关系。

当磁场强度为零时,磁感应强度也为零;当磁场强度不为零时,磁感应强度也不为零。

通过调整磁化强度和磁场强度,可以改变磁感应强度的大小。

四、磁感应强度和磁场强度的应用磁感应强度和磁场强度在许多领域有着广泛的应用。

在电动机、变压器、磁共振成像等设备中,磁感应强度和磁场强度都扮演着重要角色。

通过合理计算磁感应强度和磁场强度,可以为这些设备的设计和运行提供依据。

磁场的感应和磁通量练习题

磁场的感应和磁通量练习题

磁场的感应和磁通量练习题1. 简答题(1) 什么是磁感应强度?(2) 什么是磁通量?(3) 什么是法拉第电磁感应定律?(4) 描述磁通量守恒定律的原理。

(5) 什么是楞次定律?2. 计算题(1) 一个匀强磁场的磁感应强度为2T,某垂直于磁场方向上的圆线圈的面积为0.5平方米,当线圈轴线的法向速度为10m/s时,计算在这个过程中感应在圆线圈上的电动势。

(2) 一根长为10cm的导线以匀速1m/s在垂直于磁感应强度为0.5T的磁场中直线运动,求此导线两端之间的电势差。

(3) 一个电感为2H的电感线圈,当通过电流变化的速率为0.2A/s 时,计算感应在电感线圈上的电动势。

(4) 某导体在垂直于磁感应强度为0.8T的磁场中以速率5m/s运动,导体的长度为10cm,导体两端之间的电势差为多少伏特?3. 综合题一根长度为20cm的导线以匀速2m/s向左运动,同时垂直于导线的方向有一个磁场,磁感应强度大小为1T,方向指向纸面内。

导线两端之间的电势差为U。

求:(1) 导线两端之间的电势差U的大小;(2) 当导线长度变为40cm时,导线两端之间的电势差U'的大小。

4. 应用题(1) 在一个长度为10cm的导线周围,空间内有一个与导线平面垂直的匀强磁场,当磁感应强度为0.5T时,导线中通过的电流为2A。

求导线两端之间的电势差。

(2) 一台发电机的磁感应强度为0.2T,由发电机产生的电动势为12V,发电机旋转一周的时间为1s。

求发电机的匝数。

通过以上的练习题,你能够更好地理解和应用磁场的感应和磁通量的相关概念和定律。

希望这些题目能够帮助你巩固相关知识,提高解题能力。

磁场与电磁感应习题及答案

磁场与电磁感应习题及答案

一 选择题 (共36分)1. (本题 3分)(2734) 两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]2. (本题 3分)(2595) 有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B v中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na .(C) °60sin 32IB Na . (D) 0. [ ]3. (本题 3分)(2657) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ]4. (本题 3分)(2404) 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ]5. (本题 3分)(5137) 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中(A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流不同. [ ]6. (本题 3分)(1932) 如图所示,一矩形金属线框,以速度vv从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ] BvIO(D)IO (C)O (B)I7. (本题 3分)(2417) 对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L(A) 变大,与电流成反比关系. (B) 变小. (C) 不变.(D) 变大,但与电流不成反比关系. [ ]8. (本题 3分)(2752) 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b ,a 和b 相对位置固定.若线圈b 中电流为零(断路),则线圈b 与a 间的互感系数: (A) 一定为零. (B)一定不为零.(C) 可为零也可不为零, 与线圈b 中电流无关. (D) 是不可能确定的.[ ]9. (本题 3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ ]对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L(A) 变大,与电流成反比关系. (B) 变小. (C) 不变.(D) 变大,但与电流不成反比关系. [ ]11. (本题 3分)(5675) 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 2002(21a I πµµ (B) 2002(21aI πµµ (C) 20)2(21I a µπ (D)2002(21aI µµ [ ]12. (本题 3分)(2415) 用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向为[ ]二 填空题 (共76分)13. (本题 3分)(5303) 一平面试验线圈的磁矩大小p m 为1×10-8 A ·m 2,把它放入待测磁场中的A 处,试验线圈如此之小,以致可以认为它所占据的空间内场是均匀的.当此线圈的p m 与z 轴平行时,所受磁力矩大小为M =5×10-9 N ·m ,方向沿x 轴负方向;当此线圈的p m 与y 轴平行时,所受磁力矩为零.则空间A 点处的磁感强度B v的大小为____________,方向为______________.14. (本题 5分)(2066) 一带电粒子平行磁感线射入匀强磁场,则它作________________运动.一带电粒子垂直磁感线射入匀强磁场,则它作________________运动. 一带电粒子与磁感线成任意交角射入匀强磁场,则它作______________运动.如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q 的粒子,以速度v v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为________,作用在带电粒子上的力为________.16. (本题 5分)(2070) 截面积为S ,截面形状为矩形的直的金属条中通有电流I .金属条放在磁感强度为B v 的匀强磁场中,B v的方向垂直于金属条的左、右侧面(如图所示).在图示情况下金属条的上侧面将积累____________电荷,载流子所受的洛伦兹力f m =______________.(注:金属中单位体积内载流子数为n )17. (本题 5分)(2580) 电子质量m ,电荷e ,以速度v 飞入磁感强度为B 的匀强磁场中,v v与B v 的夹角为θ ,电子作螺旋运动,螺旋线的螺距h =________________________,半径R =______________________.18. (本题 3分)(2387) 已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为B 0,那么正方形线圈(边长为a )在磁感强度为B v的均匀外磁场中所受最大磁力矩为______________________.19. (本题 3分)(2096) 在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.20. (本题 5分)(2603) A 、B 、C 为三根共面的长直导线,各通有10 A 的同方向电流,导线间距d =10 cm ,那么每根导线每厘米所受的力的大小为=l F Ad d ______________________, =l F Bd d ______________________, =lF Cd d ______________________. (µ0 =4π×10-7 N/A 2) I半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流i =I m sin ωt ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为_____________________________.22. (本题 5分)(2702) 如图所示,一直角三角形abc 回路放在一磁感强度为B 的均匀磁场中,磁场的方向与直角边ab 平行 ,回路绕ab 边以匀角速度ω旋转 ,则ac 边中的动生电动势为__________________________,整个回路产生的动生电动势为____________________________.v23. (本题 3分)(2692) 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.24. (本题 3分)(2525) 一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为 400V ,则线圈的自感系数为L =____________.25. (本题 4分)(2619) 位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符合________和____________________的条件时,其自感系数可表成V I N L 20)/(µ=,其中V 是螺线管的体积.26. (本题 3分)(2624) 一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3 A 时,环中磁场能量密度w =_____________ .(µ 0 =4π×10-7 N/A 2)27. (本题 3分)(5678) 真空中一根无限长直导线中通有电流I ,则距导线垂直距离为a 的某点的磁能密度w m =________________.有两个长度相同,匝数相同,截面积不同的长直螺线管,通以相同大小的电流.现在将小螺线管完全放入大螺线管里(两者轴线重合),且使两者产生的磁场方向一致,则小螺线管内的磁能密度是原来的__________倍;若使两螺线管产生的磁场方向相反,则小螺线管中的磁能密度为____________(忽略边缘效应).29. (本题 4分)(2180) 写出麦克斯韦方程组的积分形式:_____________________________,_____________________________, _____________________________,_____________________________.30. (本题 3分)(2198) 坡印廷矢量S v的物理意义是:_____________________________________________________________; 其定义式为 _____________________ .31. (本题 3分)(2339) 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为∫∫⋅=VSV S D d d ρv v, ① ∫∫⋅⋅∂∂−=SL S t B l E v vv v d d , ②0d =∫⋅S S B vv , ③ ∫⋅∫⋅∂∂+=SL S t DJ l H v vv v v d )(d . ④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________ (3) 电荷总伴随有电场.__________________________在没有自由电荷与传导电流的变化电磁场中, 沿闭合环路l (设环路包围的面积为S )=∫⋅ll H vv d __________________________________________.=∫⋅ll E vv d __________________________________________.三 计算题 (共46分)33. (本题10分)(2737) 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势E ,并说明线圈中的感应电流是顺时针还是逆时针方向.34. (本题10分)(2409) 如图所示,一半径为r 2电荷线密度为λ的均匀带电圆环,里边有一半径为r 1总电阻为R 的导体环,两环共面同心(r 2 >> r 1),当大环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转时,求小环中的感应电流.其方向如何?35. (本题10分)(2410) 一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(已知小环的电阻为R ')?36. (本题 8分)(2138) 求长度为L 的金属杆在均匀磁场B v中绕平行于磁场方向的定轴OO '转动时的动生电动势.已知杆相对于均匀磁场B v的方位角为θ,杆的角速度为ω,转向如图所示.O无限长直导线旁有一与其共面的矩形线圈,直导线中通有恒定电流I ,将此直导线及线圈共同置于随时间变化的而空间分布均匀的磁场B v 中.设0>∂∂tB,当线圈以速度v v垂直长直导线向右运动时,求线圈在如图所示位置时的感应电动势.一 选择题 (共36分)1. (本题 3分)(2734) (A)2. (本题 3分)(2595) (D)3. (本题 3分)(2657) (A)4. (本题 3分)(2404) (B)5. (本题 3分)(5137) (D)6. (本题 3分)(1932) (C)7. (本题 3分)(2417) (C)8. (本题 3分)(2752) (C)9. (本题 3分)(2421) (D)10. (本题 3分)(2417) (C)11. (本题 3分)(5675) (B)12. (本题 3分)(2415) (B)二 填空题 (共76分)13. (本题 3分)(5303) 0.5 T 2分y 轴正方向 1分参考解:B p M m v v v ×=,由m p v平行y 轴时M = 0可知B v 必与y 轴平行,m p v沿z 轴时M 最大,故有 5.0==mp M B T由B p M m v v v ×=定出B v沿y 轴正方向.14. (本题 5分)(2066) 匀速直线 1分 匀速率圆周 2分 等距螺旋线 2分15. (本题 4分)(0361) 0 2分 0 2分16. (本题 5分)(2070) 负 2分 IB / (nS ) 3分17. (本题 5分)(2580) )/(cos 2eB m θv π 3分 )/(sin eB m θv 2分3分19. (本题 3分)(2096) 4 3分20. (本题 5分)(2603) 3×10-6N/cm 2分 0 2分3×10-6N/cm 1分21. (本题 3分)(2615) t a nI m ωωµcos 20π− 3分22. (本题 5分)(2702) 8/2B l ω 3分 0 2分23. (本题 3分)(2692) 0 3分24. (本题 3分)(2525) 0.400 H 3分25. (本题 4分)(2619) l >>a 2分 细导线均匀密绕 2分26. (本题 3分)(2624) 22.6 J ·m -3 3分27. (本题 3分)(5678) )8/(2220a I πµ 3分28. (本题 5分)(2425) 4 3分 0 2分29. (本题 4分)(2180) ∫∫⋅=V S V S D d d ρv v 1分 ∫∫⋅⋅∂∂−=S L S t B l E v v v v d d 1分 0d =∫⋅SS B v v 1分∫⋅∫⋅∂∂+=SL S t D J l H v v v v v d )(d 1分 30. (本题 3分)(2198) 电磁波能流密度矢量 2分 H E S v v v ×= 1分31. (本题 3分)(2339) ② 1分 ③ 1分 ① 1分32. (本题 4分)(5160) ∫∫⋅∂∂S S D t v v d 或 t D /d d Φ 2分 ∫∫⋅∂∂−S S B t v v d 或 t m /d d Φ− 2分三 计算题 (共46分)33. (本题10分)(2737) 解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为: )2/(0r I B π=µ 2分以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为: 23ln 2d 203201π=π⋅=∫Id r r I d d dµµΦ 与线圈相距较近的导线对线圈的磁通量为:2ln 2d 20202π−=π⋅−=∫Id r r I d d dµµΦ 总磁通量 34ln 2021π−=+=Id µΦΦΦ 4分感应电动势为: 34ln 2d d )34(ln 2d d 00αµµπ=π=−=d t I d t ΦE 2分由E >0和回路正方向为顺时针,所以E 的绕向为顺时针方向,线圈中的感应电流 亦是顺时针方向. 2分解:大环中相当于有电流 2)(r t I λω⋅=2分这电流在O 点处产生的磁感应强度大小λωµµ)(21)2/(020t r I B == 2分以逆时针方向为小环回路的正方向,210)(21r t π≈λωµΦ 2分∴ tt r t i d )(d 21d d 210ωλµΦπ−=−=E tt R r R i i d )(d 2210ωλµ⋅π−==E 2分方向:d ω(t ) /d t >0时,i 为负值,即i 为顺时针方向.1分 d ω(t ) /d t <0时,i 为正值,即i 为逆时针方向.1分35. (本题10分)(2410) 解:带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带,环带内有电流R t R I d )(d ωσ= 2分d I 在圆心O 点处产生的磁场R t R I B d )(21/.d 21d 00σωµµ== 2分由于整个带电环面旋转,在中心产生的磁感应强度的大小为))((21120R R t B −=σωµ 1分选逆时针方向为小环回路的正方向,则小环中2120))((21r R R t π−≈σωµΦ 1分tt R R r t i d )(d )(2d d 1220ωσµΦ−π−=−=E tt R R R r R i i d )(d 2)( 1220ωσµ⋅′−−=′=E 2分方向:当d ω (t ) /d t >0时,i 与选定的正方向相反.1分 当d ω (t ) /d t <0时,i 与选定的正方向相同.1分36. (本题 8分)(2138) 解:在距O 点为l 处的d l 线元中的动生电动势为d E l B v v v d )(⋅×=v 2分θωsin l =v 2分∴ E ∫∫⋅π=×=Ld cos )21sin(v d )v (l B l B L αv v v ∫∫==ΛθωθθωL l l B l lB 02d sin sin d sin θω22sin 21BL = 3分 E 的方向沿着杆指向上端.1分 O B v v ×v解:取顺时针方向回路正向.设动生电动势和感生电动势分别用E 1和E 2表示,则总电动势EE = E 1 + E 2 l B l B 211v v −=E ))(22(00b a I a I l +π−π=µµv )(20b a a lIb +π=v µ 4分 ∫∂∂−=⋅∂∂−=S t B bl S t B v v d 2E 3分∴ bl tB b a a I ])(2[0∂∂−+π=vµE 1分。

大学物理磁场试题及答案

大学物理磁场试题及答案

大学物理磁场试题及答案一、选择题(每题2分,共10分)1. 磁场的基本特性是()。

A. 有方向性B. 有大小和方向C. 只有方向性D. 只有大小答案:B2. 根据安培环路定理,穿过闭合回路的磁通量与()。

A. 回路的面积成正比B. 回路的面积成反比C. 回路的面积无关D. 回路的面积的平方成正比答案:C3. 磁感应强度的方向是()。

A. 电流方向B. 电流方向的相反方向C. 垂直于电流方向D. 与电流方向成任意角度答案:C4. 磁通量的大小由()决定。

A. 磁场的强度B. 面积的大小C. 磁场与面积的夹角D. 以上所有因素答案:D5. 磁感应强度的单位是()。

A. 特斯拉B. 高斯C. 安培/米D. 以上都是答案:D二、填空题(每题2分,共10分)1. 一个长直导线产生的磁场,其磁感应强度与导线距离的平方成______。

答案:反比2. 地球的磁场可以近似看作是一个______。

答案:条形磁铁3. 根据洛伦兹力公式,一个带电粒子在磁场中运动时受到的力的方向与______。

答案:磁场方向和粒子速度方向都垂直4. 磁通量的基本单位是______。

答案:韦伯5. 磁感应强度的定义式为______。

答案:B = F/IL三、计算题(每题10分,共30分)1. 一个长为L的直导线,通有电流I,求在距离导线r处的磁感应强度。

答案:B = (μ₀I)/(2πr)2. 一个半径为R的圆形线圈,通有电流I,求其轴线上距离线圈中心d处的磁感应强度。

答案:B = (μ₀I)/(2R² + d²)^(3/2)3. 一个长为L的直导线,通有电流I,求在距离导线r处的磁通量,假设导线上方有一面积为A的平面与磁场垂直。

答案:Φ = B * A = (μ₀I * A)/(2πr)四、简答题(每题5分,共10分)1. 简述磁感应强度和磁通量的区别。

答案:磁感应强度是描述磁场强弱和方向的物理量,其大小和方向由磁场本身决定,与测试电荷无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳恒磁场计算题144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中:DC 产生 )21(4)2sin 4(sin45cos 40001-=-=RI R IB πμπππμ 方向向里 CB 产生 RIR I B 16224002μμππ== 方向向里 BA 产生 03=BRIR I B B B B O 16)12(400321μπμ+-=++= 方向向里145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。

若导线的流过电流I ,求圆心O 处的磁感应强度。

解:两段直电流部分在O 点产生的磁场 01=B弧线电流在O 点产生的磁场 RIB 2202μπα=RI R I B B B O παμπαμ42220021==+=∴146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生 01=B大半圆 产生 1024R IB μ=方向向里小半圆 产生 2034R IB μ=方向向里竖直直电流产生 2044R I B πμ=方向向外4321B B B B B O +++=∴)111(44442210202010R R R I R I R IR IB O πμπμμμ-+=-+=方向向里147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求、解:取垂直纸面向里为正,如图设X 轴。

)1.0(102102)(2272010x x xx d I x I B --⨯=-+=-πμπμ 在电流1I 左侧,B方向垂直纸面向外在电流1I 、2I 之间,B方向垂直纸面向里在电流2I 右侧,当m x 2.0<时,B方向垂直纸面向外 当m x 2.0>时,B方向垂直纸面向里当0=B 时,即0)1.0(1021027=--⨯-x x x则 m x 2.0=处的B为0。

148、图中所示是一根很长的长直圆管形导体的横截面,内、外半径分别为a 、b ,导体内载有沿轴线方向的电流I ,电流均匀地分布在管的横截面上.设导体的磁导率μ0,试计算导体空间各点的磁感应强度。

解:取以截面轴线点为心,r 为半径的圆形回路根据安培环路定理:∑⎰=∙i LI l d B 0μ(1)当a r <时 02=r B π 0=B(2)当b ra <<时 )(222202a r ab Ir B ππππμπ--=)()(222220a b a r r I B --=πμ (3)当b r>时 I r B o μπ=2 rI B πμ20=149、 如图所示,一根无限长直导线,通有电流I ,中部一段弯成圆弧形,求图中O 点磁感应强度的大小。

解:两段直线电流在O 点产生的磁场==21B B )sin 1(cos 4)sin 2(sincos 400ααπμαπαπμ-=-R IR I方向垂直纸面向里弧线电流在O 点 απμμπαRIR I B 2222003==方向垂直纸面向里)tan cos 1(22)sin 1(cos 2000321αααπμαπμααπμ+-=+-=++=∴R I RIR IB B B B O 方向垂直纸面向里150、一根同轴电缆由半径为R 1的长圆柱形导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成,如图所示,传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的,求同轴电缆内外各处的磁感应强度的大小。

解: 根据:∑⎰=∙i LI l d B 0μ(1)当1R r <时 2212r R I r B ππμπ= r R I B 2102πμ= (2)当21R r R <<时 I r B 02μπ= rI B πμ20=(3)当32R r R <<时 [])(222222302R r R R II rB ππππμπ---=)()(222232230R R r R r I B --=πμ(4)当3R r >时 02=rB π 0=B151、有电流I 的无限长导线折成如图的形状,已知圆弧部分的半径为R ,试求导线在圆心O 处的磁感应强度矢量B 的大小和方向?解:竖直直电流在O 点RI B πμ401=方向垂直纸面向里水平直电流在O 点 RIB πμ402=方向垂直纸面向外 弧线形电流在O 点 RIR I B 83243003μμ==方向垂直纸面向外321B B B B O++=∴RIB B B B O 830321μ=++-= 方向垂直纸面向外152、长直载流导线通以电流I ,其旁置一长为m 、宽为n 的导体矩形线圈。

矩形线圈与载流导线共面,且其长边与载流导线平行(两者相距为a),(1)求该线圈所包围面积内的磁通量;(2)若线圈中也通以电流I ,求此载流线圈所受的合力。

解:(1)取面元mdr ds =an a mI mdr r I Bmdrs d B n a am +===∙=⎰⎰⎰+ln 2200πμπμφ(2)根据 ⎰⨯=B l Id F左边 amI m a I I IBdl F πμπμ222001===⎰ 方向向左 右边 )(2Im 202n a mI B F +==πμ 方向向右上边 an a I dr r I I F na a+==⎰+ln 222003πμπμ 方向向上 下边 an a I F +=ln 2204πμ 方向向下4321F F F F F+++=合)(2)11(2202021n a a mn I n a a m I F F F +=+-=-=πμπμ合 方向向左153、无限长载流导线I 1与直线电流I 2共面,几何位置如图所示.试求载流导线I 2受到电流I 1磁场的作用力.解:取 l d I 2 B l d I F d⨯=2dl I r I dF 2102πμ= ab a I I dr r I I F ba a+==⎰+ln60cos 22100210πμπμ 方向垂直2I 向上154、无限长载流导线I 1与直线电流I 2共面且垂直,几何位置如图所示.计算载流导线I 2受到电流I 1磁场的作用力和关于O 点的力矩;试分析I 2施加到I 1上的作用力.解: 在l 上取dr , 它与长直导线距离为r ,1I 在此产生的磁场方向垂直纸面向里,大小为rI B πμ210= dr I 2受力B r d I F d ⨯=2dr rI I dF πμ2210= 方向向上ab 导线受力dld I I dr r I I dF F ld d+===⎰⎰+ln22210210πμπμ 方向向上 F d 对O 点力矩 F d r M d⨯=其大小 dr I I rdF dM πμ2210== 方向垂直纸面向外 l II dr I I dM M ld dπμπμ22210210===∴⎰⎰+ 方向向外 从对称角度分析,直电流2I 在无限长载流导线1I 上产生的磁场以O 点对称,即O 点上下对称点的B大小相等,方向相反,所以2I 在1I 对称点上所施加的安培力也应大小相等,方向相反,具有对称性,则2I 施加在1I 上的合外力为零。

155、长直载流导线I 1附近有一等腰直角三角形线框,通以电流I 2,二者共面.求△ABC 的各边所受的磁力.解:B l d I F BAAB ⨯=⎰2daI I dl d I I F BAAB πμπμ22210102==⎰ 方向垂直AB 向左 B l d I F CAAC ⨯=⎰2dad I I dr r I I F ad dAC +==⎰+ln 22210102πμπμ 方向垂直AC 向下 同理 rI dlI F BC πμ2102⎰=45cos drdl =d ad I I dr r I I F ad dBC +==∴⎰+ln245cos 22102210πμπμ 方向垂直BC 向上156、边长为l =0.1m 的正三角形线圈放在磁感应强度B =1T 的均匀磁场中,线圈平面与磁场方向平行.如图所示,使线圈通以电流I =10A ,求:线圈每边所受的安培力;对OO /轴的磁力矩大小;(3)从所在位置转到线圈平面与磁场垂直时磁力所作的功.解:(1)B l I F ab ⨯= N IlB F ab 866.0120sin 0== 方向垂直纸面向外0=⨯=B l I F bcB l I F ca⨯= N IlB F ca 866.0120sin 0== 方向垂直纸面向里(2)n m e IS P= B P M M ⨯=m N ISB B P M M ∙⨯===-201033.490sin 方向沿'O O 方向(3)磁力功 )(12φφ-=I A01=φ B l BS 2243==φ J B l IA 221033.443-⨯==∴157、一平面塑料圆盘,半径为R ,表面带有面密度为σ剩余电荷.假定圆盘绕其轴线A A '以角速度ω (rad ·s -1)转动,磁场B 的方向垂直于转轴A A '.试证磁场作用于圆盘的力矩的大小为44BR M πσω=.(提示:将圆盘分成许多同心圆环来考虑.)解 :“取圆环rdr ds π2=,其中rdr rdr Tdq dI σωωππσ===22磁矩 dr r dI r dP M 32πσωπ==B P d M d M⨯= 方向垂直纸面向里大小为rB r B P M m d d d 3πωσ=⨯=4d d 403B R r r B M M Rπσωπωσ===⎰⎰158、在磁感应强度为B 的均匀磁场中,垂直于磁场方向的平面内有一段载流弯曲导线,电流为I ,如图所示.建立适当的坐标系,求其所受的安培力.解:在曲线上取l d ,则⎰⨯=baab B l Id Fl d 与B 夹角都是2π不变,B 是均匀的B b Ia B l d I B l Id F b ab aab⨯=⨯=⨯=∴⎰⎰)(其大小BIab F ab = 方向垂直ab 向上159、如图所示,在长直导线内通以电流I 1=20A ,在矩形线圈中通有电流I 2=10 A , 两者共面,且矩形线圈之纵边与长直导线平行.已知a=9.0cm, b=20.0cm, d=1.0 cm ,求:(1)(2)矩形线圈所受合力和合力矩.解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.电磁感应计算题160、两相互平行无限长的直导线,流有大小和方向如图所示的电流,金属杆CD 与两导线保持共面,相对位置如图。

相关文档
最新文档