X射线荧光光谱法
X射线荧光光谱

矿物成分分析 环境分析 陶瓷材料分析 催化剂成分分析 薄膜厚度测定 X射线荧光光谱法具有谱线简单、无损检测等特 点,应用不断扩大,已成 主要局限性
不能分析原子序数小于5的元素 分析灵敏度不高 对标准试样的要求很严格
1.2 X射线荧光的产生
X射线的能量与原子轨道能级差的数量级相等, 待测元素经X射线照射后,发生X射线吸收, 原子内层电子(如K层)受到激发,逐出一个 电子,形成一个空穴,此时,较外层(如L层) 上的电子发生跃迁来填补这个空穴,这时就 会发出特征的X射线。
X射线激发电子弛豫过程示意图
1.3 俄歇效应
发 射K层X射 线 数 产 生K层 空 穴 数
一般来说,对于原子序数小于11的元素以发 射俄歇电子为主,而原子序数大于11的元素 以发射X荧光射线为主,因此 XRF法更适合分析原子序数较大元素。
2. X射线荧光法定性分析
对于每种元素来说,由于各自的能级分布不同,所发射出 的能量(或波长)互不相同,称为特征谱线。特征谱线的 频率取决于电子跃迁的始态和终态的能量差。
X射线荧光光谱
1.原理
X射线光谱分析法包括: X射线荧光光谱法(XRF) X射线衍射光谱法(XRD) X射线荧光光谱法是利用元素内层电子跃迁产生 的荧光光谱,应用于元素的定性、定量分析, 特别适合于固体表面成分分析。
1.1 什么是X射线
X射线是介于紫外线和 射线之间的一种电磁 辐射,波长范围0.001~10nm,波长大于0.1nm 的X射线称“软”X射线,而波长较长的X射线 称“硬”X射线。X射线与物质作用产生衍射 现象,这是X射线作为电磁波的特征,X射线 也可看作具有一定能量的光子。
当较外层电子跃迁到空穴时,所释放出的 能量随即在原子内部被吸收又释放出另一 个较外层的电子时,此效应称为俄歇效应。 而所产生的新的光电子叫俄歇电子。它的 能量是特征的与入射辐射的能量无关。
X射线荧光光谱分析法

X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种非破坏性的分析方法,可以用于确定样品中的元素成分和浓度。
这种方法是通过样品中原子受到入射的X射线激发,产生特定能量的荧光X射线,然后测量荧光X射线的强度和能谱来确定元素的类型和浓度。
X射线荧光光谱分析法通常包括两个主要步骤:样品的激发和荧光X射线的检测。
在激发过程中,样品被置于X射线源的束斑中,经过激发后,样品中的原子会发射出特定能量的荧光X射线。
荧光X射线经过一系列的激发、透射和转换后,最终被探测器测量和记录下来。
测量得到的荧光X射线强度和能谱可以通过专门的软件进行分析和解析,从而确定样品中元素的类型和浓度。
XRF分析技术具有许多优点,使其成为一种常用的分析方法。
首先,它是一种非破坏性的分析方法,样品在测试过程中完整保留,不需要额外的处理,可以用作进一步的测试或保存。
其次,XRF方法具有广泛的元素适用范围,可以准确测定周期表中从钍(原子序数90)到氢(原子序数1)的所有元素。
同时,该方法还适用于各种不同的样品类型,包括固体、液体和粉末等。
另外,XRF分析速度快,具有高灵敏度和准确性,可以同时进行多元素分析。
然而,X射线荧光光谱分析法也存在一些局限性。
首先,由于荧光X射线的能量范围有限,该方法无法测定低原子序数的元素,比如锂(原子序数3)以下的元素。
其次,对于高原子序数的元素,如铀和钍,荧光X射线的强度相对较弱,需要较长的测量时间来获取准确的结果。
另外,XRF方法对于样品的准备要求较高,包括取样、研磨和制备等步骤,对样品的形状和尺寸也有一定的要求。
总的来说,X射线荧光光谱分析法是一种广泛应用于材料科学、地质学、环境科学、金属冶金等领域的有效分析方法。
在实际应用中,为了获得准确的结果,需要根据具体的测试要求对仪器进行校准,并对样品进行合理的处理和制备。
此外,随着技术的不断进步,XRF方法也在不断改进,如开发更高分辨率的能谱仪和软件等,以提高分析的灵敏度和准确性。
X射线荧光光谱法

计数率器 准直器
计数器
脉高分析器
检测器
放大器
波长色散型谱仪原理
特征X射线竟准直器准直,投射到分光晶体的表面, 按照布拉格定律产生衍射,使不同波长的荧光x射线 按波长顺序排列成光谱。这些谱线由检测器在不同的 衍射角上检测,转变为脉冲信号,经电路放大,最后 由计算机处理输出。
一次x射线发生系统各种元素固有的,它与元素 的原子系数有关。两者有这样的关系:
式中k,S是常数,所以只要测出了特征x射 线的波长λ,就可以求出产生该波长的元 素。即可做定性分析。
当用x射线(一次x射线)做激发原照射试样,使试 样中元素产生特征x射线(荧光x射线)时,若元素 和实验条件一样,荧光x射线的强度Ii与分析元素的 质量百分浓度Ci的关系可以用下式表示:
Ka
特征谱线
6 5 4 3 2 Kb
20Kv
连续谱线
15Kv
10Kv
横轴为 波长, 纵轴为x 射线的 相对强 度
5Kv 1
0
1
2
3
检测和分光系统包括出射狭缝,检测器,放 大器,脉高分析器等组成部分。对荧光x射线 进行扫描和检测。
X射线荧光光谱仪实物图
固体样品和液体样品Be-U之间任何元素的分析 SST超尖锐陶瓷X光管256道DMCA多道分析器,2 秒测定一个元素
式中μm是样品对一次x射线和荧光射线的总质量吸 收系数,K为常数,与入射线强度I和分析元素对入 射线的质量吸收系数有关。 在一定条件下(样品组成均匀,表面光滑平整,元 返回 素见无相互激发),荧光x射线强度与分析元素含量 之间存在线性关系。根据谱线的强度可以进行定量 分析
高压电源
分光晶体
X射线荧光光谱法
X荧光光谱法(XRF)课件PPT

02 X荧光光谱法的基本原理
原子结构与能级跃迁
01
02
03
原子结构
原子由原子核和核外电子 组成,电子在不同能级上 运动。
能级跃迁
当原子受到外界能量(如 光子)的激发时,电子从 低能级跃迁到高能级,反 之亦然。
环境样品分析
总结词
X荧光光谱法在环境样品分析中具有独特的优势,能够同时测定多种元素,且对样品的 前处理要求较低。
详细描述
X荧光光谱法可用于水质检测,如测定水体中的重金属离子和溶解氧等;还可用于大气 颗粒物分析,了解空气污染物的来源和分布情况。
考古样品分析
ቤተ መጻሕፍቲ ባይዱ
总结词
详细描述
X荧光光谱法在考古样品分析中具有重要作 用,能够快速准确地测定文物中的元素组成, 为文物鉴定和保护提供依据。
现状
随着科技的不断进步,X荧光光谱仪器的性能不断提升,检测精度和稳定性不断 提高,同时新型的仪器和应用也不断涌现,如便携式X荧光光谱仪、在线X荧光 光谱仪等。
特点与优势
特点
X荧光光谱法具有非破坏性、快速、 多元素同时分析等特点,能够同时检 测物质中多种元素的含量,且对样品 形状和大小要求不高。
优势
化合物分析
总结词
X荧光光谱法不仅可以检测元素,还可以对化合物进行分析。
详细描述
通过测量不同元素荧光谱线的能量和强度,可以对化合物的类型和结构进行分析。该方法在化学、制药、生物等 领域有广泛应用,可用于药物成分分析、生物组织成分分析等。
样品制备与处理
总结词
为了获得准确的X荧光光谱分析结果,需要对样品进行适当的制备与处理。
X射线荧光光谱(XRF)分析

消除基体效应
基体效应会影响XRF的测 量结果,因此需要采取措 施消除基体效应,如稀释 样品或添加标准物质。
固体样品的制备
研磨
将固体样品研磨成细粉,以便进行XRF分析。
分选
将研磨后的样品进行分选,去除其中的杂质和粗 颗粒。
压片
将分选后的样品压制成型,以便进行XRF测量。
液体样品的制备
1 2
稀释
将液体样品进行稀释,以便进行XRF分析。
定性分析的方法
标样法
01
通过与已知标准样品的荧光光谱进行比较,确定样品中元素的
种类。
参考法
02
利用已知元素的标准光谱,通过匹配样品中释放的X射线荧光光
谱来识别元素。
特征谱线法
03
通过测量样品中特定元素的特征谱线,与标准谱线进行对比,
确定元素的存在。
定性分析的步骤
X射线照射
使用X射线源照射样品,激发 原子中的电子跃迁并释放出X 射线荧光光谱。
XRF和ICP-AES都是常用的元素分析方法,ICP-AES具有更高的灵敏度和更低 的检测限,适用于痕量元素分析,而XRF具有更广泛的应用范围和更简便的操 作。
XRF与EDS的比较
XRF和EDS都是用于表面元素分析的方法,EDS具有更高的空间分辨率,适用于 微区分析,而XRF具有更广泛的元素覆盖范围和更简便的操作。
XRF分析的局限性
01
元素检测限较高
对于某些低浓度元素,XRF的检 测限相对较高,可能无法满足某 些应用领域的精度要求。
02
定量分析准确性有 限
由于XRF分析基于相对强度测量, 因此对于不同样品基质中相同元 素的定量分析可能存在偏差。
03
对非金属元素分析 能力有限
X射线荧光光谱法

第九章X射线荧光光谱法X-ray fluoresce nee spectrometry, XRF1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管和分光技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。
当用X射线照射物质时,除了发生吸收和散射现象外,还能产生特征X荧光射线,它们在物质结构和组成的研究方面有着广泛的用途。
但对成分分析来说,X 射线荧光法的应用最为广泛。
第一节X荧光的产生X射线荧光产生机理与特征X射线相同,只是采用X射线为激发手段。
所以X射线荧光只包含特征谱线,而没有连续谱线。
当入射X射线使K层电子激发生成光电子后,L层电子落人K层空穴,这时能量差△ E= E L一一E<,以辐射形式释放出来,产生Ka射线。
为区别于电子击靶时产生的特征辐射,由X射线激发的特征辐射称为二次特征辐射,也称为X荧光。
根据测得的X射线荧光的波长,可以确定某元素荧光k射绘及俄皺也孑戸生辺桎压蠡图的存在,根据谱线的强度可以测定其含量。
这就是X射线荧光分析法的基础。
第二节X射线荧光光谱仪X射线荧光在X射线荧光光谱仪上进行测量。
根据分光原理,可将X射线荧光光谱仪分为两类:波长色散型(晶体分光)和能量色散型(高分辨率半导体探测器分光)。
(一)波长色散型X射线荧光光谱仪(Wavelength Dispersive, WDXRF)波长色散型X射线荧光光谱仪由X光源、分光晶体和检测器三个主要部分构成,它们分别起激发、色散、探测和显示的作用由X 光管中射出的X 射线,照射在试样上,所产生的荧光将向多个方向发射。
其中一部分荧光通过准直器之后得到平行光束,再照射到分光晶体(或分析晶体)上。
晶体将入射荧光束按Bragg 方程式进行色散。
通常测量的是第一级光谱(n=1),因为其强度最大。
X荧光光谱法(XRF)

利用能量足够高的X射线 (或电子)照射试样,激发出来的 光叫X射线荧光.利用分光计分析 X射线荧光光谱,鉴定样品的化学 成分称为X射线荧光分析.
X射线荧光分析原理
当样品中元素的原子受到高能X射线照 射时,即发射出具有一定特征的X射线谱, 特征谱线的波长只与元素的原子序数(Z) 有关,而与激发X射线的能量无关.谱线的 强度和元素含量的多少有关,所以测定谱 线的波长,就可知道试样中包含什么元素, 测定谱线的强度,就可知道该元素的含量.
定性分析的步骤
谱图解析: 1)除掉靶发射的所有X射线 2)查找
K( 49In以下元素)或L( 50 Sn以上元素)与标样相应谱线的2 对比,进行初步判定
3)若存在 K 或L 谱线 ,则需进行强度比的计算以 确定该元素的存在. 4)微量元素,有时只存在 K 线.
定量分析
因为X射线荧光分析得到的是相对分 析值,所以进行定量分析时需要标样.选 定分光晶体和检测器,统计测量样品发出 的X射线荧光的强度,将已知含量的标准 样品和未知样品在同一条件下测定,确定 未知样品的含量.
受能 每 激量 一 原的 次 子释 的 的放 跃 二, 迁 次从 都 而伴 射形 随 线成 有 。
X
X
在当今众多的元素分析技术中,X射线荧光技术是 一种应用较早,且至今仍广泛应用的多元素分析 技术。
曾经成功的解决了:矿石中Nb和Ta,Zr和Hf及单个稀土 元素(REE)的测定问题;地质与无机材料分析中工作 量最大,最繁重,最耗时的主次量组分快速全分析的难 题;以及高精度,海量地球化学数据的获取问题等等。
定性分析
基本原理:试样发出的X荧光射线波长 与元素的原子序数存在一定关系,即 元素的原子序数增加,X射线荧光的波 长变短,关系式为 1 1 ( ) 2 K (Z S )
x荧光光谱法

x荧光光谱法
X荧光光谱法是一种用于分析物质的方法。
它利用物质在激发后发射的荧光光谱特性来研究物质的结构和性质。
X荧光光谱法的原理是,当物质受到高能X射线或电子束等
激发源的激发时,处于激发态的原子或分子会通过放出光子的方式回到低能的基态。
这些放出的光子就是荧光光谱。
通过检测荧光光谱的强度和波长,可以得到物质的特征信息。
不同元素或分子由于其结构和能级差异会产生不同的荧光光谱,因此通过分析荧光光谱可以确定物质的成分和结构。
X荧光光谱法具有高灵敏度、高分辨率以及无需样品处理等优点。
它广泛应用于材料科学、生命科学、环境监测等领域,用于分析样品中的元素、化合物、有机物等物质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.X射线激发源
由X射线管所发出的一次x射线的连续光谱和特征光谱 是x射线荧光分析中常用的激发源。
初级X射线的波长应稍短于受激元素的吸收限,能量最 有效地激发分析元素的特征谱线.
一般分析重元素时靶材选钨靶.分析轻元素用铬靶。
与波长色散法相比.能量色散法的主要优点是:
由于无需分光系统,检测器的位置可紧挨样品,检测灵 敏度可提高2—3个数量级;也不存在高次衍射谱线的 干扰。可以一次同时测定样品中几乎所有的元素,分析 物件不受限制。仪器操作简便,分析速度快.适合现场 分析。
目前主要的不足之处:
是对轻元素还不能使谱构成的背景较 大。
靶材的原子序愈大,x光管的管压(一般为50—100 kv)愈高,则连续谱强度愈大。
2.晶体分光器
(1)平面晶体分光器
(2)弯面晶体分光器
3.检测器
(二)能量色散型x射线荧光光谱仪
能量色散型x射线荧光光谱仪不采用晶体分光系 统,而是利用半导体检测器的高分辨率,并配以 多道脉冲分析器,直接测量试样x射线荧光的能 量,使仪器的结构小型化、轻便化。这是20世纪 60年代末发展起来的一种新技术.
第7章 电子能谱法
(Electron Spectroscopy) 7.1光电子能谱法的基本原理
(Principles of Photoelectron Spectroscopy) 7.2 x射线光电子能谱法 (X-Ray Photoelectron Spectroscopy,XPS) 7.3紫外光电子能谱法 (UltravioletPhotoelectron Spectroscopy,UPS) 7.4 Auger电子能谱法 (Auger Electron Spectroscopy,AES) 7.5电子能谱仪
(2)粒度效应 x射线荧光强度与颗较大小有关: 大颗粒吸收大;颗粒愈细,被照射的总面积 大.荧光强。另外.表面粒糙不匀也有影响。在 分析时常需将样品磨细,粉末样品要压实,块状 样品表面要抛光。
(3)谱线干扰
克服谱线干扰的方法有以下几种:
(i)选择无干扰的谱线; (ii)降低电压至干扰元素激发电压以下,防止 产生干扰元素的谱线; (iii)选择适当的分析晶体、计数管、准宜器 或脉冲高度分析器,提高分辨本领; (iv)在分析晶体与检测器间放置滤光片,滤 去干扰谱线等。
(一)X射线荧光的产生
X射线荧光产生机理与特征X射线相同,只是采 用X射线为激发手段.所以X射线荧光只包含特 征谐线,而没有连续谱线射线荧光波长总比相应 的初级X射线的波长要长一些。根据测得的X射 线荧光的波长,可以确定某元素的存在.根据谱 线的强度可以测定其含量,这就是X射线荧光分 析法的基础。
(二)Moseley定率
4.分析试样不受破坏,分析迅速、准 确,也便于实现自动分析,因此在生产 上的流线分析中应用越来越多。
(一)初级X射线的产生
(二) X射线谱
1.连续光谱
2.特征光谱
原子在发生电子跃迁的同时.将辐射出带有一 定频率或能量的特征谱线。特征谱线的频率大小 决定于电子在始态和终态的能量差。
6.2 X射线荧光分折
Spectrometer) 6.4 X射线荧光分析方法及应用
(Methods and Applications of X— ray Fluorescence Analysis)
6.1 X射线和X射线谱
这种荧光x射线的波长只取决于物质中各元 素原子电子层的能级差.
因此,根据x荧光的波长,就可确定物质所含元素; 根据其强度可确定所属元素的含量。
6.4 X射线荧光分析方法及应用
(一)定性分析 (二)定量分析
1.定量分析的影响因素
现代x射线荧光分析的误差主要不是来源于仪 器.而是来自样品 (1)基体效应一般表现为吸收和激发效应
基休效应的克服方法有:(i)稀释法.以轻元素 为稀释物可减小基体效应。(ii)薄膜样品法,将 样品做得很薄.则吸收、激发效应可忽略。 (iii)内标法,在一定程度上也能消除基体效应
荧光光谱法的优点:(1)有较低的检出限,灵 敏度高。特别对Cd、Zn等元素有相当低的检 出 限 , Cd 可 达 0 . 001ng·cm-3 、 Zn 为 0.04ng·cm-3。现已有2O多种元素低于原子吸 收光谱法的检出限。由于原子荧光的辐射强度 与激发光源成比例,采用新的高强度光源可进 一步降低其检出限。(2)干扰较少,谱线比 较简单,采用一些装置,可以制成非色散原子 荧光分析仪。这种仪器结构简单,价格便宜。 (3)分析校准曲线线性范围宽,可达3~5个 数量级。(4)由于原子荧光是向空间各个方 向发射的,比较容易制作多道仪器,因而能实 现多元素同时测定。
2.定量分析方法
(1)校准曲线法 (2)内标法
内标元素的选择原则:
(i)试样中不含该内标元素; (ii)内标元素与分析元素的激发、吸收等性质要尽量相似, 它 们的原子序相近. (iii)两种元素之间没有相互作用。
(3)增量法 先将试样分成若干份.其小一份 不加待测元素,其他各份分别加入不同含量 (1—3倍)的待测元素,然后分别测定分析线 强度、以加入含量为横坐标、强度为纵坐标绘 制标准曲线.当待测元素含量较小时,校准曲 线近似为一直线。将直线外推与横坐标相交, 交点坐标的绝对值即为待测元素的含量。作图 时,应对分析线的强度做背景校正。
第6章 X射线荧光光谱法
(x-ray Fluorescence Spectrometry
6.1 X射线和x射线谱 (X-ray and X-ray Spectrum)
6.2 X射线荧光分析 (x-ray Fluorescence Analysis)
6.3 X射线荧光光谱仪 (X—ray Fluorescence
荧光x射线的波长随着元素原子序的增加 有规律地向波长变短方向移动。 其数学关系式为
式中K S为常数,随不同谱线系列(K、L)而定.Z是原子序数。
6.3 X射线荧光光谱仪
根据分光原理,可将x射线荧光光谱仪分为两类:
波长色散型(晶体分光)和能量色散型(高分辨率半导 体探测器分光)。
(一)波长色散型X射线荧光光谱仪