摩托车制动器制动力计算
制动力计算公式

制动力计算公式
一、一轴(前轴)制动力
一轴制动率=(左前轮制动力+右前轮制动力)/ [(左前轮荷重+右前轮荷重) ×9.8] 当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力-右前轮过程差最大制动力)/ 两个前轮中最大制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率=(左后轮制动力+右后轮制动力)/ [(左后轮荷重+右后轮荷重) ×9.8] 二轴制动率不做判定
当二轴制定率>=60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ [(左后轮荷重+右后轮荷重) ×9.8]
二轴不平衡率<8%时为合格
三、手制动力(手刹)
手制动率=(左轮制动力+右轮制动力)/四个车轮荷重之和×9.8
手制动率>=20%为合格
四、整车制动
整车制动率=四个车轮制动力之和/四个车轮荷重之和×9.8
整车制动率>=60% 为合格。
制动力计算方法

《机动车运行安全技术条件》(GB7258-2004)有关制动方面的:1.1 台试检验制动性能1.1.1 行车制动性能检验1.1.1.1 汽车、汽车列车在制动检验台上测出的制动力应符合表 6 的要求。
对空载检验制动力有质疑时,可用表 6 规定的满载检验制动力要求进行检验。
摩托车及轻便摩托车的前、后轴制动力应符合表 6 的要求,测试时只允许乘坐一名驾驶员。
检验时制动踏板力或制动气压按7.13.1.3 的规定。
表 6 台试检验制动力要求1.1.1.2 制动力平衡要求(两轮、边三轮摩托车和轻便摩托车除外)在制动力增长全过程中同时测得的左右轮制动力差的最大值,与全过程中测得的该轴左右轮最大制动力中大者之比,对前轴不应大于20% ,对后轴(及其它轴)在轴制动力不小于该轴轴荷的60% 时不应大于24%;当后轴(及其它轴)制动力小于该轴轴荷的60% 时,在制动力增长全过程中同时测得的左右轮制动力差的最大值不应大于该轴轴荷的8% 。
依据国标要求,对前轴以外的制动力平衡计算分两种情况:1、当该轴制动制动率 >= 60%时,过程差最大差值点的两个力分别为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/f1 * 100 ;如果f1 < f2不平衡率 = (f2 –f1)/f2 * 1002、当该轴制动制动率 < 60%时,过程差最大差值点的两个力分别为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/轴重 * 100 ;如果f1 < f2不平衡率 = (f2 –f1)/轴重 * 100注意:以上为简约的计算,较为准确的计算要注意单位之间的换算:轴重是kg,制动力的单位是10N例如:轴重最大左最大右差值左差值右制动率不平衡率2074 543 508 543 508 50.7 1.7二轴不平衡率( 543-508)*10/(2074*9.8)*100= 1.722%有关制动台仪表制动台仪表的不平衡率算法说明书没有给出,不清楚其算法,对于前轴有可能是对的,对于后轴等仪表算法可定是错误的,制动台本身不能得到车辆的轴重,也就不能判断制动率是否 >=60,也就不能得出不平衡率。
制动器制动力矩的计算

制动扭矩: 领蹄:111ϕ∂⨯⨯=K r F M δ从蹄:222ϕ∂⨯⨯=K r F M α求出1ϕ∂K 、2ϕ∂K 、1F 、 βθ2F 就可以根据μ计算出制 动器的制动扭矩。
一.制动器制动效能系数1ϕ∂K 、2ϕ∂K 的计算1.制动器蹄片主要参数:长度尺寸:A 、B 、C 、D 、r (制动鼓内径)、b (蹄片宽)如图1所示; 角度尺寸:β、e (蹄片包角)、α(蹄片轴中心---毂中心连线的垂线和包角平分线的夹角,即最大单位压力线包角平分线的夹角,随磨擦片磨损而增大);μ为蹄片与制动鼓间磨擦系数。
2.求制动效能系数的几个要点1)制动时磨擦片与制动鼓全面接触,单位压力的大小呈正弦曲线分布,如图2,m axP 位于蹄片轴中心---毂中心连线的垂线方向,其它各点的单位压力σsinmax ⨯=P P ;2)通过微积分计算,将制动鼓 与磨擦片之间的单位压 力换算成一个等效压力, 求出等效压力的方向σ 和力的作用点1Z 、2Z (1OZ 、2OZ ),等效力 P 所产生的摩擦力1XOZ (等于μ⨯P )即扭矩(需建立M 和蹄片平台受力F 之间的关系);实际计算必须找出M 与F 之间的关系式:ϕ∂⨯⨯=K r F M3)制动扭矩计算蹄片受力如图3: a. 三力平衡领蹄:111OE H M ⨯=从蹄:222OE H M ⨯=b. 通过对蹄片受力平衡分析(对L 点取力矩)()1111G L H b a F ⨯=+⨯()1111/G L b a F H +⨯=∴()11111/G L OE b a F M ⨯+⨯=111ϕ∂⨯⨯=K r F M∴ 1111G L OE r B A K ⨯+=∂ϕ 同理: 2222G L OE r B A K ⨯+=∂ϕc. 通过图解分析求出1OE 、2OE 、11G L 、22G L 与制动器参数之间的关系,就可以计算出1ϕ∂K 、1ϕ∂K 。
3.具体计算方法: 11-⨯=∂ργϕKl K ; 1'2+⨯=∂ργϕKl KrBA l +=; rC B K 22+=1) 在包角平分线上作辅助圆,求Z.圆心通过O 点,直径=ee e r sin 2sin4+⨯画出σ角线与辅助圆交点,即Z 点等效法向分力作用点。
制动力计算公式

制动力计算公式
一、一轴(前轴)制动力
一轴制动率=(左前轮制动力+右前轮制动力)/ [(左前轮荷重+右前轮荷重)x9.8]
当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力-右前轮过程差最大制动力)/ 两个前轮中最大制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率=(左后轮制动力+右后轮制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴制动率不做判定
当二轴制定率>=60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴不平衡率<8%时为合格
三、手制动力(手刹)
手制动率=(左轮制动力+右轮制动力)/四个车轮荷重之和X9.8
手制动率>=20%为合格
四、整车制动
整车制动率=四个车轮制动力之和/四个车轮荷重之和X9.8
整车制动率>=60% 为合格。
制动器选择计算公式

制动器选择计算公式在车辆制动系统中,制动器是至关重要的组成部分。
它们负责将车辆的动能转化为热能,从而减速或停止车辆。
因此,选择适当的制动器对于车辆的性能和安全性至关重要。
在选择制动器时,需要考虑诸多因素,包括车辆的重量、速度、使用环境等。
本文将介绍制动器选择的计算公式,帮助工程师们更好地选择适合的制动器。
首先,我们需要了解一些基本的概念。
制动器的性能通常由制动力和制动力矩来描述。
制动力是指制动器施加在车轮上的力,而制动力矩则是制动器施加在车轮上的力乘以制动器半径。
制动器的选择计算公式将涉及到这些参数。
1. 制动力计算公式。
制动力的计算公式可以表示为:F = μ m g。
其中,F为制动力,μ为摩擦系数,m为车辆的质量,g为重力加速度。
摩擦系数是指制动器和车轮之间的摩擦系数,它取决于制动器和车轮的材料。
一般来说,摩擦系数越大,制动力越大。
2. 制动力矩计算公式。
制动力矩的计算公式可以表示为:T = F r。
其中,T为制动力矩,F为制动力,r为制动器半径。
制动力矩是制动器施加在车轮上的力乘以制动器半径,它反映了制动器对车轮的制动能力。
3. 动能计算公式。
在选择制动器时,还需要考虑车辆的动能。
动能的计算公式可以表示为:E = 0.5 m v^2。
其中,E为动能,m为车辆的质量,v为车辆的速度。
动能是车辆的速度和质量的函数,它反映了车辆在运动过程中所具有的能量。
综合考虑以上几个公式,我们可以得出制动器选择的计算公式:T = μ m g r。
根据这个计算公式,我们可以计算出所需的制动力矩,从而选择适合的制动器。
需要注意的是,实际的制动器选择还需要考虑到制动器的类型、材料、散热能力等因素,这些因素将对制动器的性能产生重要影响。
除了上述的计算公式外,还有一些其他因素需要考虑。
例如,制动器的热容量、制动器的响应时间、制动器的耐久性等。
这些因素将对制动器的选择产生重要影响,工程师们在选择制动器时需要综合考虑这些因素。
制动力计算公式

制动力计算公式
一、一轴(前轴)制动力
一轴制动率=(左前轮制动力+右前轮制动力)/ [(左前轮荷重+右前轮荷重)x9.8]
当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力-右前轮过程差最大制动力)/ 两个前轮中最大制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率=(左后轮制动力+右后轮制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴制动率不做判定
当二轴制定率>=60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴不平衡率<8%时为合格
三、手制动力(手刹)
手制动率=(左轮制动力+右轮制动力)/四个车轮荷重之和X9.8
手制动率>=20%为合格
四、整车制动
整车制动率=四个车轮制动力之和/四个车轮荷重之和X9.8
整车制动率>=60% 为合格。
制动计算公式范文

制动计算公式范文一、制动距离的计算公式:制动距离=制动初速度²/(2x制动加速度)其中制动初速度是指车辆开始制动时的速度,以米/秒为单位;制动加速度是指制动时车辆减速的大小,以米/秒²为单位。
二、质量和速度的关系:制动初速度²=初始速度²-2x制动加速度x制动距离其中初始速度是指车辆开始制动前的速度,以米/秒为单位。
三、制动加速度的计算公式:制动加速度=制动力/车辆质量其中制动力是指车辆制动产生的力量,以牛顿为单位;车辆质量是指车辆的质量,以千克为单位。
四、制动力的计算公式:制动力=钳子力x制动系数其中钳子力是指制动钳对制动盘产生的力量,以牛顿为单位;制动系数是指制动钳与制动盘之间的摩擦系数。
五、钳子力的计算公式:钳子力=踏板力x主缸比例x钳子比例其中踏板力是指驾驶员在踏板上施加的力量,以牛顿为单位;主缸比例是指主缸的工作面积与踏板工作面积的比值;钳子比例是指制动钳活塞工作面积与主缸工作面积的比值。
根据上述公式,可以进行制动距离的计算。
首先,需要根据车辆质量、踏板力、主缸比例、钳子比例以及制动系数等参数来计算制动力。
然后,根据制动力和车辆质量的关系来计算制动加速度。
最后,根据车辆的初始速度、制动加速度和制动距离来计算制动距离。
需要注意的是,以上公式中的参数需要根据具体车辆和实际情况进行确定。
不同类型的车辆、不同制动系统和不同驾驶员的参数可能存在差异。
因此,在进行制动计算时,需要准确获取车辆和制动系统的相关参数,并结合实际情况进行计算。
最后,制动计算公式是理论模型,实际制动距离还可能受到多种因素的影响,例如路面情况、制动盘和制动片的磨损状况以及制动系统的响应时间等。
因此,在实际驾驶中,驾驶员需要根据具体情况进行制动操作,以确保行车安全。
制动器的设计计算部分

制动器的设计计算部分制动器是用来控制或减速机械设备运动的装置。
它通常由摩擦垫、压力单元、驱动装置和控制装置组成。
制动器的设计计算部分包括静态设计与动态设计两个方面。
静态设计主要涉及计算所需的制动力和摩擦垫的尺寸,而动态设计则涉及制动器在运行期间的热量分布和冷却。
在进行静态设计计算之前,首先需要确定制动器所需的制动力。
制动器的制动力通常由下述式子计算:制动力=需要减速度×机械设备的质量其中,需要减速度是由系统要求或运行条件决定的。
机械设备的质量可以通过实际测量或通过计算机辅助设计软件进行估算。
此外,制动器还需要考虑一些额外的因素,如摩擦系数和安全系数,以确保制动器的可靠性和安全性。
在确定制动力后,需要计算摩擦垫的尺寸。
摩擦垫的尺寸取决于制动器的类型和具体应用。
常见的制动器类型包括盘式制动器和鼓式制动器。
对于盘式制动器,摩擦垫通常由摩擦面的直径和宽度来确定。
对于鼓式制动器,摩擦垫的尺寸通常由鼓面的直径和摩擦面的长度来决定。
与摩擦垫尺寸相关的参数还包括摩擦垫的摩擦系数和最大摩擦温度。
摩擦系数表示摩擦垫在制动时的摩擦性能,其数值通常由摩擦材料的选择决定。
最大摩擦温度是指制动器在运行期间可能达到的最高温度,该温度主要取决于摩擦材料和运行工况。
在动态设计方面,制动器的热量分布和冷却是设计中的重要考虑因素。
当制动器运行一段时间后,摩擦垫会产生大量热量,如果不能及时散热,可能会导致制动性能下降、摩擦垫老化或甚至引发火灾。
因此,制动器的设计需要考虑散热系统,以保持摩擦垫的正常工作温度。
散热系统通常包括散热片或散热鳍片,以增加散热面积,帮助热量的有效传递。
此外,制动器还可以采用风冷式冷却系统,通过引入外部冷气来加速热量的散发。
冷却系统的设计需要考虑风量、风速和冷却材料的选择等因素。
综上所述,制动器的设计计算部分涉及静态设计和动态设计两个方面。
静态设计主要包括计算制动力和摩擦垫尺寸,而动态设计则涉及制动器的热量分布和冷却。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摩托车制动器制动力计算
1. 转动惯量的详细解释及其物理意义:
转动惯量的由来,动能公式是22
1mv E =,动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量。
22
1mv E = 把r v ω=代入上式 (ω是角速度,r 是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r ,而再把不同质点积分化得到实际等效的r)
得到2)(2
1r m E ω= 由于某一个对象物体在运动当中的本身属性m 和r 都是不变的,所以把关于m 、r 的变量用一个变量I 代替,
2mr I =
得到22
1ωI E = I 就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。
这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。
为什么变换一下公式就可以从能量角度分析转动问题呢?
1、22
1ωI E =本身代表研究对象的运动能量 2、之所以用22
1mv E =不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。
3、22
1mv E =除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v 只代表那个物体的质心运动情况。
4、22
1ωI E =之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量2mr I =本身就是一种积分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果∑=2mr I 。
所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。
若刚体的质量是连续分布的,则转动惯量的计算公式可写成
∑⎰⎰===dV r dm r mr I σ222 其中dV 表示dm 的体积元,σ表示该处的密度,r 表示该体积元到转轴的距离。
2. 摩托车制动时的受力分析:摩托车在制动时要想获得最佳的制动效果,其条件是前、后轮制动器制动力之和等于摩托车的附着力,并且前、后轮制动器制动力同时等于各自的地面附着力。
上图是摩托车在水平路面上的制动受力情况,其中忽略了滚动阻力、空气阻力、
旋转质量减速时的惯性力矩等。
根据平面任意力系平衡的解析条件,即:力系中各力在两个任选的直角坐标轴上投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
列方程式: R '=0 F B1+ F B2=m ·a Z 1+ Z 2=m ·g
M o =0 F B1=Z 1·φ 和 Z 1·L= m ·a ·h g +m ·g ·L 2
F B2=Z 2·φ m ·g ·L 1= Z 2·L+ m ·a ·h g
L
L h ma F g B )(21+=ϕ L
L h ma F g B )(12-=ϕ L
h L F F g B B ϕβ+==2
1 式中:
F B1、F B2——前、后轮制动器制动力,N ;
Z 1、Z 2——前、后轮的地面法向反力,N ;
L 1、L 2——整车重心至前、后轮接地点的距离,m ;
F B ——制动器总制动力,N ;
L ——轴距,m ;
φ——道路附着系数;
m ——摩托车总质量,kg ;
h g ——整车重心高,m ;
a ——摩托车所能达到的最大减速度,m/s 2;
β——摩托车制动力分配系数(前轮制动器与摩托车总制动力之比称之为制动器制动力分配系数)。
因此,对于给定的摩托车,只要已知m 、L 1、L 2、h g 等参数,然后根据摩托车经常使用的道路条件(φ值要求),利用以上方程组可以进行制动力的计算。
在附着系数为φ的路面上,摩托车制动能达到的最大减速度为a=φg ,所以在摩托车质心和轴距确定的情况下,β的选取与附着系数φ有关。
已知了总制动力F B 和制动力分配系数β就可以分别计算前、后轮的制动力
F B1= F B ·β F B2= F B ·(1-β)
前后轮的制动力矩为:
M B1= F B1·r 1 M B2= F B2·r 2
式中:
M B1、M B2——前、后轮制动器制动力矩,N·m ;
r 1、r 2——前、后轮胎的滚动半径,m 。
3. 摩托车惯量表示:摩托车是由平动刚体(车身加乘员)和定轴转动刚体(两个车轮)
组成的质点系,在行驶过程的正常脱档制动是匀减速运动,其动能变化为:
)'(2
1'2121222I I I mv E +=+=ωω 式中(I+I ')可以表示摩托车的总惯量。
而惯性试验台试验转动惯量按下面公式计算:车辆总质量加上旋转部分当量修正值,然后把相当于该质量的转动惯量按各轴制动力分配比分配。
旋转部分的修正值取空车质量的7%。
2)07.0(k o m R M M I +=β
式中:
I ——转动惯量,kg ·m 2;
β——摩托车制动力分配系数(前轮制动器与摩托车总制动力之比称之为制动器制动力分配系数);
M m ——摩托车厂定最大总质量,kg ;
M o ——摩托车整车整备质量,kg ;
R k ——摩托车车轮滚动半径,m 。
4. 试验时减速度计算公式: 由I r M a ⋅=得, r
I a M ⋅= a ——试验车的减速度,m/s 2;
M ——试验制动力矩,N·m ;
I ——转动惯量,kg ·m 2;
R ——轮胎滚动半径,m 。
5. 如以HJ125-8车型为例计算制动力:
空车质量M o 为107kg ,车轮直径574mm ,车轮滚动半径272m (轮胎下沉量按30mm ),制动盘。
整车惯量为(只1个驾驶员时,体重75kg ):
I 1=(M m +0.07M o )·R k 2=(182+0.07×107)×0.2722=14.019 kg ·m 2
最大制动力矩为(φ取0.6 ,最大减速度按5.88 m/s 2):
r I a M 11⋅==272
.0019.1488.5⨯=303.058 N·m 整车需要的制动力为:
F 1=r M 1=272
.0058.303=1114.18N 制动器需要产生的夹紧力为(制动盘直径为220mm ,有效制动半径为95mm):
N 1=2·r M 1=095
.0058.3032⨯=6380.17N 本车型配套的前液压制动器的制动钳活塞直径为34mm ,制动钳活塞面积
A=907.92mm 2,摩擦系数μ=(0.35~0.45),则制动系统压力p 1为:
p 1=r A M ⋅⋅⋅μ21=095
.045.092.9072058.303⨯⨯⨯=3.90MPa
同上,当乘两个人时(最大质量为空车质量加两个人的体重150kg ): I 2=(M m +0.07M o )(257+0.07×107)×0.2722=19.568 kg ·m 2
r I a M 22⋅==272
.0568.1988.5⨯=423.014 N·m F 2=r M 2=272
.0014.423=1555.20N N 2=2·r M 1=095
.0014.4232⨯=8905.56N P 2=r A M ⋅⋅⋅μ22=095
.045.092.9072014.423⨯⨯⨯=5.45MPa
当只用前轮部分惯量制动时为(1人乘坐,β= 0.6):
I 1前=2o m 0.07M M K R )(+β=0.6×(182+0.07×107)×0.2722=8.41 kg ·m 2
前轮最大制动力矩为:
M 1前=r I a 前1⋅=272
.041.888.5⨯=181.80 N·m 前轮需要的制动力为:
F 1前=r M 前1=272
.080.181=668.38N 前制动器需要产生的制动力N 1前为(制动盘直径为220mm ,有效制动半径为95mm ):
N 1前='21r M 前⋅=095
.080.1812⨯=3827.37N P 1前=r A M ⋅⋅⋅μ21前=095
.045.092.907280.181⨯⨯⨯=2.34MPa 亦同上,当乘两个人时前轮的负荷为:
I 2前=2o m 0.07M M k R )(+β=0.6×(257+0.07×107)×0.2722=11.741 kg ·m 2
M 2前=r I a 前2⋅=
272
.0741.1188.5⨯=253.81 N·m F 2前=r M 前2=272
.081.253=933.125N N 2前='22r M 前⋅=095
.081.2532⨯=5343.37N P 2前=r A M ⋅⋅⋅μ22前=095.045.092.907281.253⨯⨯⨯=3.27MPa
制动器制动片的摩擦系数μ为:
μ=N
F ⋅2 式中:F ——制动器实际所产生的制动力;
N ——由系统压力加在活塞上所产生的压力。
○注当已知上面受力分析时所涉及的一些摩托车结构和使用参数时,为精确计算,应使用以上的受力分析公式进行制动力和力矩的计算。