二次函数复习导学案Word版

合集下载

二次函数导学案(全章)(完整资料).doc

二次函数导学案(全章)(完整资料).doc

【最新整理,下载后即可编辑】第1课时二次函数的概念【学习目标】1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;2.探索并归纳二次函数的定义;3.能够表示简单变量之间的二次函数关系。

【学习重点】掌握二次函数的概念并能利用概念解答相关的题型。

【课时类型】概念课【学习过程】一、学习准备1.函数的定义:在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称是的函数,其中是自变量,是因变量。

2.一次函数的关系式为y= (其中k、b是常数,且k≠0);正比例函数的关系式为y=(其中k是的常数);反比例函数的关系式为y= (k是的常数)。

二、解读教材——数学知识源于生活3.某果园有100棵橙子树,每一棵树平均结600个橙子。

现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

假设果园增种x棵橙子树,那么果园共有棵橙子树,这时平均每棵树结个橙子,如果果园橙子的总产量为y个,那么y= 。

4.如果你到银行存款100元,设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

那么你能写出两年后的本息和y(元)的表达式(不考虑利息税)吗?。

5.能否根据刚才推导出的式子y=-5x2+100x+60000和y=100x2+200x+100猜想出二次函数的定义及一般形式吗?一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x 的二次函数。

例1 下列函数中,哪些是二次函数?(1)232x y +-= (2)12+=x y(3)x y 222+=(4)251t t s ++= (5)22)3(x x y -+= (6)210r s π= 即时练习:下列函数中,哪些是二次函数? (1)2x y = (2)252132+-=x x y(3))1(+=x x y (4)1132--=)(x y (5)c ax y -=2(6)12+=x s三、挖掘教材6.对二次函数定义的深刻理解及运用例2 若函数1232++=+-kx x y k k 是二次函数,求k 的值。

二次函数复习课导学案

二次函数复习课导学案

第二十六章二次函数复习课导学案【中考考点透析】1、熟练掌握二次函数的一般式和顶点式,能确定其三要素并画出草图。

2、熟练掌握函数的平移规律。

3、能将二次函数的一般式转化为顶点式。

4、熟知二次函数的性质(增减性、对称性、最值等)5、理解二次函数与一元二次方程的关系6、能够用待定系数法求二次函数的解析式。

7、能够建立二次函数模型解决实际问题8、体会数形结合、分类讨论、平移变换、建模等数学思想一、知识回顾(做题并反思各考查了本章中的哪些知识?你是如何解决的?)1.下列函数一定是二次函数的是 ( )A .232y x =+B .221y ax x =++C .22(1)y x x =--D .212y x =- 2.二次函数2(1)3y x =-+的图像顶点坐标是( ) A .(-1,3) B .(1,3) C .(-1,-3) D .(1,-3)3.22y x =-的图像向左平移3个单位,再向下平移2个单位,得到新图像的表达式( )A .22(3)2y x =---B .22(2)3y x =--+C . 22(3)2y x =-++D .22(3)2y x =-+-4.抛物线223y x x =-+的顶点坐标是 ,对称轴是 ;当x 时,y 随x 增大而减小,当x 时,y 随x 增大而增大;当x 时,函数有最 值,其最值为 。

5.抛物线2(0)y ax bx c a =++≠与x 轴的两个交点坐标为(-2,0),(1,0),则关于x 的一元二次方程20ax bx c ++=的两根为 。

6.抛物线228y x x =--与x 轴有 个交点。

7、函数2y ax bx c =++的图像如图所示,对称轴为直线1x =,根据这个图像,你能得到哪些结论?二、综合应用8、当m为何值时,函数22(2)m y m x-=-是二次函数(A .2± B .2 C .-2 D .09、抛物线2y x bx c =++上有两点(3,0)和(-5,0),则此抛物线的对称轴是直线( ) A .4x = B .3x = C .5x =- D .1x =-变1:抛物线2y x bx c =++上有两点(3,5)和(-5,5),则此抛物线的对称轴是直线( ) 变2:抛物线2y x bx c =++上有两点(3,7)和(-5,7),则此抛物线的对称轴是直线( ) 10、如图,抛物线26y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,在对称轴右侧的抛物线上是否存在点M 使得23AMO COB S S ∆∆=,若存在求出M 的坐标,若不存在请说明理由。

苏科版数学九下《二次函数的应用》word导学案

苏科版数学九下《二次函数的应用》word导学案

二次函数的应用课型:新授 一、自学目标:1.掌握二次函数的两种解析式的形式2.会根据不同的条件,利用待定系数法求二次函数的解析式 二、教学过程: (一)知识准备 例1:(1)已知二次函数的图象经过点(-1,-6)、(1、-2)和(2,3),求这个二次函数的解析式。

(2):已知抛物线的顶点为(-1,-3),与y 轴的交点为(0,-5),求此抛物线的解析式。

(3):已知抛物线与x 轴交于A (-1,0)、B (1,0),并经过点M (0,1),求此抛物线的解析式。

例2、已知抛物线经过三点A(-1,0)、B(1,8)、C(3,0), 求此抛物线的解析式。

练习1、(17)11x y --==最大值2、已知抛物线经过点,且当时,求抛物线的解析式。

2、二次函数y= ax2+bx+c 的图象如图所示,求此函数解析式。

(二)知识梳理① 已知抛物线上任意三点时,通常设函数解析式为一般式。

② 当已知抛物线的顶点坐标和抛物线上另一点时,通常设函数解析式为顶点式。

③ 当已知抛物线与x 轴交点或交点横坐标时,通常设函数解析式为交点式。

6.4二次函数的应用(1)课堂作业班级 姓名1. 已知x =1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式 。

2. 抛物线c bx x y ++=22与x 轴交于(2,0)、(-3,0),则该二次函数的解析式 。

3. 若抛物线c bx ax y ++=2的顶点坐标为(1,3),且与22x y =的开口大小相同,方向相反,则该二次函数的解析式 。

4.二次函数y=2x 2+bx+c ,当x=1时,y=4;当x=-2时,y=-5,则b=_______,c=_______.-6 32-25.已知抛物线的顶点是(-2,3),且过点(-1,5),则它的解析式是______ ____. 6.若抛物线与x 轴交于(2,0)、(3,0),与y 轴交于(0,-4),则该二次函数的解析式 。

人教版九年级上册数学第二十二章 二次函数 章末复习(导学案)

人教版九年级上册数学第二十二章 二次函数 章末复习(导学案)

章末复习一、复习导入1.导入课题:这节课我们对本章所学知识作一回顾和小结.(板书课题)2.复习目标:(1)进一步加深对二次函数的概念、图象以及它的性质的理解. (2)能感受函数思想、建模思想和转化思想. 3.复习重、难点:重点:二次函数的图象和性质. 难点:应用二次函数解决实际问题. 二、分层复习1.复习指导:(1)复习内容:教材第27页到第56页的内容. (2)复习时间:8分钟.(3)复习方法:翻阅课本、整理知识要点. (4)复习参考提纲: ①整理知识要点:a.形如y=a x 2+b x +c (a≠0)的函数,叫二次函数,其图象是一条抛物线.b.抛物线y=a x 2+b x +c 的对称轴是直线b x a =-2,顶点坐标是,b ac ba a ⎛⎫-- ⎪⎝⎭2424.若a>0,则当b x a =-2时,函数y 有最 小 值ac b a -244,当b x a>-2时,y 随x 的增大而增大,当bx a<-2时,y 随x 的增大而减小,若a<0,则函数y 的最值和增减性又如何呢? 若a<0,则当x =b a-2时,函数y 有最大值ac b a -244.当b x a >-2时,y 随x 的增大而减小,当bx a<-2时,y 随x 的增大而增大. c.抛物线的平移:把抛物线y=a x 2沿x 轴向左平移h 个单位所得的抛物线是y=a(x +h)2,再把它沿y轴向上平移k个单位,所得的抛物线是y=a(x+h)2+k,若改变平移方向或距离呢?d.抛物线y=a x2+b x+c与x轴的位置关系有3 种,是由b2-4ac的符号决定的,具体情况是:当b2-4ac>0时,抛物线与x轴有2个不同的交点;当b2-4ac=0时,抛物线与x轴只有1个交点,当b2-4ac<0时,抛物线与x轴没有交点.e.用待定系数法求二次函数解析式.设二次函数的解析式;根据已知条件,得到关于系数的方程组;解方程组,求出系数的值,从而得出函数解析式.f.自变量取值范围有条件限制时,如何求二次函数的最值?确定二次函数在取值范围内的增减性,比较函数在最高(低)点和端点的取值.②试画本章知识结构框图:2.自主复习:学生结合复习指导进行复习.3.互助复习: (1)师助生:①明了学情:观察学生复习提纲完成情况. ②差异指导:根据学情进行个别或分类指导. (2)生助生:小组交流、研讨. 4.强化:二次函数的图象及性质.1.复习指导:(1)复习内容:典型剖析、考点跟踪. (2)复习时间:10分钟. (3)复习方法:小组合作、研讨. (4)复习参考提纲:①二次函数y=-x 2-2x +8的图象开口向 下 ,对称轴是 直线x =-1 ,顶点坐标为(-1,9),与x 轴的交点坐标是(-4,0),(2,0),与y 轴的交点坐标是(0,8).②二次函数y= 2x 2-4x +5化成y=a(x -h)2+k 的形式为()y x =-+2213,最小值是3. ③如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是(D )A.y 的最大值小于0B.当x =0时,y 的值大于1C.当x =-1时,y 的值大于1D.当x =-3时,y 的值小于0第③题图 第④题图④二次函数y=a x 2+b x +c (a≠0)的图象如图所示,若|a x 2+b x +c|=k (k≠0)有两个不相等的实数根,则k 的取值范围是(D )A .k <-3B .k >-3C .k <3D .k >3⑤已知抛物线y=a x 2+b x +c 的顶点为(-1,4),与x 轴相交的两点间的距离为6,求此抛物线的解析式.设抛物线解析式为()y a x =++214, ∵抛物线与x 轴相交的两点间的距离为6, ∴与x 轴正半轴交点坐标为(2,0). ∴()a =++20214,解得a =-49. ∴此抛物线的解析式为()y x x x =-++=--+2244832149999. ⑥某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果旅客居住房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:Ⅰ.房间每天的入住量y (间)关于x (元)的函数关系式; Ⅱ.该宾馆每天的房间收费z (元)关于x (元)的函数关系式; Ⅲ.每个房间每天的定价增加多少元时,宾馆的利润最大? 解:Ⅰ. xy =-6010Ⅱ. ()()xz x x =+-≤<20060060010Ⅲ.宾馆的利润()x x w x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭2006020601010 x x =-++2421080010()x =--+212101521010. 当x =210时,w 有最大值.即当每个房间每天的定价增加210元时,宾馆的利润最大. 2.自主复习:学生结合复习指导自主复习. 3.互助复习: (1)师助生:①明了学情:关注学生提纲的完成情况.②差异指导:根据学情进行指导. (2)生助生:小组内相互交流、研讨. 4.强化:利用二次函数模型求最值. 三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中,对全章知识你有何新的收获?在哪些方面还存在问题?2.教师对学生的评价:(1)表现性评价:点评学生学习的积极性、主动性,小组交流协作状况、学习方法、效果等.(2)纸笔评价:评价检测题.3.教师的自我评价(教学反思):本课时是对本章知识点的全面总结,教学时,教师注重引导学生回忆知识点并构建知识结构框图,同时辅以典型例题,复习和巩固所学知识点,最后教师详细讲解解题思路和分析过程.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)已知二次函数y=-x 2+4x +5,则当x = 2 时,其最大值为 9 .2.(10分)已知二次函数y=a x 2+b x +c (a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的方程a x 2+b x +c=0的两个根分别是x 1=1.3和x 2= -3.3 .3.(10分)设A (-2,y 1),B (1,y 2),C (2,(x +1)2)是抛物线y=-(x +1)2+a 上的三点,则y 1,y 2,(x +1)2的大小关系为(A )A .y 1>y 2>(x +1)2B .y 1>(x +1)2>y 2C .(x +1)2>y 2>y 1D .(x +1)2>y 1>y 2 4.(40分)已知抛物线y x x =--215322. (1)求抛物线的开口方向、对称轴及顶点坐标; (2)求抛物线与x 轴、y 轴的交点坐标; (3)画出函数图象(草图);(4)根据图象说出:x 为何值时,y 随x 的增大而增大?x 为何值时,y 随x 的增大而减小?解:(1)开口向上,对称轴为直线x =3,顶点坐标为(3,-7).(2)与x 轴的交点为(,)+3140,(,)-3140.与y 轴的交点为,⎛⎫- ⎪⎝⎭502. (3)如图.(4)当x >3时,y 随x 的增大而增大. 当x <3时,y 随x 的增大而减小. 二、综合应用(10分)5.(10分)如图,已知抛物线y=a x 2+b x +c 过点C(3,8),与x 轴交于A(-1,0),B 两点,与y 轴交于点D(0,5).(1)求该二次函数的关系式;(2)求该抛物线的顶点M 的坐标,并求四边形ABMD 的面积. 解:(1)∵抛物线过点(3,8),(-1,0),(0,5),则,,a b c a b c c =++⎧⎪=-+⎨⎪=⎩89305 .解得,,a b c .=-⎧⎪=⎨⎪=⎩145 ∴该二次函数关系式为y=-x 2+4x +5(2)顶点M 的坐标为(2,9),对称轴为直线x =2,则B 点坐标为(5,0), 过M 作MN ⊥AB 于N ,则四边形梯形AODMNBABMD DONM S SS S=++()=⨯⨯+⨯+⨯+⨯⨯=111155929322230. 三、拓展延伸(20分)6.(20分)某商场将进货价为30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个.(1)请写出每月售出书包的利润y (元)与每个书包涨价x (元)间的函数关系式; (2)设某月的利润为10000元,10000元的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元?(3)请分析并回答售价在什么范围内商家就可获得利润?解:(1)设每个书包涨价x元,销量为(600-10x)个.∴y=(40+x)(600-10x)-30(600-10x)=-10x2+500x+6000(0≤x≤60).(2)10000元不是最大利润,y=-10x2+500x+6000=-10(x-25)2+12250.当x=25时有最大利润,即售价为65元时,有最大利润12250元.(3)商家可获得利润,即y=-10x2+500x+6000>0,解得-10<x<60,∴30<40+x<100 .即当售价在30~100元之间内商家就可获得利润.。

二次函数复习(第一课时)导学案

二次函数复习(第一课时)导学案

二次函数复习课(第1课时)导学案一、基础知识点:知识点一、二次函数概念1、一般地,形如 (a,b,c 是常数, ) 的函数,叫做二次函数。

2、 二次函数y=ax²+bx+c 的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是 . ⑵ a,b,c 是常数, 是二次项系数, 是一次项系数,c 是知识点二、二次函数 y=ax²+bx+c 的性质:1、a 的符号决定抛物线的 :当0>a 时,开口 ;当0<a 时,开口 ; a 相等,抛物线的开口大小、形状 .2、对称轴:平行于y 轴(或重合)的直线记作 .特别地,y 轴记作直线0=x .3、顶点坐标:( )4、增减性(1)当0>a 时当 时,随的增大而 ; 当 时,随的增大而 ; 当 时,有最小值(2)当 0<a 时 当 时,y 随x 的增大而 ; 当 时,y 随x 的增大而 ; 当 时,y 有最大值知识点三、二次函数解析式的表示方法1、一般式: (a ,b ,c 为常数,0a ≠);2、顶点式: (a ,h ,k 为常数,0a ≠);3、两点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的 坐标) 知识点四:二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标 ;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2b x a <-2b x a>-2b x a=-2b x a <-2b x a>-2b x a =-2平移规律:知识点五、二次函数与一元二次方程的关系1、二次函数y=ax²+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax²+bx +c=0的解。

2、二次函数y=ax2+bx+c 的图象和x 轴交点有三种情况:(1)有两个交点 ⇔ b 2 -4ac > 0(2)有一个交点 ⇔ b 2 -4ac =0(3)没有交点 ⇔ b 2 -4ac <0若抛物线y=ax2+bx+c 与x 轴有交点,则 b 2 -4ac ≥03、 抛物线y=ax²+bx+c 的图像与y 轴一定相交,交点坐标为 .二、基础再现(活动一)1.二次函数y=-2(x-3)²-5 的图象开口方向 ,顶点坐标是 ,对称轴是 .2.已知抛物线y=-2(x+3)²+5,如果y 随x 的增大而减小,那么x 的取值范围是_______.3.二次函数 的对称轴是x=2,则b=_______.4、抛物线y=x 2-2x-3,当x 为 时,函数的最小值是 .5、若抛物线y=x 2-2x-3 与x 轴分别交于A 、B 两点,则AB 的长为_________.6、(2016•丹阳模拟)抛物线的图象如图,则它的函数表达式是 .当x 时,y >0(活动二)7. 把二次函数 的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,则新图象所表示的二次函数的解析式是 ( )A. ()522+--=x yB. ()522++-=x y C. ()522---=x y D. ()522-+-=x y【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位23y x bx =++x y -=28、要从抛物线 y=2x²得到y=2(x-1)²+3的图象,则抛物线必须( )A 、向左平移1个单位,再向下平移3个单位;B .向左平移1个单位,再向上平移3个单位;C .向右平移1个单位,再向下平移3个单位;D .向右平移1个单位,再向上平移3个单位.9、已知二次函数y=kx²-7x-7的图象和x 轴有交点,则k 的取值范围是( )A 、k >47-B 、k≥47- 且k ≠0C 、 k≥47-D 、 k >47- 且k ≠0 10、已知二次函数的图象如图所示, 则下列结论中,正确的是( )A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<011、如图,二次函数y=ax 2+bx+c 的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc<0B.2a+b<0C.a-b+c<0D.4ac-b 2<0三、综合运用(活动三)12、(2010广东)已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).求出b ,c 的值,并写出此二次函数的解析式.2y ax bx c =++13、(2016•东莞二模)如图,已知直线 y=21x+ 27 与x 轴,y 轴分别相交于B ,A 两点,抛物线y=ax 2+bx+c 经过A ,B 两点,且对称轴为x=﹣3,求A ,B 两点的坐标,并求抛物线的解析式.四、能力提升14、(2016•安顺)如图,抛物线经过A (﹣1,0),B (5,0),C (0 , 25 )三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.五、回顾小结。

二次函数知识点归纳(导学案)

二次函数知识点归纳(导学案)

函数专题复习 —— 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如 的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而 可以为零.二次函数的定义域(自变量取值范围)是 . 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是 ,右边是关于自变量x 的 ,x 的最高次数是 .⑵ a b c ,,是常数,a 是 ,b 是 ,c 是 . 例:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:例1:抛物线3)2(2+-=x y 的对称轴是( )A. 直线3-=xB. 直线3=xC. 直线2-=xD. 直线2=x例2:抛物线322+-=x x y 的对称轴是 例3:二次函数322+-=x x y 的最小值是( )A. 1B. 2C. 3 D .-2三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数基础上“h 值正 移,h 值负 移;k 值正 移,k 值负 移”.概括成八个字“ 加 减, 加 减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上平移m 个单位,c bx ax y ++=2变成向下平移m 个单位,c bx ax y ++=2变成⑵c bx ax y ++=2沿X 轴平移:向左平移m 个单位,c bx ax y ++=2变成向右平移m 个单位,c bx ax y ++=2变成例1:把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A. 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中h = ,k = .例1:将二次函数322+-=x x y 配方成k h x y +-=2)(的形式,则y =______________________五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点: , , , , . 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口 ,对称轴为 ,顶点坐标为 . 当2b x a <-时,y 随x 的增大而 ;当2b x a >-时,y 随x 的增大而 ;当2bx a =-时,y 有最小值 . 2. 当0a <时,抛物线开口 ,对称轴为 ,顶点坐标为 . 当2b x a <-时,y 随x 的增大而 ;当2b x a >-时,y 随x 的增大而 ;当2b x a=-时,y 有最大值 . 七、二次函数解析式的表示方法1. 一般式: (a ,b ,c 为常数,0a ≠);2. 顶点式: (a ,h ,k 为常数,0a ≠);3. 交点式: (0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). (也称两根式) 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点 即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a : 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口 ,a 的值越大,开口 ,反之a 的值越小,开口 ; ⑵ 当0a <时,抛物线开口 ,a 的值越小,开口 ,反之a 的值越大,开口 .总结起来,a 决定了抛物线开口的 ,a 的 决定开口方向, 的大小决定开口的大小. 2. 一次项系数b : 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a -<,即抛物线的对称轴在y 轴 侧;当0b =时,02ba -=,即抛物线的对称轴就是 ; 当0b <时,02ba->,即抛物线对称轴在y 轴的 侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴 侧;当0b =时,02ba-=,即抛物线的对称轴就是 ; 当0b <时,02ba-<,即抛物线对称轴在y 轴的 侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c : ⑴ 当0c >时,抛物线与y 轴的交点在x 轴 方,即抛物线与y 轴交点的纵坐标为 ;⑵ 当0c =时,抛物线与y 轴的交点为坐标 ,即抛物线与y 轴交点的纵坐标为 ; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴 方,即抛物线与y 轴交点的纵坐标为 . 总结起来,c 决定了抛物线与y 轴交点的位置.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用 ;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用 ;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用 ;4. 已知抛物线上纵坐标相同的两点,常选用 .例1 二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例2 已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,• 则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b =0;④当y=-2时,x 的值只能取0. 其中正确的个数是( )A .1个B .2个C .3个D .4个例3请你写出函数2)1(+=x y 与12+=x y 具有的一个共同性质:_____ __________.例4已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.例5已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )A. 042>-ac bB. 042=-ac bC. 042<-ac bD. ac b 42-≤0例6二次函数c bx ax y ++=2的图象如图所示,若c b a M ++=24c b a N +-=,b a P -=4,则( )A. 0>M ,0>N ,0>PB. 0<M ,0>N ,0>PC. 0>M ,0<N ,0>PD. 0<M ,0>N ,0<P 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达.1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是 ;()2y a x h k =-+关于x 轴对称后,得到的解析式是 ;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是 ;()2y a x h k =-+关于y 轴对称后,得到的解析式是 ;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是 ; ()2y a x h k =-+关于原点对称后,得到的解析式是 ;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是 ;()2y a x h k =-+关于顶点对称后,得到的解析式是 .5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当 时的特殊情况。

九年级数学《二次函数》单元复习(导学案)

九年级数学《二次函数》单元复习(导学案)

九年级数学《二次函数》单元复习(导学案)复习目标:1.体会二次函数的意义,理解二次函数的有关概念.2.会运用配方法确定二次函数的图象的顶点、开口方向和对称轴,并会确定最值.3.会运用待定系数法求二次函数的解析式.4.能根据图象判断二次函数a、b、c的符号及一些特殊方程或不等式是否成立.5.会将实际问题转化为函数问题,并利用函数的性质进行决策.一、基础知识归类和整理1.二次函数的概念及图象特征:(1)二次函数:如果 ,那么y叫做x的二次函数,图象是线(2)二次函数顶点式:通过配方y=ax²+bx+c可写成 ,它的图象是以直线为对称轴,以为顶点的一条抛物线。

a值函数的图象及性质a>0 (1)开口向上,并向上无限伸展;(2)当时,函数有最小值当时,y随x的增大而减小;当时,y随x的增大而增大.a<0 (1)开口向下,并向下无限伸展;(2)当时,函数有最大值当时,y随x的增大而增大;当时,y随x的增大而减小.3.二次函数图象的平移规律:y=ax²⟺y=ax²+k ⟺y=a(x+h)²+k,抛物线y=ax²+bx+c(a≠0)可由抛物线y=ax²(a≠0)平移得到.由于平移时,抛物线上所有的点的移动规律都相同,所以只需研究其顶点移动的情况,因此有关抛物线的平移问题,需要利用二次函数的顶点式来讨论。

4.二次函数解析式的确定:用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立的条件,根据不同的条件选择不同的设法:(1)设一般形式: ;(2)设顶点形式: ;(3)设交点式: 。

a 的作用决定开口方向a>0开口 ;a<0开口 决定开口的大小 ︳a| 越大,抛物线的开口b 的作用b 与a 同号ab2-<0,顶点在y 轴的 侧 b 与a 异号ab2->0,顶点在y 轴的 侧 顶点在y 轴上c 的作用 c>0抛物线与y 轴的交点在y 轴的 c<0 抛物线与y 轴的交点在y 轴的c=0 抛物线过 点 b ²-4ac b ²-4ac>0抛物线与x 轴有 交点 b ²-4ac<0 抛物线与x 轴有 交点 b ²-4ac=0抛物线与x 轴有 交点解决实际应用问题的关键是选准变量,建立好二次函数模型,同时还要注意符合实际情景。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数复习导学案(第1课时)复习要点:1.能用表格、关系式、图象表示变量之间的二次函数关系,并能根据具体问题,选取适当的方法表示变量之间的二次函数关系;2.能作二次函数的图象,并能根据图象对二次函数的性质进行分析,并逐步积累研究一般函数性质的经验;3.能根据二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。

一、二、知识点回顾知识点1、二次函数的定义:一般地,形如(a,b,c是常数,a≠ 0)的函数叫做x的二次函数. 练习1:下列函数中哪些是二次函数?()①y=ax²+bx+c②y=2x²③y=-5x²+6 ④y=(x+1)(x-2) ⑤y=2x(x+1)²-2x²⑥y=232--xx⑦xy2=⑧26xy=知识点2、二次函数的图象与性质(一)抛物线y = ax 2(a≠0) 的图象特点增减性:(二)抛物线y = ax 2+k(a≠0) 的图象特点增减性:知识框架二次函数定义图象相关概念抛物线对称轴顶点性质和图象开口方向、对称轴、顶点坐标增减性解析式的确定一般式y=ax2+bx+c顶点式y=a(x-h)2+k交点式y=a(x-x1)(x-x2)关联二次函数与一元二次方程的关系(三)抛物线y = a(x-h)2 ( a≠0 ) 的图象特点增减性:(四) 抛物线y = a(x-h)2 +k(a≠0) 的图象特点增减性:(五)二次函数y=ax2+bx+c(a≠0)的图象和性质练习2.二次函数的图象和性质练习(1)抛物线y =x2的开口向,对称轴是,顶点坐标是,图象过第象限;(2)已知y = -nx2(n>0) , 则图象( )(填“可能”或“不可能”)过点A(-2,3)。

(3)抛物线y =x2+3的开口向,对称轴是,顶点坐标是,是由抛物线y =x2向平移个单位得到的;(4)已知抛物线y = ax2+k的图象,过A (0,-2) 和B (2,0) ,则a = ,k = ;函数关系式是y= 。

(5)抛物线y=2(x -0.5)2+1 的开口向, 对称轴, 顶点坐标是(6)若抛物线y=a(x+m) 2+n开口向下,顶点在第四象限,则a0, m0, n0。

(7)若无论x取何实数,二次函数y=ax2+bx+c的值总为负,那么a、c应满足的条件是()A.a>0且b2-4ac≥0B.a>0且b2-4ac>0C.a<0且b2-4ac<0D.a <0且b2-4ac≤0A B xyOC(8).已知二次函数y =ax 2+bx +c 的图象如图所示,请根据图象判断下列各式的符号:a 0 ,b 0, c 0 ,∆ 0 , a -b +c 0,a +b +c 0(9)函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象大致是( )4.已知二次函数y =ax 2+bx +c 中a >0,b <0,c <0,请画一个能反映这样特征的二次函数草图. 知识点3、二次函数解析式的三种表示方式1、已知抛物线上的三点,通常设解析式为________________2、已知抛物线顶点坐标(h , k ),通常设抛物线解析式为_______________3、已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________练习3:1、已知二次函数y =ax 2+bx +c 的最大值是2,图象顶点在直线y =x +1上,并且图象经过点(3,-6)。

求a 、b 、c 。

2、已知抛物线y =ax 2+bx +c 与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C 。

若OA =4,OB =1,∠ACB =90°,求抛物线解析式。

3、已知二次函数y =ax 2-5x +c 的图象如图。

(1)、当x 为何值时,y 随x 的增大而增大; (2)、当x 为何值时,y <0。

(3)、求它的解析式和顶点坐标;课后练习1.下列各式中,y 是x 的二次函数的是 ( )A . 21xy x += B . 220x y +-= C . 22y ax -=- D . 2210x y -+= 2.已知抛物线342++=x x y ,请回答以下问题:⑴ 它的开口向 ,对称轴是直线 ,顶点坐标为 ; ⑵ 图象与x 轴的交点为 ,与y 轴的交点为 。

3.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),拋物线对称轴是( ) A .x =4 B . x =3 C . x =-5 D . x =-1。

4.抛物线122+--=m mx x y 的图象过原点,则m 为( ) A .0B .1C .-1D .±15.把二次函数122--=x x y 配方成顶点式为( ) A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x yD .2)1(2-+=x y6.若反比例函数xk y =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为7.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 . 8.对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 .9.抛物线23x y =的图象向右移动两个单位,再向下移动一个单位,它的顶点坐标是 ,对称轴是 解析式是 ;10.如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A (-1,0)、点B (3抛物线交于B 、C 两点。

⑴二次函数的解析式为.⑵当自变量x时,两函数的函数值都随x 增大而增大.⑶当自变量时,一次函数值大于二次函数值.⑷当自变量x 时,两函数的函数值的积小于0. 5.抛物线122+-=x x y 则图象与x 轴交点为 ( )A . 二个交点B . 一个交点C . 无交点D . 不能确定6.在同一直角坐标系中,函数b ax y -=2与)0(≠+=ab b ax y 的图象大致如图 ( )7ax①0<++c b a ;② 0>+-c b a ; ③0<abc ; ④a b 2=;⑤,△0<正确的个数是 ( )A 4 个B 3个C 2 个D 1个二次函数复习导学案(第2课时)复习要点:1.能利用二次函数解决实际问题,如:最大利润问题、最大高度问题、最大面积问题等.会通过建立坐标系来解决实际问题2.理解一元二次方程与二次函数的关系,并能利用二次函数的图象,求一元二次方程的近似解.一、二次函数的应用常见类型1、最大值问题:(1)\最大利润问题例1:某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?自我检测:某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式;(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?(2)、最大高度问题例2:竖直向上发射物体的h(m)满足关系式y=-5t2+v0t,其中t(s)是物体运动的时间,v0(m/s)是物体被发射时的速度.某公园计划设计园内喷泉,喷水的最大高度要求达到15m,那么喷水的速度应该达到多少?(结果精确到0.01m/s).(3)\最大面积问题例3:如图,假设篱笆(虚线部分)的长度是15m,如何围篱笆才能使其所围成矩形的面积最大?例4.如图小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的宽AD究竟应为多少米才能使花圃的面积最大?二、通过建立坐标系来解决实际问题例题5、一位运动员在距篮下4m处起跳投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,球达到最大高度3.5m,已知篮筐中心到地面的距离3.05m , 问球出手时离地面多高时才能中?例题6、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m后,水面的宽度是多少?(结果精确到0.1m).三、二次函数与一元二次方程二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac 有两个交点有一个交点没有交点例7:一个足球从地面向上踢出,它距地面的高度h (m )可以用公式 来表示.其中t (s )足球被踢出后经过的时间,图象如图所示:(1)当t =1和t =2时,足球的高度分别是多少?(2)方程 的根的实际意义是什么?你能在图象上表示出来吗?(3)方程 的根的实际意义是什么?你能在图象上表示出来吗?课后练习1.函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( ) A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且2.二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( )A .4个B .3个C .2个D .1个3.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( ) A . 1-<m B . 1<m C . 1->m D . 2->m 4.关于02=--n x x 没有实数根,则n x x y --=2的图象的顶点在( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 5.已知函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .47->k B .047≠-≥k k 且 C .47-≥k D .047≠->k k 且 6.已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:x… 1- 0 1 3 … y…3-131…则下列判断中正确的是( )A .抛物线开口向上B .方程02=++c bx ax 的正根在3与4之间C .当x =4时,y >0D .抛物线与y 轴交于负半轴 7.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物 线状(抛物线所在的平面与墙面垂直,如图5,如果抛物线的最高 点M 离墙1m ,离地面340m ,则水流落地点B 离墙的距离OB 是( ) A .2 m B .3 m C .4 m D .5 mt t h 6.199.42+-=06.199.42=+-t t 7.146.199.42=+-t t AM O8.已知抛物线cbxxy++=2与y轴的正半轴交于点A,与x轴的正半轴交于B、C两点,且BC=2,S△ABC=3,则b= ,c= .9.二次函数y=x2+4x+a的最大值是2,则a的值是()10. 直线y=3与抛物线y=-x2+8x-12的两个交点坐标分别是A()、B()11.如图3所示,二次函数342+-=xxy的图象交x轴于A、B点,交y轴于C点,则△ABC的面积为.12.某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y (件)与销售单价x(元)之间可近似的看作一次函数:50010+-=xy(1)李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(2)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?13、如图,抛物线y=21x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.(4)点P是x轴下方抛物线上的任意一个点,连接PC,PB当△PBC面积最大时求点P的坐标,并求出△PBC面积的最大值图3。

相关文档
最新文档