等比数列教学设计人教课标版(实用教案)

合集下载

等比数列教学设计方案

等比数列教学设计方案

一、教学目标1. 知识与技能:理解等比数列的概念,掌握等比数列的通项公式、求和公式及其性质。

2. 过程与方法:通过观察、归纳、类比等方法,培养学生分析问题和解决问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力和创新精神。

二、教学重难点1. 教学重点:等比数列的概念、通项公式、求和公式及其性质。

2. 教学难点:等比数列的性质及应用。

三、教学过程(一)导入1. 展示生活中的实例,如银行存款利息、股票收益等,引导学生关注数列问题。

2. 提问:如何描述这个数列的变化规律?引导学生思考并总结。

(二)新课讲解1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的规律。

2. 等比数列的通项公式:推导等比数列的通项公式,让学生掌握通项公式的推导过程。

3. 等比数列的求和公式:介绍等比数列的求和公式,并讲解公式的推导过程。

4. 等比数列的性质:列举等比数列的性质,如首项、公比、项数等之间的关系,让学生了解等比数列的性质。

(三)课堂练习1. 基本练习:巩固学生对等比数列概念、通项公式、求和公式及性质的掌握。

2. 应用练习:结合实际问题,让学生运用等比数列知识解决问题。

(四)课堂小结1. 总结本节课所学内容,强调等比数列的概念、通项公式、求和公式及性质。

2. 引导学生思考等比数列在实际生活中的应用。

(五)课后作业1. 完成课后练习题,巩固所学知识。

2. 查阅资料,了解等比数列在科技、经济、社会等领域的应用。

四、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与程度和回答问题的准确性。

2. 作业完成情况:检查学生对等比数列知识的掌握程度。

3. 实际应用:关注学生在实际生活中运用等比数列知识解决问题的能力。

五、教学反思1. 教学过程中,注重启发学生思考,引导学生自主探究等比数列的性质。

2. 适当增加课堂练习,提高学生对等比数列知识的掌握程度。

3. 关注学生在实际生活中的应用,提高学生的数学素养。

《等比数列》教案

《等比数列》教案

《等比数列》教案教案主题:等比数列教学目标:知识目标:了解等比数列的定义及性质,学会计算等比数列的通项公式、求和公式和特殊数列的和;能力目标:能够应用等比数列解决实际问题;情感目标:培养学生对数学的兴趣,锻炼学生的逻辑思维和解决问题的能力。

教学重难点:重点:等比数列的定义及性质,通项公式和求和公式;难点:应用等比数列解决实际问题。

教学过程:一、导入(10分钟)1.引入:请几位同学分别报一下名和前一个同学的名,然后问一下大家的感受。

将同学们的名字按照报名的顺序写在黑板上。

2.提问:同学们,你们注意到什么规律了吗?(学生回答)3.导入:根据同学们的回答,我们可以发现同学们的名字是按一定规律排列的,这就是等比数列的规律。

我们在数学上把这种按照其中一定规律排列的数叫做数列。

那么,你们知道等比数列的定义是什么吗?二、概念解释(15分钟)1.出示等比数列的定义,让学生依次读出来。

2.板书:等比数列的通项公式.3.让学生回答等比数列的通项公式,然后解释通项公式的含义和作用。

三、计算通项公式(15分钟)1.出示一个等比数列的前几项,让学生观察,看出规律。

2.引导学生发现,每一项与前一项的比值是一个常数。

3.板书:等比数列的通项公式。

然后讲解各个符号的含义。

4.计算几个例子,让学生理解和掌握。

四、计算等比数列的前n项和(15分钟)1.引导学生思考等比数列的前n项之和怎么求。

2.板书等比数列的前n项和公式,然后讲解各个符号的含义。

3.计算几个例子,让学生掌握。

五、应用题(25分钟)1.练习题:出示一些等比数列的应用题,要求学生独立解答。

2.课堂讨论,让学生交流解题方法和答案。

3.点拨分析,解释一些重要的解题方法和思路。

六、课堂小结(10分钟)1.总结:回顾本节课的内容,复习等比数列的定义、通项公式和求和公式。

2.出示一道综合应用题,让学生综合运用所学知识进行解答。

七、课后作业(5分钟)1.布置课后作业:完成作业册中的相关练习题。

等比数列教案设计

等比数列教案设计

等比数列教案设计教案设计:等比数列一、教学目标:1.掌握等比数列的定义及性质;2.理解等比数列的通项公式和求和公式;3.能够应用等比数列解决实际问题。

二、教学重难点:1.理解等比数列的概念和性质;2.掌握等比数列的通项公式和求和公式。

三、教学过程:1.导入(5分钟)教师通过提出以下问题导入课题:A.如何判断一个数列是等比数列?B.等比数列有哪些性质?C.等比数列的通项公式和求和公式分别是多少?2.引入(10分钟)通过举例子引入等比数列的定义和性质,并进行解释。

如:例1:1,2,4,8,16,…例2:-5,10,-20,40,-80,…通过对比这两个例子,我们可以总结出等比数列的定义:从第二项开始,每一个项都等于它前面一个项乘以同一个非零常数r,这个常数r称为等比数列的公比。

3.探究(20分钟)通过让学生观察一些等比数列的计算过程,来引导学生发现等比数列的通项公式和求和公式。

A.观察以下等比数列:2,6,18,54,…1)列出每一项与前一项的比值:3,3,3,…2)列出每一项与第一项的比值:2,6/2=3,18/2=9,54/2=27,…通过观察我们可以发现,每一项与第一项的比值都等于公比的n-1次方,即,在等比数列2,6,18,54,…中,第n项an=2 * 3^(n-1)。

B.通过类似的方式可以引导学生发现等比数列的求和公式。

如:1)观察以下等比数列:1,2,4,8,…2)列出每一项与前一项的比值:2,2,2,…通过观察我们可以发现,前n项和Sn=1*(2^n-1)/(2-1)。

4.巩固(15分钟)通过让学生做一些练习题,来巩固学生对等比数列的掌握程度。

A.选择题:①下列数列是等比数列的是:A.1,1,2,3,5,…B.2,4,8,16,32,…C.1,2,4,8,16,…D.0,1,1,2,3,…②下列等比数列的公比是多少?A.1,2,4,8,…B.1,-2,4,-8,…C.1,-1,1,-1,…D.-1,-2,-4,-8,…B.计算题:③求等比数列3,6,12,24,…的第5项。

高三数学《等比数列》教学设计[推荐五篇]

高三数学《等比数列》教学设计[推荐五篇]

高三数学《等比数列》教学设计[推荐五篇]第一篇:高三数学《等比数列》教学设计作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

教学设计应该怎么写才好呢?下面是小编为大家收集的高三数学《等比数列》教学设计,仅供参考,希望能够帮助到大家。

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:一.复习准备1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课引入:1“一尺之棰,日取其半,万世不竭。

”2细胞分裂模型3计算机病毒的传播由学生通过类比,归纳,猜想,发现等比数列的特点进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。

当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?4以及等比数列和指数函数的`关系5是后一项比前一项。

列:1,2,(略)小结:等比数列的通项公式三.巩固练习:1.教材P59练习1,2,3,题2.作业:P60习题1,4。

第二课时5.2.4等比数列(二)教学重点:等比数列的性质教学难点:等比数列的通项公式的应用一.复习准备:提问:等差数列的通项公式等比数列的通项公式等差数列的性质二.讲授新课:1.讨论:如果是等差列的三项满足那么如果是等比数列又会有什么性质呢?由学生给出如果是等比数列满足2练习:如果等比数列=4,=16,=?(学生口答)如果等比数列=4,=16,=?(学生口答)3等比中项:如果等比数列.那么,则叫做等比数列的等比中项(教师给出)4思考:是否成立呢?成立吗?成立吗?又学生找到其间的规律,并对比记忆如果等差列,5思考:如果是两个等比数列,那么是等比数列吗?如果是为什么?是等比数列吗?引导学生证明。

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。

等比数列教案设计

等比数列教案设计

一、教学目标1. 知识与技能:理解等比数列的定义,掌握等比数列的通项公式和求和公式,能够运用等比数列解决实际问题。

2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

二、教学重点与难点1. 教学重点:等比数列的定义,通项公式和求和公式。

2. 教学难点:等比数列求和公式的推导和应用。

三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。

2. 学具准备:笔记本、笔。

四、教学过程1. 导入新课:利用多媒体课件展示等比数列的实例,引导学生观察、思考,引出等比数列的概念。

2. 自主学习:学生自主探究等比数列的定义,教师巡回指导,解答学生疑问。

3. 课堂讲解:讲解等比数列的通项公式和求和公式,并通过例题演示如何运用这些公式解决问题。

4. 课堂练习:布置练习题,让学生独立完成,教师选取部分学生的作业进行点评。

5. 小组讨论:学生分组讨论等比数列的性质,总结规律,教师参与讨论,给予指导。

6. 课堂小结:总结本节课的主要内容,强调等比数列的定义、通项公式和求和公式的运用。

7. 课后作业:布置课后作业,巩固本节课所学内容。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

关注学生在学习过程中遇到的困难和问题,及时给予解答和指导。

六、教学目标1. 知识与技能:理解等比数列的性质,包括公比的概念,能够判断一个数列是否为等比数列。

2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

七、教学重点与难点1. 教学重点:等比数列的性质,公比的概念。

2. 教学难点:判断一个数列是否为等比数列的方法。

八、教学准备1. 教具准备:黑板、粉笔、多媒体课件。

等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。

授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。

教学难点:等比数列通项公式的探求。

教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。

等比数列教案

等比数列教案等比数列教案篇一一、概述教材内容:等比数列的概念和通项公式的推导及简单应用教材难点:灵活应用等比数列及通项公式解决一般问题教材重点:等比数列的概念和通项公式二、教学目标分析1、知识目标掌握等比数列的定义理解等比数列的通项公式及其推导2.能力目标(1)学会通过实例归纳概念(2)通过学习等比数列的通项公式及其推导学会归纳假设(3)提高数学建模的能力3、情感目标:(1)充分感受数列是反映现实生活的模型(2)体会数学是来源于现实生活并应用于现实生活(3)数学是丰富多彩的而不是枯燥无味的三、教学对象及学习需要分析1、教学对象分析:(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。

并掌握了函数及个别特殊函数的性质及图像,如指数函数。

之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

(2)对归纳假设较弱,应加强这方面教学2、学习需要分析:四。

教学策略选择与设计1、课前复习(1)复习等差数列的概念及通向公式(2)复习指数函数及其图像和性质2.情景导入等比数列教案篇二【教学目标】知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。

能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。

情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。

【教学重点】等比数列定义的归纳及运用。

【教学难点】正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列【教学手段】多媒体辅助教学【教学方法】启发式和讨论式相结合,类比教学。

【课前准备】制作多媒体课件,准备一张白纸,游标卡尺。

【教学过程】复习回顾:等差数列的定义。

人教版数学必修五《等比数列》教学设计

人教版数学必修五《等比数列》教学设计等比数列(第一课时)教学设计教材分析:等比数列是一种特殊的数列,它有着非常广泛的实际应用:如存款利息、购房贷款、资产折旧等一些计算问题.教材将等比数列安排在等差数列之后,有承前启后的作用.一方面与等差数列有密切联系,另一方面为进一步学习数列求和等有关内容做好准备.学情分析:学生已经学习了等差数列,对特殊数列的定义及性质研究方法有一定的基础和研究能力,但对等比数列变化规律还不了解。

从教学经验上看,学生在等比数列的计算上能力欠缺。

设计理念:长期以来的课堂教学太过于重视结论,轻视过程.为了应付考试,为了使公式定理应用达到所谓“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化.在概念公式的教学中往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策.数学是思维的体操,是培养学生分析问题,解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受,必须让学生有追求过程的体验.基于以上原因,在设计本节课时,我考虑的不是简单地告诉学生等比数列的定义及其通项公式,而是将内容按照“问题情境——学生活动——数学建构——数学运用——回顾反思”的顺序展开,通过列举生活中的大量实例,给出等比数列的实际背景,让学生自己去发现,去探索其意义,公式.从发现等比数列定义及通项公式的过程中让学生体会到:有些看似陌生的知识并不都是高不可攀的事情,通过我们的努力,也可以做一些看似数学家才能完成的事.在这个过程中,学生在课堂上的主体地位得到充分发挥,极大地激发了学生的学习兴趣,也提高了他们提出问题,解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念.教学目标:A.知识目标:理解等比数列的概念,推导并掌握通项公式.B.能力目标:(1)通过公式的探索,发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力.(2)通过通项公式的探求过程,培养学生用不完全归纳法去发现并解决问题的能力.C.情感目标:(1)公式的发现反映了普遍性寓于特征性之中,从而使学生受到辨证唯物主义思想的熏陶.(2)通过对等比数列概念的归纳,进一步培养学生严密的思维习惯以及实事求是的科学态度.(3)培养学生勇于探索、善于猜想的学习态度,调动学生主动参与课堂教学的积极性,增强学生学好数学的心理体验,产生热爱数学的情感.教学重点、难点:等比数列的定义、通项公式的推导;通项公式的初步应用.教学方法:发现式教学法,类比分析法.教学过程:一、问题情境首先请同学们看以下几个事例:(电脑显示)情境1:国王奖赏国际象棋发明者的事例,发明者要求:在第1个方格放1颗麦粒,在第2个方格上放2颗麦粒,在第3个方格上放4颗麦粒,在第4个方格上放8颗麦粒,依此类推,直到第64个方格子.国王能否满足他的要求呢?情境2:“一尺之棰,日取其半,万世不竭.”情境3:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价格依次为多少?问题1:上述例子可以转化为什么样的数学问题?问题2:上述例子有何共同特点?二、学生活动通过观察、联想,发现:1、上述例子可以与数列联系起来.(有了等差数列的学习作基础)2、得到以下3个数列:①1,2, 22,, 632②111,,,24, 12n,③36,36×0.9, 36×0.92,, 36×0.9n,通过讨论,得到这些情境的共同特点是从第二项起,每一项与它前面一项的比都相等(等于同一个常数).三、数学建构1、问题:①②③这样的数列和等差数列一样是一类重要的数列,谁能试着给这样的数列取个名字?(学生通过联想、尝试得出最恰当的命名)等比数列2、归纳总结,形成等比数列的概念.一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比.(引导学生经过类比等差数列的定义得出)评注:对于等比数列,你想对它作些什么研究呢?问题是怎样产生的?这是数学教学中的一个重要问题。

人教版高中数学必修《等比数列》教学设计

等比数列(第一课时)【教材分析与学情分析】1.教材的地位和作用:《等比数列》是人教A版高中数学教材必修模块五第二章第四节的第一课时.。

其主要内容是等比数列的概念、通项公式和性质。

有利于进一步提高学生对数列的通项公式的认识,加强对数学规律性的探讨,从而提高学生观察、分析、猜想、归纳的综合思维能力。

2.教材的处理:高二上学期的学生,已经具有学习高中数学的基本思路和方法,根据本节内容,我将《等比数列》安排了2节课时。

本节课是第一课时。

根据目前学生的知识结构状况,为激发学生的学习热情,提高学生的学习效率,我从问题出发引出本节课要探究的问题,之后,再由学生自学、互学、交流和练习巩固等,由浅入深,由低到高地设置了不同层次的问题,逐步加深学生对等比数列及其通项公式的理解,初步掌握等比数列的常规问题的解答思路和技巧。

为此,我对教材的例题、练习做了适当的补充和修改。

3.学情分析:知识结构:学生在前两节已经学习了数列的概念、通项公式、等差数列的概念、通项公式的性质和等差数列的前n项和等,具备了这节课的预备知识。

能力方面:已具有研究数列问题的基本思路和方法,并有找数列的通项公式经验,这种经验完全可以迁移到对等比数列的研究中,在教师的指导下能力目标不难达到。

情感方面:这级学生高二上学期已具备较强的数学参与意识、自主探究意识,对表现自身价值的学习素材比较感兴趣。

【课型】新授课【教学准备】多媒体设备,纪录片“九个孩子的学校”片段,四封信件【教学重点】等比数列的定义、通项公式和等比中项。

解决的办法是:归纳类比。

【教学难点】等比数列的定义及通项公式的深刻理解。

要突破这个难点,关键在于紧扣定义、类比等差数列的相关知识,来发现等比数列的一些性质。

【教学方法】自主探究,合作探究【教学目标】1、通过实例,理解等比数列的概念通过从丰富实例中抽象出等比数列的模型,使学生认识到这一类型数列也是现实世界中大量存在的数列模型;同时经历由发现几个具体数列的等比关系,归纳等比数列的定义的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计案例一《等比数列(第课时)》教学设计提纲:.教学任务分析学情分析教材分析教材地位和作用教学任务和目标教学重点和难点.教材教法和学法分析教材的处理教材的教法和手段教材的学法教学基本流程.教学情境设计等比数列的定义通项公式的推导例题讲解总结与作业布置.板书设计.教学设计反思设计反思教学反思《等比数列(第课时)》.教学任务分析学情分析本节课的授课对象是我校学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。

因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。

教材分析教材地位和作用所用的教材是人教版《必修》,教材通过日常生活中的实例,讲解等比数列的概念,特别地要体现它是一种特殊函数,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。

等比数列的定义与通项不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一,为培养学生思维的灵活性和创造性打下坚实的基础。

同时本节课是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前项和公式的基础上,开始学习另一种常用数列,即等比数列的相应知识,我认为本节教材对于进—步渗透数学思想,发展逻辑思维能力,提高学生的品质素养均有较好作用。

众所周知,数列是中学数学的重点内容之一,也是高考的考查重点之一,其中等差数列和等比数列尤为重要,有关数列的问题,大多数都是归结为这两种基本数列加以解决的:而且这两途中数列在实际问题中有着广泛的应用,这说要求教学中高度重视,并有新的突破,拓展和引深。

教学任务和目标教学任务分析:通过观察、归纳、猜想、类比等思维品质,正确理解等比数列的定义、等比数列通项公式。

以及具体的知识运用及实际应用。

本堂课内容的编者按:首先注意前后知识的区别与联系,加强对比和类比,展示等比数列概念的形成和和指数函数的对应等深化过程,使得后进生部有发言权,优生也不乏味,从而达到面向全体的目的,激发学生学习数学兴趣。

其次体会研究等比数列通项公式简单归纳方法:特殊→一般,重温数学家发现数学概念和数学公式的思维活动过程,沿着数学家寻求真理的足迹,再现与前人类似的创造过程。

教学目标:知识目标:理解并掌握等比数列的定义和通项公式,并加以初步应用。

能力目标:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。

品质素养目标:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。

教学重点和难点教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。

教学难点是:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。

.教材教法和学法分析教材的处理鉴于学生已基本上掌握数列概念,等差数列概念及通项公式(有利因素),但于由学生对教师,书本对于依赖,独立探索的信心和能力尚显不足(不利因素),故应稀释、放大、拉长等比数列概念的形成,展示深代过程和通项公式的推导过程,体现过程教学法。

讲完课本例、例,例,把等比中项的概念安排到第二课时教学。

本节着重体现等比数列概念形成的过程及通项公式的推导与运用。

教材的教法和手段教材教法:遵循“教为主导,学为主体,练为主线”的教育思想,我所采用的教学方法主要是启发引导探究法,并以讨论法,讲授法相佐。

具体表现为:教师边展示,边讲解,边提问;学生边观察,边思考,边回答,整堂课既要充分体现教师的主导作用,“导演”出一台引人入胜的“好戏”,更要最大限度地发挥学生的主体作用,使“演员”能充分展示出自己的“表演才华”,激发学生的兴趣;培养学生的学习热情,发挥学生的主动性和创造性。

教学手段充分利用电化教学手段,采用多媒体和投影仪,加大课堂容量,有效地利用时间,提高课堂教学质量,使教学过程更直观,更紧凑。

教材的学法其一,要使学生领会和初步熟悉研究数学概念的方法和探求数学概念的一般步骤:展直观,引入概念;抓本质,理解概念;挖内涵,掌握概念;破难点,强化概念;强训练,巩固概念;拓外延,深化概念。

其二,由于等比数列与等差数列在内容上是完全平行的,故应引导学生将它们对比起来学习,以构建起自己对这两种基本数列的正确理解。

教学基本流程.教学情境设计意图:这节课我努力尝试将数学教学作为思维活动教学,在思路教学实践中采取三条途径:深钻教才,追踪数学家的思路;模拟发现,稚化教师的思路;激励探索,激活学生的思路。

使学生学得有情、有趣、有味。

具体教学过程分为复习引新、新课教学、练习反馈与总结提高三个阶段。

、复习引新问题问题设计意图师生互动、回答等差数列的定义温故而知新,承上启下师:提出问题,引导回忆生:思考并回答。

、回答等差数列的通项公式创设情境,由实例引入等比数列自主探索等比数列的通项公式类比等差数列,探求通项公式的推广创设问题,指出与指数函数的关系分析实际问题,解决相应问题回顾终结,作业布置意图:在复习上节等差数列概念及其通项公式的基础上,紧接着让学生观察三个特殊数列,分析特点,通过类比得出等比数列概念,由此引入新课,这样既复习了前面知识,又对学生进行方法论教育,从而揭开了这堂课研究等比数列的序幕。

新课教学等比数列概念的教学具体分为六个环节㈠展直观,引入概念教师:观察数列:(),,,……(),,,……(),12,14,18,……引导学生归纳其共同特点:学生:发现从第项起,每一项与它前一项的比都等于同一个常数,分别、15、12。

意图:从而很自然的引出等比数列的概念,这里应让学生自行给出等比数列的定义,它与等差炸毁列定义仅一个关键字之差。

教师:由学生讲,教师板书,写出等比数列的定义。

㈡抓本质,理解概念意图:在等比数列概念中特别要对学生指出:()等比数列实质上是“比相等”的数列,但公比是指后一项与它前一项的比值,而不是前一项与它后一项的比值。

()要正确理解常数的含义,这个常数是相对于项数而言的,也就是说这个常数与项数无关。

教师:举例:已知数列n a 的通项公式328nna ()计算1z a a ,32a a ,43a a ,54a a ()计算1n na a ()这个数列是不是等比数列?()这个数列与什么函数类似?关系是什么?学生:第(),()的答案都是,()根据定义,该数列是等比数列。

()与指数函数相似,是函数xx f 283)(的图像上自变量从开始的自然数的一系列点。

㈢挖内涵,掌握概念意图:对一个数学概念除了要充分地理解和搞清这个概念的引入,本质意义,定义式等基本要素外,还必须挖掘其更深的内涵,特别要澄清一些迷惑点和易错点。

教师:例:已知等比数列na ()1a 能不能是零?()公比能不能是零。

意图:造成上述问题迷惑的根本原因是没有真正理解和掌握等比数列的概念。

所以在教学中,教师应综观教学过程全局,把握数学概念的本质,既要正面阐述,又要反面纠错,既要居高临下,还要明察秋毫,既要防漏,更要补缺,使学生切实掌握概念。

学生:经过思考,回答首项与公比均不能为零。

㈣破难点强化概念意图:等比数列的判定和证明是一个难点,因此,通过问题的训练和辨析可以突破难点。

教师:举例:数列34,32,,, (3)32n …是否为等比数列,如时是其公比其公比是多少?若数列n a 的通项为332n na ,求证n a 是等比数列。

学生:是等比数列,公比为21,依照定义证明:当2n时,211nn a a ,所以是等比数列。

㈤强训练,巩固概念意图:数学概念只有经过学生的一定练习,不断辨析,反复纠错,才能真正理解,领会、掌握和巩固。

教师:思考:判断—列哪些说法是正确的:()如果—个公比为等比数列的各项均改为它本身的相反数,所得到的数列是否成等比数列?()如果—个等比数列的各项均改为它本身的倒数,所得到的数列是否成等比数列?()如果一个等比列的各项均改为它本身的平方,所得到的数列是否成等比数列?()如果把二个项数相同的公比不同分别为21,q q 等比数列的对应项相乘,所得到的数列是否成等比数列?学生:()是,公比为()是,公比为q1;()是,公比为2q ;()是,公比为21q q 。

㈥拓外廷·深化概念意图:许多数学慨念既有本质不同的一面,又有内在联系的一面。

既要挖掘某一概念的本身内涵,又要拓展概念的外延,对相近、相似、相关慨念采用找联系,抓区别的方法,进一步揭示概念的内涵,循序渐进,使概念掌握更加深化、精确、透切。

例如等差列、等比数列,是二个既有区别又有联系的数学概念。

通过问题的训练和辩析,可以达到等比数列等概念的进一步强化、深化、活化。

教师:思考题:()常数列是等比数列,对吗?()非零常数列既是等差列又是等比数列。

学生:()不对,常数为零的不是等比数列,非零常数列既是等差数列又是等比数列。

()对,公差为,公比为.效果:这样使在教学中,重点突出,难点分散。

这里突出了方法论的教育,教师的主导作用也充分本现,同时使课堂上做到人人参与,个个争答,眼瞄齐用,气氛热烈,于是造成学生积极思维的气氛,形成—个有利于概念教学,启发思维的课堂情境,达到本课堂的第一次高潮。

等比数列通项公式的推导观察,归纳,猜想。

意图:通项公式是定义的自然延伸,老师及时引导并启发:在—个等比数列里,从第二项起,每一项与它的前一项的比都等于公式,所以每一项都等于它的前一项乘以公比。

让学生从首项起,写出,,…,让学生进行观察、归纳,猜想出等比数列的通项公式。

真正做到授之鱼不如授之以渔。

教师:如果一个等比数列的首项为,公比为,请写出这个数列的前项,且归纳出其通项公式。

学生:等比数列,,,…的公比为,那么23211()a a q a q a q234311()a a qa q a q ,等比数列n a 的通项公式是11n n qa a 教师:以上的方法是不完全归纳法,证法是不严密的,只能适用于探究与猜想,不能作为证明的根据。

能否用严密的推理来论证呢?意图:刺激学生的求知欲。

演绎推理论证意图:这时教师要鼓励学生根据问题的起因和内部联系的条件,自由思考,大胆设想别的推导方法,例如,可引导学生围绕等比数列的基本概念,从等比数列的定义出发,运用各式相乘,来导出公式(演绎法),有时学生难以想到的路,教师可以为学生架座桥,当然也可以直接让学生完成。

教师:设,,…是公比为的等比数列,则由定义得:21a q a ……………………………………()32a q a ……………………………………()……………1n na q a ……………………………………()问:结合求等差数列的通项公式的方法,如何求得等比数列的通项公式?学生:以上各式相乘得11n n a qa ,即11n n a a q教师:()问等比数列中任意两项n m a a ,之间的关系式是什么?能否得到更一般的通项公式?意图:乘胜追击,直捣黄龙。

相关文档
最新文档