陀螺定向测量

合集下载

陀螺仪标准基线定向测量方法

陀螺仪标准基线定向测量方法
a°c的定向可直接由一等天文观测获得其真北 方位角值;Sc的真北方位角值以aoc值为基础,外加
第2期
许文媳,等:陀螺仪标准基线定向测量方法
81
高精度角度测量获得。 装置中平行光管C是定制的标准器,焦距/ =
550 nnn,可提供稳定的、接近无穷远的十字丝目 标⑴。对于a°c定向而言,整个过程相对单一,可行 性较高,而Sc的定向过程中却存在测角方法变换,
仪与平行光管对调焦误差引入的不确定度进行估 测。估测方法是以平行光管的十字丝为目标,使用 TS60照准目标读取水平角值,进行远近调焦后再照 准目标,并读取水平角读数,最后取2次读数差的绝 对值为不符值,完成一次试验。经过10次试验后, 最大不符值和最小不符值分别为0"和1.5",试验数 据按“极差法”评定不确定度:
依据JJG(测绘)5201 - 2013(陀螺经纬仪》的 要求,为了保障隧道工程定向的准确性,需对陀螺仪 进行检定。陀螺仪检定的计量标准器一般是指陀螺 仪标准基线,其主要作用就是提供方向基准。本文 主要探讨解决陀螺仪标准基线长、短目标点定向难 的问题。
2陀螺仪标准基线定向
2. 1陀螺仪标准基线的建设 参照《陀螺经纬仪》对陀螺仪计量标准装置的
Standard Baseline Orientation Measurement for Gyroscopes
XU Wenjing, WANG Lulu, DONG Xuming, WU Xuewen, SHEN Yingguang
摘要:陀螺仪标准基线是陀螺仪检定的主要计量标准器,标准基线组成的特殊性会导致其定向时 存在前后视距差过大的问题,进而在定向结果中引入不可控的调焦误差,大大降低定向精度。经过 大量的试验测试和研究,提出利用大视距差高精度测角法来消除调焦误差对定向精度的影响,并论 证了该方法的测量结果具有较高的可信度。 关键词:陀螺经纬仪检定;标准基线;调焦误差;定向精度;不确定度

测绘专业实验实习—— 陀螺经纬仪定向方法实验指导书

测绘专业实验实习—— 陀螺经纬仪定向方法实验指导书

实验四 陀螺经纬仪定向方法一、实验目的了解陀螺仪定向的原理,熟悉陀螺仪常用的定向方法,学会使用逆转点法和中天法进行精密定向。

二、实验仪器索佳GP-1陀螺全站仪1台,三脚架1个,棱镜1个。

三、陀螺仪一次测定作业流程本实验为演示实验,由指导教师结合PPT 及仪器操作进行演示教学。

1、陀螺仪悬挂带零位观测【原理】悬挂零位是指陀螺马达不转时,陀螺灵敏部受悬带和导流丝扭力作用而引起扭摆的平衡位置,即扭力矩为零的位置。

观测三次。

在陀螺观测开始之前和结束之后,要作悬带零位观测,相应简称为测前零位和测后零位观测。

【方法】测定悬挂零位时,先将全站仪整平并固定照准部,下方陀螺灵敏部(不启动马达),从读数目镜中观测灵敏部的摆动,在分划板上连续读三个逆转点的读数,估读到0.1格。

()132122L a a a =++⎡⎤⎣⎦2、陀螺仪粗定向在测定已知边和定向边的陀螺方位角之前,首先进行粗略定向,即把全站仪望远镜视准轴置于近似北方向。

3、精密定向(逆转点法)粗定向后,全站仪转到粗定向的北方向,再次下放陀螺,控制摆幅在5~8格之间,用逆转点法通过全站仪精确跟踪逆转点。

[]131224*********a a N a a a N a N N n +⎛⎫=+ ⎪⎝⎭+⎛⎫=+ ⎪⎝⎭=-……4、精密定向(中天法)首先通过逆转点法确定陀螺北方向在±20′内,然后托起陀螺;再放陀螺使其摆幅在8~10格之间,用中天法开始观测;至少测量2个周期。

5、测后零位。

四、陀螺仪一次定向作业流程1、在地面已知边上测定仪器常数由于陀螺轴衰微弱的摆动系数保持不变,故其摆动的平衡位置可以仍未是假想的陀螺主轴稳定的位置。

陀螺主轴虽然指示出真北方向,但是这个方向必须借助陀螺仪光学系统读数。

由于陀螺主轴与陀螺仪光学系统的光轴以及经纬仪视准轴不在同一竖直面捏,因而陀螺仪的指向与地理子午线N 不重合,两者之间的差值称为仪器常数∆(与磁偏角概念不同)。

分析矿井生产中陀螺定向测量的应用及精度

分析矿井生产中陀螺定向测量的应用及精度

分析矿井生产中陀螺定向测量的应用及精度摘要:基于井下定向测量对生产安全及效率的重要性,在简单介绍陀螺定向测量的基础上,结合矿井实例,对陀螺定向测量实际应用及测量成果精度进行深入分析,最后得出陀螺定向测量精度高,测量可靠的结论。

关键词:矿井生产;陀螺定向测量;测量精度矿井井下生产对现场观测与定向有着极高的要求,定向测量精度直接影响实际生产效率,如果精度较差,则必定会降低效率,造成不必要的损失。

因此,应在重视定向测量的基础上,通过新技术和新设备的引入来提高定向测量水平,如采用陀螺经纬仪就是很好的选择。

1陀螺定向测量概述目前,我国与许多国家均研制出充分结合经纬仪与陀螺仪的测量仪器,称为陀螺经纬仪,主要用于完成定向测量。

对于这种新型测量仪器,其作用原理为:借助吊丝进行悬吊,重心下移的陀螺敏感地球自转角速度的水平方向分量,受到重力的作用后,产生一定向北端发生进动的力矩,促使主轴开始围绕子午面发生往复运动,此时利用传感器接收运动光信号,并将其转换成仪器可识别的电信号,传输至控制器实施分析解算。

之后由经纬仪对被测对应方位角进行显示与读取,也可在数据传输接口支持下向终端设备传输数据[1]。

本矿井因建设过程中采用几何定向方法得到定向精度相对较低,同时现已受到一定程度的干扰及破坏,使得可靠性降低,导致井下的无论是控制导线,还是长距离掘进,均需精度达到较高水平的方向控制。

近年来,我国矿山测量人员在积极总结传统几何定向方法不足与弊端的基础上,陆续开始借助陀螺经纬仪完成定向测量任务,以求解决传统方法占用井筒产生的长时间停产、需要消耗大量资源等问题,并克服定向精度伴随井筒深度不断增加而明显降低等不足,确保工作效率及定向成果的精度都能得到大幅提升。

基于此,从本矿井角度讲,为充分满足实际施工提出的各种要求,使首级控制导线始终保证较高的精度,经研究决定在井下方向测量工作中选用新型陀螺经纬仪取代传统的几何定向方法,以此对起始方位角等重要测量成果进行确定与校核。

陀螺测斜仪定向操作规程

陀螺测斜仪定向操作规程

SinoGyro陀螺测斜仪定向操作规程一、检查仪器密封圈是否都已上好并完好无缺,仪器连接丝扣处用丝扣油涂抹,连接好仪器并打紧。

二、在井上将井下仪放置在井斜20—30度之间。

三、转动井下仪,使定向引鞋的定键槽垂直向上并保持稳定。

四、开机,待仪器运转稳定后开始测量;连续测量三次以上,取最后三次稳定重力高边数值的平均值(重复性误差≤+10)作为“高边初始角”的值输入计算机。

五、重测,确认此时重力高边实测数值为零(误差≤+10);仪器断电。

六、为了确保仪器井下顺利入键,定向接头下井之前必须与仪器引鞋进行地面入键测试,一切顺利后,定向接头方可下井。

七、仪器下井时,在定向键槽涂上铅油。

下放时下放速度≤2000米/小时;上提时≤1800米/小时。

当井下仪下放距离定向接头50米时,控制下放速度在1200-1500米/小时之间;仪器入键后,待地滑轮落地时,方可停绞车。

八、绞车停稳2分钟后,开机测量,连续测量2次,检查仪器稳定性和重复性并记录测量数据;一切正常后仪器断电,待陀螺停稳后上提30米以上,开始第二次坐键并测量;连续坐键三次,三次高边测量值误差≤+50时即可确认仪器入键。

九、仪器入键后不动,地面转动钻杆或油管至所需位置,然后上提下放钻杆或油管各三次,每次活动范围3—5米,待活动完成后开机测量定向键的位置,如果达不到要求,继续转动和活动井下工具,至定向键位置达到工艺要求为止,至此陀螺定向结束。

十、陀螺测斜仪高边转换角默认值为3度,测量过程中如果想同时观察陀螺高边和重力高边时,可在同一位置改变高边转换角的数值来实现。

十一、定向测量结束后,数据存盘,起出井下仪,进行现场资料交接。

SinoGyro陀螺测斜仪开窗侧钻定向表甲方:乙方:MDRO-021型陀螺测斜仪一、引言:MDRO-021型陀螺测斜仪是我公司新研制的第二代陀螺测斜仪。

MDRO-021型陀螺测量仪在技术上作了较大改正,使其模型更加完善,测量精度更高,测量速度更快,使其更加灵活方便。

陀螺全站仪定向测量的引用

陀螺全站仪定向测量的引用

陀螺全站仪定向测量的引用
摘要:
一、陀螺全站仪定向测量的基本原理
二、陀螺全站仪定向测量的应用领域
三、陀螺全站仪定向测量的优缺点分析
四、陀螺全站仪定向测量的未来发展趋势
正文:
陀螺全站仪定向测量是一种利用陀螺全站仪进行地面或空间方向测量的方式,它通过计算陀螺仪的角速度和角加速度,从而得出被测物体的方向和位置。

一、陀螺全站仪定向测量的基本原理
陀螺全站仪定向测量的基本原理是利用陀螺仪的稳定性,通过测量地球引力对陀螺仪的影响,计算出陀螺仪的角速度和角加速度。

然后,根据陀螺仪的角速度和角加速度,计算出被测物体的方向和位置。

二、陀螺全站仪定向测量的应用领域
陀螺全站仪定向测量主要应用于地面或空间方向测量,包括地球物理学、地质学、航空航天、军事等多个领域。

例如,在地球物理学中,陀螺全站仪定向测量可以用于地震预测和地壳运动研究;在地质学中,陀螺全站仪定向测量可以用于矿产资源勘探和地质结构研究;在航空航天和军事领域,陀螺全站仪定向测量可以用于飞行器导航和武器系统定位。

三、陀螺全站仪定向测量的优缺点分析
陀螺全站仪定向测量的优点是测量精度高、可靠性好,能够实现快速、准确的方向测量。

但是,陀螺全站仪定向测量也存在一些缺点,例如设备成本高、操作复杂、受环境影响较大等。

四、陀螺全站仪定向测量的未来发展趋势
随着科技的不断发展,陀螺全站仪定向测量技术也在不断进步。

未来的发展趋势主要包括:提高测量精度、扩大应用领域、实现自动化操作和小型化设备等。

测绘专业实验实习—— 陀螺仪定向原理与方法介绍

测绘专业实验实习—— 陀螺仪定向原理与方法介绍
控制在5~8格之间; 观察陀螺摆光标左右摆动
的摆幅;
记录陀螺通过零指标线的 时间。
1.6 定向边坐标方位角计算
以一个测回测定测线方向值,前后两测回的互差符合限差 时,取其平均值作为测线方向值。定向边坐标方向角的计 算步骤如下:
陀螺方位角=测线方向值-陀螺北方向值 地理方位角=陀螺方位角+仪器常数 坐标方位角=地理方位角-子午线收敛角
仪器常数可在已知方位角的导线上或三角点测定,按下式 计算出:
仪器常数测量地理方位角时可用到,一般在用于煤矿 金属 矿进行陀螺方位角及控制导线测量时用不到仪器常数。
2 索佳GPX陀螺全站仪原理与方法
索佳 GP-1
致谢
The end, thank you!
1.3 精密定向(逆转点法)
பைடு நூலகம்
要求粗定向误差≤±2°;
粗定向后下放陀螺,摆幅 控制在5~8格之间;
使用全站仪水平微动螺旋 跟踪并记录逆转点
N1

1 2

a1
2
a3

a2

N2

1 2

a2
2
a4

a3

……
N
N n2
1.4 精密定向(中天法)
要求粗定向误差≤±20′; 粗定向后下放陀螺,摆幅
1、陀螺全站仪的操作
L 1 2 a1 a3 2 a2
1.1 陀螺仪悬挂带零位观测
原理
悬挂零位是指陀螺马达不转时,陀螺灵敏部受悬带和导 流丝扭力作用而引起扭摆的平衡位置,即扭力矩为零的 位置。
在陀螺观测开始之前和结束之后,要作悬带零位观测, 观测3次。相应简称为测前零位和测后零位观测。

陀螺定向测量及提高贯通精度的措施

陀螺定向测量及提高贯通精度的措施

科学技术创新2020.26以柠条塔S1210超长隧道贯通测量为例,加入陀螺定向测量,进行贯通误差预计。

以下主要对导线网中加测陀螺定向边后的平差计算、加测最佳位置确定及实际加测情况等进行分析,提出了提高贯通精度的具体方案。

1加测陀螺边后附合导线平差及加测陀螺边最佳位置确定1.1加测陀螺边导线终点误差估计如图1,A 为起始点,AA 1为起始定向边,其坐标方位角为α0,导线测量点K 为终点,α1,αII ,…,αN 为N 条陀螺定向边,导线段数为N ,由B 点至K 点的一段为支导线。

图1导线示意图(1)由导线量边误差引起的终点K 的贯通误差(1)其中:m l :测边中误差;α':导线边与水贯通方向夹角。

(2)测角误差对贯通点误差累积影响(2)式中:η:所有导线点到重心连接线y'轴投影长;R y':支导线B 至K 各点和K 点连线y'轴投影长。

(3)陀螺定向对贯通点误差累积影响假设各条陀螺定向边精度相同为m α0时有:(3)1.2两井贯通贯通点水平方向贯通误差预计如图2,地面点P 向两竖井分布布设导线P-I-II-III 和P-IV-V-VI ,假设m β上为测角中误差,m l 上为量边中误差,陀螺定向边为α1,α2,…,α5,测定其陀螺定向方位角,陀螺定向中误差设为m α1,m α2,…,m α5,其中地下导线独立施测2次。

导线段为A-E ,E-M ,M-K ,B-C ,C-N ,N-K ,其中M-K ,B-C ,N-K 为支导线边,A-E ,E-M ,C-N 是方向附合导线边,井下测角中误差m β下,井下量边中误差m l 下。

图2导线布设示意图贯通点在x'上误差预计如下:(1)地面导线边引起贯通测量x'上的误差(4)式中:R y':地面导线各点与井下导线的起始点A 和B 的连线在y'轴上的投影长;α':地面导线各边与x'轴夹角。

5第三章 联系测量-陀螺定向解析

5第三章 联系测量-陀螺定向解析




①在测站上整平对中陀螺经纬仪,以一个测回测定待定边或已知边 的方向值,然后将仪器大致对正北方。 ②粗略定向(测定近似北方向) 锁紧灵敏部,启动陀螺马达,待达到额定转速后,下放陀螺灵敏部, 用粗略定向的方法测定近似北方向。完毕后制动陀螺并托起锁紧, 将望远镜视准轴转到近似北方向位置,固定照准部。 ③测前悬带零位观测 打开陀螺照明,下放陀螺灵敏部。进行测前悬带零位观测。同时用 秒表记录自摆周期T。零位观测完毕,托起并锁紧灵敏部。 ④精密定向(精密测定陀螺北) 采用有扭观测方法(如逆转点法等)或无扭观测方法(如中天法、 时差法、摆幅法等)精密测定已知边或待定边的陀螺方位角。 ⑤测后悬带零位观测 ⑥以一个测回测定待定边或已知边的方向值,测前测后两次观测的 方向值的互差对J2和J6级经纬仪分别不得超过10″和25″。取测前测 后观测值的平均值作为测线方向值。
3.7 陀螺定向的精度分析
1.陀螺经纬仪定向的精度评定 陀螺经纬仪的定向精度主要以陀螺方位角 一次测定中误差mT和一次定向中误差 ma 表 示。 1)陀螺方位角一次测定中误差


在待定边进行仿陀螺定向前,陀螺仪需在地面巳知坐标方 位角边上测定仪器常数。按《试行规程》规定,前后共需 测6次,这样就可按白塞尔公式来求算陀螺方位角一次测 定中误差,即仪器常数一次测定中误差(简称一次测定中 误差)。 vv
(3)当在未知边上定向,且仪器本身又无粗定向 罗盘附件时,可用仪器本身来寻找北方,常用的 方法为两个逆转点法。具体操作如下:
测前悬带零位观测
陀螺灵敏部摆动的平衡位置应与目镜分划板的零刻划线重 合,该位置称为悬带零位 。 测定悬带零位时,应将经纬仪整平并固定照准部,然后下放陀 螺灵敏部并从读数目镜中观测灵敏部的摆动(当陀螺仪较长时 间末运转时,测定零位之前,应将马达开动几分钟预热,然后 切断电源,待马达停止转动后再下放灵敏部),在分划板上连 续读三个逆转点读数a1、a2、a3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陀螺定向测量
陀螺定向测量(gyrostatic orientation survey)是用陀螺经纬仪测定某控制网边的陀螺方位角,并经换算获得此边真方位角的测量工作。

常用于定向连接测量。

陀螺方位角,是从陀螺仪子午线(测站上通过假想的陀螺轴稳定位置的子午面,即陀螺仪子午面与地平面的交线)北方向顺时针量至某定向边的水平角。

常用方法
确定测站真子午线北方向的常用方向有:中天法,是通过对陀螺仪轴运转的观测,先确定近似北方向,在连续读记摆动的指标线(陀螺轴)反复经过分划线板零线时的时间,和到达东、西逆转点时的水平度盘读数,经计算获得近似北方向的改正数,进而确定测站真北方向;逆转点法,是用陀螺经纬仪跟踪观测摆动的指标线(陀螺轴)反复到达东、西逆转点时的水平度盘读数,经计算确定测站真北方向。

矿井应用
服了几何定向占用井筒而造成停产、耗费大量人力、物力和时间等缺点,同时也克服了随井筒深度增加而降低定向精度的缺点。

由于矿井生产中对陀螺定向测量技术的应用还很少,陀螺定向技术在矿井生产中还缺乏系统性的操作要求及数据处理模式。

2011年4月,麦格集团天渱公司螺仪部带领天津707所厂家技术人员到煤矿进行陀螺仪的测量演示,通过TJ9000陀螺全站仪与日本品牌陀螺全站仪比较,获取了实证分析数据。

从技术及经济角度考虑,对陀螺定向测量技术的研究,在矿井生产中具有非常重要的意义。

1、陀螺定向作业依据
本次陀螺定向作业依据为1989年1月能源部制定的《煤矿测量规程》并参照1990年原中国统配煤矿总公司组织修订、煤炭工业出版社出版的《煤矿测量手册》。

2、陀螺定向作业仪器
陀螺定向采用中船重工TJ9000陀螺全站仪为例,该仪器是下架式的陀螺仪器,有陀螺仪、全站仪、控制器和三脚架等组成。

陀螺仪方位角测定标准偏差为±20",全站仪测角精度为2"。

3、陀螺定向方法
陀螺定向采用当今先进的积分法进行观测,定向程序为:
3.1 先在地面任意点上测定仪器当地的比例常数C值。

(观测6个测回)计算出3个C 值,取平均值做为当地仪器常数C值,在一定时期内,50Km范围内可以使用同一C值。

3.2 在地面已知边上测陀螺方位角;
3.3 在井下待定边上测陀螺方位角;
3.4 返回地面后在原已知边上测量陀螺方位角;
以此来检验仪器的稳定性和测量的精度,确保陀螺定向成果的可靠性。

4、坐标传递、高程导入方法:
4.1 坐标传递采用全站仪测量,钢丝单重摆动投点;钢丝将井上坐标投传到井下。

要求投点过程中井上下同步观测2个测回。

4.2 高程导入采用全站仪将井上高程传递到井口上,再用全站仪直接测量井深,将井底高程测算到井下控制点上。

5、井上下联系测量及高程传递
5.1 作业设备
5.2 坐标传递,全站仪测角精度为2",测距精度为2mm+2PPm。

投点设备主要有以下设备:
大垂球、钢丝、手摇绞车、小垂球、稳定液、信号圈。

5.3 坐标传递、高程导入操作方法:
5.3.1、坐标传递采用全站仪测量,钢丝单重摆动投点;钢丝将井上坐标投传到井下
5.3.2、钢丝投点,包括钢丝下放和自由悬挂的检查。

5.3.3、井上下连接测量
钢丝投放工作完成之后,立即进行井上下的连接测量,在地面用近井点实测钢丝的坐标及井口标高,同时在井下架设全站仪,实测钢丝与井下固定点的连接角及距离。

5.3.4、井下测站到钢丝距离采用全站仪无棱镜测定法进行测量。

5.3.5、至此本次连接测量完成,根据井下陀螺定向方位角推算井下各控制点坐标。

5.3.6、高程导入采用全站仪将井上高程传递到井口上,再用全站仪直接测量井深,将井底高程测算到井下控制点。

相关文档
最新文档