{选}SBR法污水处理工艺设计计算书 LN

合集下载

经典SBR设计计算(全)

经典SBR设计计算(全)

2433.71 m3/h=
最大空气用量Qmax=
(7)所需空气压力p
(相对压力)
供风管
h1:
道沿程
阻力
供风管
H2:
道局部
阻力
p=h1+h2+h3 +h4+Δh
4112.97 m3/h= 0.001 MPa
0.001 MPa
40.56 m3/mi n
68.5 m3/mi n
h3:
h4:
Δh: p= (8)曝气器数量计 算 A、按供氧能力计算
冬季硝化菌比增长速 度μN(10)=1/θc+bN =
出水氨氮为:Ne(10)
K N (10) N (10)
m(10)
N (10)
(
4 4 q
m b
v v
Q 2 Q g 1 4 )
2
/ 3
6、设计需氧量AOR=
碳化需氧量+硝化需
氧量-反硝化脱氮产
氧量
有机物氧化需氧系数
a'=
污泥需氧系数b'=
冬季μm(10)=μ m(15)e0.098(T-15)× DO/(K0+DO)×[10.833×(7.2-pH)]=
99.20%
计算,湿污 泥量为
99.20%
计算,湿污 泥量为
0.018 16.66 mg/L
274.7 m3/d 296.5 m3/d
7.98 mg/L 17.02 mg/L 1.72 mg/L 23.28 mg/L
0.5 d-1
2 mg/L 1.3 7.2
0.19
(2)标准水温(15 ℃)时硝化菌半速度 常数KN(15)=
冬季KN(10)=KN(15)× e0.118(T-15)=

SBR法处理屠宰废水工艺计算

SBR法处理屠宰废水工艺计算

每格池污泥所需容积:V‵= 7.
污泥斗底采用 500×500mm, 上口采用 5000×5000mm, 污泥斗斜 壁
与水平面的夹角为 60°,则污泥斗高度:
h ''4 5 0.5 5 0.5 tg 1.73 3.89m 3 2 2 1 3

污泥斗容积 V1 h4(f1 f 2 f1 f 2 ) 3.89 (52 0.52 52 0.52 ) 35.98m3 8. 污泥斗以上梯形部分污泥容积 V2
V
3
Qmax (c0 c) 86400 T 100 0.0442 (2400 1200) 86400 2 100 = 160m3 6 6 K Z (100 0 ) 10 1.911 (100 97) 10
V 160 3 40 m n 4
1 3
设池底坡度为 0.01,则: 梯形部分高度: h4 ' (17.28 0.3 5) 0.01 0.126m 梯形上底边长: L1 17.28 0.5 0.3 18.08m 梯形下底边长:L2=5m 梯形部分污泥容积: V2 ( 9.
L1 L2 18.08 5 )h '4 0.9=( ) 0.126 5=7.27m3 2 2
Qmax hV 1
=
0.0442
0.3×0.4
=0.37m
渠渐宽部分展开角α1 =20° l1=
B −B1 2 tan α 1
≈1.28
l1 2
4.格栅与出水槽连接处的渐窄部分长度l2 = 5.过栅水头损失 h1: 取 k=3,β =1.79,V=0.8m/s 阻力系数ε = β
S 3 b

经典SBR计算

经典SBR计算

一、经典SBR工艺设计计算(一)设计条件:污水厂海拔高度950m设计处理水量Q=12000m3/d=500.00m3/h=0.14m3/s 总变化系数Kz= 1.57进水水质:出水水质:进水COD Cr=450mg/L COD Cr=60mg/L BOD5=S0=250mg/L BOD5=S z=20mg/L TN=45mg/L TN=20mg/L NH4+-N=35mg/L NH4+-N=15mg/L TP0=6mg/L Tp e=0.5mg/L 碱度S ALK=280mg/L pH=7.2SS=300mg/L SS=C e=20mg/L VSS=210mg/Lf b=VSS/SS=0.7曝气池出水溶解氧2mg/L夏季平均温度T1=25℃硝化反应安全系数3冬季平均温度T2=10℃活性污泥自身氧化系数K d(20)=0.06污泥龄θc=25d 活性污泥产率系数Y=0.6混合液浓度MLSS,X=4000mgMLSS/L出水VSS/SS=f=0.7520℃时反硝化速率常数q dn,20=0.12kgNO3--N/kgMLVSS若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、运行周期反应器个数n1=4,周期时间t=6h,周期数n2=4每周期处理水量:750m3每周期分进水、曝气、沉淀、排水4个阶段进水时间t e=24/n1n2= 1.5h根据滗水顺设备性能,排水时间t d=0.5h污泥界面沉降速度u=46000X -1.26= 1.33m曝气池滗水高度h 1= 1.2m安全水深ε=0.5m沉淀时间t s =(h 1+ε)/u=1.3h 曝气时间t a =t-t e -t s -t d =2.7h 反应时间比e=t a /t=0.452、曝气池体积V计算(1)估算出水溶解性BOD 5(Se)13.6mg/L(2)曝气池体积V12502m 3(3)复核滗水高度h1:有效水深H=5m h 1=HQ/(n 2V)=1.2m(4)复核污泥负荷0.13kgBOD 5/kgM LSS3、剩余污泥量(1)生物污泥产量T=10℃时0.04d -1681kg/d T=10℃时,ΔX V(10)=1012kg/d(2)剩余非生物污泥量ΔX S1596kg/d(3)剩余污泥量ΔX ΔX=ΔX V +ΔX s =2277kg/d T=10℃时剩余污泥量ΔX=2608kg/d=-=e d z e fC K S S 1.7=+-=)1()(0c d e c K eXf S S Q Y V θθ==eXV QS N s 0=--=∆100010000VfXeK S S YQX d e V ==-)20()20()10(04.1T d d K K =-⨯-=∆1000)1(0eb s C C f f Q X设剩余污泥含水率按99.20%计算,湿污泥量为284.6m 3/d T=10℃时设剩余污泥含水率按99.20%计算,湿污泥量为326.0m 3/d4、复核出水BOD 5K 2=0.0189.80mg/L5、复核出水氨氮浓度微生物合成去除的氨氮N w =0.12ΔX V /Q 冬季微生物合成去除的氨氮ΔN w(10)=10.12mg/L 冬季出水氨氮为N e(10)=N 0-ΔN W(10)=24.88mg/L 夏季微生物合成去除的氨氮ΔN (20)= 3.27mg/L 夏季出水氨氮为N e(20)=N 0-ΔN W(20)=31.73mg/L复核结果表明无论冬季或夏季,仅靠生物合成不能使出水氨氮低于设计标准。

SBR设计计算书

SBR设计计算书

θS.N (d)
μ= 0.47
(1/μ)
θS.N
=
×1.103 (15-T)×
fs=
T= 15
μ— 硝
化细菌比
生长速率
其中:
(d-1), t=15℃
时,µ
=0.47 d-1

fs — 安 全系数, 取fs=2.3 ~3.0。 T—污 水温度。
1
设计水温 T=
SS= 240
SS= 20
fs= 2 4.26 d
(NO3ND)/BOD5=
3.反硝化所 需要的时间 比例 tan/(tan+t a)
一般认 为约有75% 的异氧微生 物具有反硝 化能力,在 缺氧阶段
微生物 的呼吸代谢 能力为好氧 阶段的80% 左右。
tan—缺 氧阶段所经 历的时间, h。
ta —好 氧阶段所经 历的时间, h。
0.290357
kgN/kgBO D5
kgO2/kgN H4-N
1 kg/ m3
0.015 kg/ m3
1042.13 kg O2/ d
2.6
kgO2/kgN O3-N
11.96 kgO2/ d
采用微 孔曝气,氧 转移效率EA =
氧气质 量比MO2=
空气密 度ρ=
R0=[(Ro2 + Ro2.NR')/(EA* MO2)]* (293/273 )/ρ=
1
Sp.chemica
l—加药产
生的污泥量
0

Sp.chemica
l=
Sp
Qmax
S0
YH
0.9bHYH fT.H 1
YSS Qmax
(SS i

(完整版)污水处理工艺设计计算书

(完整版)污水处理工艺设计计算书

仲恺农业工程学院课程设计污水处理工艺设计计算书(2014—2015学年第一学期)班级给排121班姓名李子恒学号************设计时间2014.12.15~ 2015.01.02指导老师刘嵩、孙洪伟成绩城市建设学院2014年11月目录1 课程设计目的和要求 (4)1.1设计目的 (4)1.2 设计任务 (4)1.3设计要求 (4)1.4 原始资料 (4)2 污水处理流程方案 (5)3 处理程度的确定 (6)4 污水的一级处理 (6)4.1 格栅计算 (6)4.1.1单独设置的格栅 (7)4.2 沉砂池计算 (10)4.3 初次沉淀池计算 (14)4.3.1 斜板沉淀池 (14)5 污水的生物处理 (19)5.1 曝气池 (19)5.1.1设计参数 (19)5.2.2 平面尺寸计算 (20)5.1.3 进出水系统 (22)5.1.4 曝气池出水设计 (24)5.1.5 其他管道设计 (24)5.1.6 剩余污泥量 (24)6 生物处理后处理 (25)6.1 二沉淀池设计计算 (25)6.1.1 池形选择 (25)6.1.2 辐流沉淀池 (25)6.2 消毒设施设计计算 (32)6.2.1 消毒剂的投加 (32)6.2.2 平流式消毒接触池 (32)6.3 巴氏计量槽设计 (34)7 污泥处理构筑物计算 (35)7.1 污泥量计算 (35)7.1.1 初沉池污泥量计算 (35)7.1.2 剩余污泥量计算 (36)7.2污泥浓缩池 (36)7.2.1 辐流浓缩池 (37)7.3 贮泥池 (39)7.3.1 贮泥池的作用 (39)7.3.2 贮泥池计算 (40)7.4 污泥消化池 (41)7.4.1 容积计算 (41)7.4.2 平面尺寸计算 (44)7.4.3 消化池热工计算 (45)7.4.4 污泥加热方式 (48)8 污水处理厂的布置 (50)8.1 污水处理厂平面布置 (50)8.1.1 平面布置原则 (50)8.1.2 污水处理厂的平面布置图 (52)8.2 污水处理厂高程布置 (52)8.2.1 高程布置原则 (52)8.2.2 高程布置计算 (53)8.2.3 污水处理厂高程图 (55)1 课程设计目的和要求1.1设计目的本设计是围绕必修课程《水质工程学》开展的课程设计,课程设计是教学的重要组成部分,是将污水处理理论与工程设计相联系的重要环节,其目的在于:训练学生设计与制图的基本技能,复习和理解给水处理工程课程所讲授的内容,培养学生动手能力和训练严格的科学态度和工作作风,最终达到提高学生综合运用理论知识独立进行分析和解决实际工程技术问题的能力的目标。

SBR工艺工程设计计算书(包含碳泥龄和污泥指数取值)

SBR工艺工程设计计算书(包含碳泥龄和污泥指数取值)

3.3'反应泥龄试算值θ'CF d10.011.0 4.6甲乙丙丁戊己1进水2进水3进水4进水5进水6进水7进水进水8进水进水9进水进水10进水进水11进水进水曝气12进水进水曝气13进水进水曝气14进水进水曝气15进水进水沉淀论文例子:6池运行状态排布图16进水进水滗水17进水进水曝气18进水进水曝气19进水进水曝气20进水进水曝气21进水进水沉淀22进水进水滗水23进水进水曝气24进水进水曝气次1进水进水曝气次2进水进水曝气次3进水进水沉淀次4进水进水滗水次5进水进水曝气次6进水进水曝气次7进水进水曝气次8进水进水曝气次9进水进水沉淀次10进水进水滗水甲乙丙1进水2进水3进水4进水5进水曝气6进水曝气7进水曝气8进水曝气9进水沉淀3池运行状态排布图10进水滗水11进水曝气12进水曝气13进水曝气14进水曝气15进水沉淀16进水滗水17进水曝气18进水曝气19进水曝气20进水曝气21进水沉淀22进水滗水23进水曝气24进水曝气曝气曝气沉淀滗水。

SBR工艺污水处理厂设计计算.

SBR工艺污水处理厂设计计算.

课程设计题目33000m³/d生活污水处理厂设计学院资源与环境工程学院专业环境工程班级环工2012姓名覃练指导教师方继敏、李柏林2015 年 6 月21 日课程设计任务书(环境工程1202班,学号10)设计(论文)题目:33000m3/d生活污水处理厂工艺设计设计(论文)主要内容及技术参数1.污水类别为城市污水,设计流量33000m3/d;2.要求完成污水处理厂主要工艺设计与计算说明书的编写;3.绘制两张单元构筑物的图纸。

要求完成的主要任务及达到的技术经济指标1.按照指导书的深度进行设计与计算说明书的编写;2.绘制两个单元构筑物的图纸(两张1号)3.个人加上自己的进水和出水水质工作进度要求课程设计为期一周,时间安排如下:1.课程设计的讲授1天,设计准备(设计资料、手册、绘图工具准备)1天2.课程设计的计算部分3天3.课程设计的图纸绘制部分2天指导教师(签名)____________系(教研室)主任(签名)____________年月日课程设计指导教师意见书评定成绩_____________ 指导教师(签名)______________年月日摘要:本设计是33000m³/d城市污水处理厂工艺设计,处理工艺采用了SBR工艺。

SBR是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。

本工艺的主要构筑物包括格栅、污水泵房、沉淀池、SBR、接触消毒池、浓缩池、污泥脱水机房等。

污水进入污水处理厂经过粗格栅后经污水泵房进入到细格栅,再进入平流沉砂池沉砂,再进入SBR池反应,然后进入接触消毒池消毒,污水达到水质要求,经过计量槽后排出污水。

SBR的剩余污泥含水量减少再进入贮泥池,随后进入污泥脱水车间进行脱水,脱水后的污泥外运。

SBR的主要工艺特征是在运行商的有序和间歇操作,SBR工艺的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能与一池,无污泥回流系统。

经过该废水处理工艺的废水可达到设计要求,可以直接排放。

sbr工艺计算

sbr工艺计算

sbr工艺计算1.日平均流量:Q=10000m3/d2.水质:3.参数拔取3.1 运行参数生物池中活性污泥浓度:X VSS=1400mgMLVSS/l挥发性组分比例:f VSS=0.7(一样0.7~0.8)3.2 碳氧化工艺污泥理论产泥系数:Y=0.6 mgVSS/mgBOD5 (范畴0.4~0.8,一样取0.6) 20℃时污泥自身氧化系数:K d(20)=0.06 1/d (范畴0.04~0.075,一样取0.06) 3.3 硝化工艺参数硝化菌在15℃时的最大年夜比进展速度:μm(15) =0.47 1/d (范畴0.4~0.5,一样取0.47或0.45)好氧池中消融氧浓度:DO=2.0 mg/lNH4-N的饱和常数(T=T min=12℃):K N=10(0.051×T-1.158)=0.28 mg/l硝化菌的理论产率系数:Y N=0.15 mgVSS/mgNH4-N (范畴0.04~0.29,一样取0.15) 20℃时硝化菌自身氧化系数:K dN(20)=0.04 1/d (范畴0.03~0.06,一样取0.04)安稳系数:F S=2.5 (范畴1.5~4,一样取2.5)氧的饱和常数:K O=1.0 mg/l (范畴0.25~2.46,一样取1.0)二. 好氧池工艺设计运算1. 参数修改K d (T min)=K d(20)×1.05(Tmin-20)=0.041 1/dμm=μm(15)×e0.098(Tmin-15)×[1-0.833×(7.2-pH)]×[D O/(D O+K O)] =0.331 1/dK dN (T min)=K dN(20)×1.05(Tmin-20)=0.027 1/d2.运算设计泥龄最大年夜基质应用率:k’=μm/Y N=2.21 mgBOD5/(mgVSS﹒d)最小硝化泥龄:tc min=1/(Y N×k’-K dN)=3.29 d设计泥龄:tc=Fs×tc min=14.8 d3.污泥负荷硝化污泥负荷:Un=(1/tc+K dN)/Y N=0.63 mgNH4-N/(mgVSS﹒d)出水氨氮浓度:由U N=k’×[N e/(K N+N e)]得N e=U N×K N/(k’-U N)=0.11mg/l碳氧化污泥负荷:U S=(1/tc+K d)/Y=0.18 mgBOD5/(mgVSS﹒d)4.好氧池容积运算BOD氧化要求水力逗留时刻:T b=(So-Se)/ (U S×X VSS)= 0.48d=11.43 hBOD5表不雅产率系数:Y obs=Y/(1+K d×tc)=0.37 mgVSS/mgBOD5硝化细菌在微生物中占的百分比:硝化的氨氮量N d=TN-0.122Y obs(So-Se)-Ne-0.016 Y obs K d tc(So-Se)=38.6mg/l硝化菌百分比fnfn=Yn*N d/ Y obs (So-Se) + Yn*Nd +0.016Y obs K d tc(So-Se)=0.11硝化水力逗留时刻TnTn = N d / ( Un*X VSS *fn )= 0.38 d = 9.18 hTb>Tn,取好氧池水力逗留时刻为Tb,即11.43h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SBR法污水处理工艺设计计算书SBR法污水处理工艺设计计算书第一章 课程设计任务书一、课程设计目的和要求本课程设计是水污染控制工程教学的重要实践环节,要求综合运用所学的有关知识,在设计中熟悉并掌握污水处理工艺设计的主要环节,掌握水处理工艺选择和工艺计算的方法,掌握平面布置图、高程图及主要构筑物的绘制,掌握设计说明书的写作规范。

通过课程设计使学生具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,训练设计与制图的基本技能。

二、课程设计内容 1、污水水量、水质 (1)设计规模设计日平均污水流量Q=学号1-25*8000学号26-48*3000 m3/d ;设计最大小时流量Q max =设计日平均污水流量/12-学号*100m3/h (2)进水水质COD Cr =600mg/L ,BOD 5 =300mg/L ,SS = 300mg/L ,NH 3-N = 35mg/L 2、污水处理要求污水经过二级处理后应符合以下具体要求:COD Cr ≤ 100mg/L ,BOD 5≤20mg/L ,SS ≤20mg/L ,NH 3-N ≤15mg/L 。

3、处理工艺流程污水拟采用学号1-10活性污泥法学号26-48生物膜法工艺处理。

4、气象资料该市地处内陆中纬度地带,属暖温带大陆性季风气候。

年平均气温9~13.2℃,最热月平均气温21.2~26.5℃,最冷月−5.0~−0.9℃。

极端最高气温42℃,极端最低气温−24.9℃。

年日照时数2045 小时。

多年平均降雨量577 毫米,集中于7、8、9 月,占总量的50~60%,受季风环流影响,冬季多北风和西北风,夏季多南风或东南风,市区全年主导风向为东北风,频率为18%,年平均风速2.55 米/秒。

5、污水排水接纳河流资料:该污水厂的出水直接排入厂区外部的河流,其最高洪水位(50 年一遇)为380.0m,常水位为378.0m,枯水位为375.0m。

6、厂址及场地现状该镇以平原为主,污水处理厂拟用场地较为平整,交通便利。

厂址面积为35000m2。

厂区地面标高384.5~383.5 米,原污水将通过管网输送到污水厂,来水管管底标高为 8米(于地面下8米)。

受纳水体最高洪水位6 米,最低水位标高在-4米。

三、课程设计具体安排1、确定污水处理厂的工艺流程,对处理构筑物选型做说明;2、对主要处理设施(格栅、沉砂池、初沉池、污泥浓缩池)进行工艺计算(附必要的计算草图);3、按扩初标准,画出平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性;4、按扩初标准,画出高程布置图,表示出原污水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式;5、按扩初标准,画出主要处理构筑物的平面剖面构造图;6、编写设计说明书、计算书。

四、设计成果1、设计计算说明书一份;2、设计图纸:平面和高程布置图、构筑物平剖面。

(共5张2号图纸)第二章 SBR 工艺流程方案的选择2.1、SBR 工艺主要特点及国内外使用情况:SBR 是序列间歇式活性污泥法的简称,与传统污水处理工艺不同,SBR 技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。

它的主要特征是在运行上的有序和间歇操作,SBR 技术的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉池等功能于一池,无污泥回流系统。

经过这个废水处理工艺的废水可达到设计要求,可以直接排放。

处理后的污泥经机械脱水后用作肥料。

此工艺在国内外被引起广泛重视和研究日趋增多的一种污水生物处理新技术,目前,已有一些生产性装置在运行之中。

它主要应用在城市污水、工业废水处理方面。

2.2、工艺流程图:提升泵池提升泵站粗格栅污水干泥外运加氯间鼓风机房集泥井污泥浓缩池脱水机房出水接触池S B R细格栅初沉池沉砂池污泥图2.1 SBR 法处理工艺流程图第三章设计计算3.1原始设计参数原水水量Q=42×30000=126000m3/d=5250m3/h设计流量Q max=126000÷12-42×100=6300m3/h=1.75m3/s3.2 格栅3.2.1设计说明格栅(见图3-1)一般斜置在进水泵站之前,主要对水泵起保护作用,截去生活水中较大的悬浮物,它本身的水流阻力并不大,水头损失只有几厘米,阻力主要产生于筛余物堵塞栅条,一般当格栅的水头损失达到10~15厘米时就该清洗。

格栅按形状可分为平面格栅和曲面格栅两种,按格栅栅条间隙可分为粗格栅(50~100mm),中格栅(10~40mm),细格栅(3~10mm)三种。

图3-1 格栅结构示意图根据清洗方法,格栅和筛网都可设计成人工清渣和机械清渣两类,当污染物量大时,一般应采用机械清渣,以减少人工劳动量。

本设计栅渣量大于0.2m3/d,为改善劳动与卫生条件,选用机械清渣,由于设计流量小,悬浮物相对较少,采用一组中格栅,既可达到保护泵房的作用,又经济可行,设置一套带有人工清渣格栅的旁通事故槽,便于排除故障。

栅渣量与地区特点,格栅的间隙大小,污水流量以及下水道系统的类型等因素有关,在无当地资料时,可采用:(1) 格栅间隙16~25mm ,处理0.10-0.05栅渣/103m 3污水 (2) 格栅间隙30~50mm ,处理0.03-0.01栅渣/103m 3污水栅渣的含水率一般为80%,容重约为960kg/ m 3。

栅条的断面形状有圆形、锐边矩形、迎水面为半圆形的矩形、迎水面背水面均为半圆的矩形几种。

而其中迎水面为半圆形的矩形的栅条具有强度高,阻力损失小的优点。

3.2.2设计参数(1)平均日流: d Q =1260003m /d =52503m /h =1.46(3m /s ) (2)最大日流量: max Q =1.75(3m /s ) (3)设过栅流速:v =0.8m/s (取0.6~1.0m/s) (4)通过格栅的水头损失:(取0.08~0.25m ) (5)栅前水深:h =0.4m (取0.3~0.5m) (6)格栅安装倾角:︒=60α (取60~75) (7)机械清渣设备:采用链条式格栅除污机 3.3.3设计计算(1)中格栅(3个)格栅间隙数 n =max sin 3Q b hθυ=4.08.003.03sin 75.160⨯⨯⨯⨯≈56个 Q max ——最大废水设计流量 m 3/sθ——格栅安装倾角 60~75 取60h ——栅前水深 mb ——栅条间隙宽度 取30mmυ——过栅流速 m/s验算平均水量流速υ= 0.80m/s 符合(0.65~1.0)(2)栅渠尺寸B 2=s(n-1)+nb =0.02⨯(56-1)+0.03⨯56=2.78(m)圆整取B 2=3ms ——栅条宽度 取0.02mB 2——格栅宽度 mB 1 =max Q h υ=4.08.0375.1⨯=2(m)B 1——进水渠宽 m栅前扩大段L 1=212tan B B α-=o20tan 223⨯-=1.37(m) α——渐宽部分的展开角,一般采用20栅后收缩段 L 2=0.5⨯L 1=0.67(m)栅条总长度 L =L 1+0.5+2tan h h θ++1.0+L 2 =1.37+0.5+0.40.3tan 60++1.0+0.67=3.94(m)2h ——栅前渠道超高,采用0.3m(3)水通过格栅的水头损失设栅条断面为锐边矩形断面43()s bεβ=β=2.42 k=321sin 2h k gυεα=⋅⋅⋅4230.020.82.42()sin 6030.0319.6=⨯⨯⨯⨯ =0.12(m) (4)栅渣量(总)W =max 1864001000zQ W K ⨯=24.110008640003.075.1⨯⨯⨯=3.65(m 3/d)W 1取0.03, 宜采用机械清渣。

选用NC —400型机械格栅三台。

设备宽度400mm ,有效栅宽250mm ,有效栅隙30mm ,运动速度3m/min ,水流速度≤1m/s ,安装角度60,电机功率0.25kw ,支座长度960mm ,格栅槽深度500mm ,格栅地面高度360mm3.3污水提升泵房根据污水流量,泵房设计为L ×B =10×10m 。

提升泵选型:采用LXB 型螺旋泵 型号: LXB-1100 螺旋外径D : 1100mm 转速: 48r/min 流量Q : 875m 3/h 提升高度: 5m 功率: 15Kw购买6台,5台工作,1台备用。

3.4泵后细格栅(4个)公式计算同上(1)格栅间隙数 n =max sin 3Q b hθυ=5.09.0005.0460sin 75.1⨯⨯⨯⨯o=181(个)其中 b 取5mm υ取0.9m/s h 取0.4m反带验算得 υ=1.0m/s 符合(0.6~1.0m/s) (2)栅渠尺寸B 2=s(n-1)+nb =0.01⨯(181-1)+0.005⨯181=2.7(m) 圆整 2.0m栅条宽度s 取0.01m进水渠宽 B 1=max Q h υ=5.09.04/75.1⨯=0.97(m) 栅前扩大段 L 1=212tan B B α-=o30tan 297.07.2-=1.50(m)α取30栅后收缩段 L 2=0.5 L 1=0.75m 栅条总长度 2120.5 1.0tan 60h h L L L +=++++75.00.160tan 3.05.05.050.1+++++o=4.2(m)(3)水通过格栅的水头损失设栅条断面为圆形断面β=1.8321sin 2h k gυεα=⋅⋅⋅4230.010.91.83()sin 6030.00519.6=⨯⨯⨯⨯=0.50m(4)每日栅渣量W : max 1864001000z Q W W K ⨯=⨯在b =5mm 情况下,设栅渣量为0.05m 3/103m 3污水09.6100024.105.08640075.1=⨯⨯⨯=W >0.2(m 3/d )采用机械清渣。

选用NC —300型机械格栅三台。

设备宽度300mm ,有效栅宽200mm ,有效栅隙5mm ,运动速度3m/min ,水流速度≤1m/s ,安装角度60,电机功率0.18kw ,支座长度960mm ,格栅槽深度500mm ,格栅地面高度360mm3.5 曝气沉砂池 3.5.1设计说明沉砂池有4种:平流式、竖流式、曝气式、钟式和多尔式。

普通平流沉砂池的主要缺点是沉砂中含有15%的有机物,使沉砂的后续处理难度增加。

采用曝气沉砂池(见图3-2)可以克服这一缺点。

坡度=0.1-0.5头部支座集砂槽扩散设备空气干管支管图3-2 曝气沉砂池示意图3.5.2设计参数(1)旋流速度应保持:0.25~0.3m/s (2)水平流速为0.06~0.12 m/s (3)最大流量时停留时间为1~3min(4)有效水深应为2~3m ,宽深比一般采用1~2(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板 (6)1m 3污水的曝气量为0.2m 3空气(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m ,送气管应设置调节气量的闸门(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板(9)池子的进口和出口布置应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并宜考虑设置挡板(10)池内应考虑设消泡装置[7] 3.5.3设计计算(1)池子总有效容积(V ) 设t =2min ,则21060275.160max =⨯⨯=⋅⋅=t Q V 3m (2)水流断面积(A ) 设1v =0.1m/s (水平流速),则A =max 1Q v =1.075.1=17.5(2m ) (3)池总宽度(B ) 设2 2.5m h =(设计有效水深),则B =2A h =5.275.1=7(m) (4)每格池子宽度(b )设n =2格,则 B b n ==27=3.5(m) (5)池长(L ) L =V A =5.17210=12(m) (6)每小时所需空气量(q )设d =0.233m /m (13m 污水所需空气量),则max 3600q d Q =⋅⋅=0.2⨯1.75⨯3600=1260(3m /h )(7)沉砂室所需容积(V ) 设T =2d (清除沉砂的间隔时间),则V =max 68640010z Q X T K ⋅⋅⋅⋅=61024.18640023075.1⨯⨯⨯⨯≈7(3m ) 式中,X ——城市污水沉砂量[363m /10m ⋅(污水)] 取30z K ——生活污水流量总变化系数(8)每个沉砂斗容积(0V ) 设每一分格有2个沉砂斗,则 0V =227⨯=1.75(3m ) (9)沉砂斗各部分尺寸 设斗底宽1a =0.5m ,斗壁与水平面的倾角为55斗高'3h =0.35m ,沉砂斗上口宽:a ='32tan55h ⋅+1a =20.351.428⨯+0.5=1.0(m)最终定沉砂斗容积:0V ='22311(222)6h a aa a ++=220.35(21210.520.5)6⨯+⨯⨯+⨯=0.2(3m ) (10)沉砂室高度(3h ) 采用重力排砂,设池底坡度为0.06,坡向砂斗,则,3h ='3h +0.06⨯2.65=0.35+0.159=0.5 (m)(11)池总高度(H ) 设超高1h =0.3m,则H =1h +2h +3h =0.3+2.5+0.5=3.3(m) (12)进水渠道:设计中取进水渠道宽1B =3m ,水深1H =1m 。

相关文档
最新文档