小学数学应用题之方阵问题
小学数学广角专题10.方阵问题_通用版

小学数学广角专题10.方阵问题_通用版夯实基础1.在一个正方形花坛的四周栽树,要求4个顶点各栽1棵,每边只栽10棵,共栽了()棵树.A.36B.32C.48D.40【答案】A【解析】试题分析:此题可以看做是空心方阵问题,四周点数=每边点数×4﹣4,由此即可解答.解:10×4﹣4=36(棵),答:一共栽了36棵树.故选:A.2.一队学生围成一个正方形,每边站了12人(四个顶点都有人),共有()名学生.A.44B.48C.52D.40【答案】A【解析】试题分析:因为每个顶点处的人数在每条边上重复相加,所以最外层人数=每边人数×4﹣4,由此即可解答.解:12×4﹣4,=48﹣4,=44(人),答:共有44人.故选:A.3.一个正方形平顶天花板上每边要装20盏彩灯,一共需要()盏彩灯.A.40B.76C.44D.50【答案】B【解析】试题分析:这个问题可以看做是空心方阵问题:根据四周点数之和=每边点数×4﹣4即可计算所需要的彩灯盏数.解:20×4﹣4=76(盏),答:一共需要76盏灯.故选:B.4.王大伯在正方形鱼塘的四周栽树,每边栽5棵,王大伯最少能栽棵,最多能栽棵.【答案】16,20.【解析】试题分析:要使植树的棵数最少,那么四个顶点都栽树,则植树棵数=每边植树棵数×4﹣4;要使植树的棵数最多,那么四个顶点都不栽,则栽树棵数=每边栽树棵数×4,据此计算即可解答.解:植树的棵数最少是:5×4﹣4=20﹣4=16(棵)植树的棵数最多是:5×4=20(棵)答:王大伯最少能栽16棵,最多能栽20棵.故答案为:16,20.5.在一个正方形操场的四周插上红旗,4个角上也插上红旗,如果每条边上插15面,那么四周一共插了面红旗.【答案】56【解析】试题分析:每一边上都插了15面红旗,那么15×4=60(面),其中四个角的红旗重复加了一次,所以要减去,即可得出红旗的总面数.解:15×4﹣4,=60﹣4,=56(面),答:四周一共插了56面红旗.故答案为:56.6.36个同学围成一个正方形,相邻两人之间的距离相等.每条边上站了人.【答案】10【解析】试题分析:因为围成一个封闭图形,所以间隔数等于总人数36个,因为是正方形,所以每边上有36÷4=9个间隔,则每边上的人数等于间隔数加1即可解答.解:36÷4+1,=9+1,=10(个).答:每边上站了10人.故答案为:10.7. 一个正方形游泳池的四周要安装护栏,每边安装10根,每个顶点都要安装,一共要安装多少根?【答案】36根【解析】试题分析:每个边上安装10根,一共是4个边,所以是10×4根,但是四个顶点的被计算了2次,所以再减去4就是一共要安装的根数。
小学数学中年级篇--方阵问题

方阵问题知识归纳:1.方阵问题:把若干人或物排列成正方形队列的形式,根据排列规律,引出的计算问题就叫做方阵问题2.方阵问题的特点是:方阵每边的实物数量相等,相邻两边的实物数量相差2,相邻两层的实物数量相差83.方阵问题的解题思路是:(1)实心方阵:每边数×每边数=总数(每边数-1)×4=每层数每层数÷4+1=每边数(2)空心方阵:大实心方阵-小实心方阵=总数(每边数-层数)×层数×4=总数习题精练:1. 100名同学排成一个方阵,后来又减去一行一列.问减少了多少人?分析与解:100人排成10行10列的方阵,减去一行一列后剩下的是9行9列的方阵.9×9=81 (人)100-(10-1)×(10-1)=19 (人)答:减少19人.2. 在一次运动会开幕式上,有一大一小两个方阵合并变换成一个10行10列的方阵.求原来两个方阵各有多少人?分析与解:10行10列的方阵由100人组成,原来的小方阵每行或每列人数都不会超过10人.大方阵人数应该在50~100之间,可取64或81,运用枚举法,可求出当大方阵人数是64人,小方阵人数为36人时满足条件.答:大方阵有64人,小方阵有36人.3. 有一个用棋子摆成的方阵,如果再放入19枚棋子,可使每行每列上的棋子各增加一枚.原来的方阵中有多少棋子?分析与解:增加的19枚棋子,使原方阵增加了一行一列,其中有一枚棋子是这一行一列的交点,被重复计算了.因此增加后每边棋子数为(19+1)÷2=10(枚),则原来最外层每边有9枚棋子.原来每边上的棋子数(19+1)÷2-1=9 (枚);原来方阵中棋子总数9×9=81 (枚).答:原来的方阵中有81枚棋子.4. 180枚棋子摆成一个三层的空心方阵,最外层有多少棋子?最外层每边有多少棋子?分析与解:由于外层比中层多8枚棋子,中层比内层多8枚棋子,因此中层的棋子数为180÷3=60(枚),外层的棋子数为60+8=68(枚).利用公式:每边棋子数=总数÷4+1,可以求出每边有多少棋子.180÷3+8=68 (枚);68÷4+1=18 (枚).答:最外层的有68枚,最外层每边上有18枚棋子.5. 在一次团体操表演中,有一个中空方阵最外层有64人,最内层有32人.参加团体操表演的共多少人?分析与解:根据层外层和最内层的人数,可以分别求出内外层每边的人数.一个空心方阵,可以看作从一个最外层有64人的实心方阵中,减去一个小方阵.外层每边人数64÷4+1=17 (人);内层每边人数32÷4+1=9 (人);中空方阵人数17×17-(9-2)×(9-2)=240 (人).答:参加团体操表演的共240人.6. 将一个每边16枚棋子的实心方阵变成一个四层的中空方阵,此中空方阵的最外层每边有多少棋子?分析与解:棋子总数为16×16=256(枚),由于“中空方阵总个数=(每边个数-层数)×层数×4”,所以“每边个数=中空方阵总个数以÷层数÷4+层数”.16×16÷4÷4+4=20 (枚).答:最外层每边有20枚棋子.7. 252名同学组成一个三层的空心方阵.如果要在方阵内部再增加一层,组成四层空心方阵要增加多少人?如果要在外部增加一层,又要增加多少人?分析与解:首先求出原三层方阵中间层的人数,由于每向里或向外一层,人数减少或增加8人,因此可以求出答案.中间层人数252÷3=84 (人);向里增加一层需84-8×2=68 (人);向外增加一层需84+8×2=100 (人).答:向内部增加一层需增加68人,向外部增加一层需100人.8. 同学们要把操场的盆花摆成实心方阵,结果还剩4盆,如果增加一行一列,又少15盆.求共有多少盆花?分析与解:由题目可知要增加的这一行一列共需花4+15=19(盆),因此生边上有花(19+1)÷2=10(盆).如果摆满,将是由100盆花组成的实心方阵,但实际上只有100-15=85(盆).增加的那条边上有花(4+15+1)÷2=10 (盆);实际有花10×10-15=85 (盆).答:共有85盆花.9. 一群学生,如果排成三层空心方阵多10人,如果在中空部分增加一层又少6人,问有多少学生?分析与解:增加的那一层人数应为10+6=16(人),从而可求出此每边人数及最外层每边人数.增加的那一层每边人数(10+6)÷4+1=5 (人);最外层人数5+2×3=11 (人);四层方阵总人数(11-4)×4×4=112 (人);实有人数112-6=116 (人).答:共有学生106人.10. 有一群学生排成三层中空方阵,多9人.如中空部分增加两层,又少15人.问有学生多少人?分析与解:增加的两层人数为9+15=24(人),这两层人数之差是8人.因此最里层有(24-8)÷2=8(人).现在的方阵共5层,那么最外层有8+8×4=40(人),知道最外层人数及层数就不难求出总人数.最外层人数(9+15-8)÷2+8×4=40(人);总人数40+(40-8)+(40-8×2)+9=105(人).答:有学生105人.11. 用若干围棋子摆成一个方阵,有两行两列都是黑棋,共48枚,其余都是白棋.白棋有多少枚?分析与解:方阵中的每行每列,棋子数都是一样的。
小学数学典型应用题16:方阵问题(含解析)

小学数学典型应用题16:方阵问题(含解析)方阵问题【含义】将若干人或物依一定条件排成正方形(简称方阵)。
根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
【数量关系】(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=外每边的人数平方-内每边的人数平方内每边人数=外每边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4解题思路和方法方阵问题有实心与空心两种。
实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1:佳一学校参加运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少23人。
那么参加团体操表演的运动员一共有多少人?解:1、要知道参加表演的运动员共有多少人,只需要找到最外层每边有多少人即可。
2、一个正方形队列,减去一行和一列,就是去掉了两条边上的人数,其中顶点上的人数计算了两次,所以减少的人数=每边的人数×2-1。
所以开始每边有(23+1)÷2=12(人),参加表演的有12×12=144(人)。
例2:欢欢用围棋子围成一个三层空心方阵,最外一层每边有围棋子16枚,欢欢摆这个方阵共用了多少枚围棋子?解法1:1、本题考查的空心方阵,根据四周的枚数和每边上的枚数之间的关系,算出每一层的棋子数。
2、方阵每向里一层,每边的枚数就减少2枚。
知道最外一层每边放16枚,就可求出第二层及第三层每边枚数,知道各层每边的枚数,就可以求出各层的总数。
最外一层的棋子的枚数:(16-1)×4=60(枚),第二层棋子的枚数:(16-2-1)×4=52(枚),第三层棋子的枚数:(16-2-2-1×4=11×4=44(枚),摆这个方阵共用了60+52+44=156(枚)棋子。
方阵问题

方阵问题【知识要点】1.方阵问题:把若干人或物排列成正方形队列的形式,根据排列规律,引出的计算问题就叫做方阵问题2.方阵问题的特点是:方阵每边的实物数量相等,相邻两边的实物数量相差2,相邻两层的实物数量相差83.方阵问题的解题思路是:(1)实心方阵:每边数×每边数=总数 (每边数-1)×4=每层数每层数÷4+1=每边数(2)空心方阵:大实心方阵-小实心方阵=总数(每边数-层数)×层数×4=总数【典型题解】例1.四年级同学举行广播操比赛,排成了8行8列。
如果去掉一行一列,要去掉几人?还剩多少人?分析:方阵中的任何1人,既是其中一排中的人,也是其中一列中的人。
去掉一行一列,不管去掉哪一行哪一列,总有1人被去掉了两次,因此,求去掉一行一列去掉多少人,就是求比原来方阵中2行的人数少1人是多少人解:82115⨯-=(人) 881549⨯-=(人)答:要去掉15人,还剩49人例2.菊花展上,园丁李师傅要摆一个正方形空心花坛,已知四边各摆5盆菊花,且四个角上都有一盆,请计算李师傅摆这个花坛共要用多少盆菊花?分析:正方形空心花坛是空心方阵,依题意,四个角上的1盆在横、竖排中各计算了一次。
求李师傅共要用多少盆,就是求这个空心方阵的总数,可以4个5盆中减去重复计算的4个1盒解:541416⨯-⨯=(盆)答:李师傅摆这个花坛共要用16盆菊花例3.某校180名学生,排成一个三层空心方阵,这个方阵外层每边有多少名学生? 分析:在三层空心方阵中,外层比中层多8,中层比内层多8,如果中层、内层的人数与外层同样多,需要加上3个8人,这样总人数180就多了()83⨯人,平均分成3份,就可求出最外层有多少人,然后求外层每边多少人解:()+⨯÷=÷=(人)684117118180833204368÷+=+=(人)答:这个方阵外层每边有18名学生例4.某班抽出一些学生参加节日活动表演,如果排成一个正方形实心方阵多7人,如果每行每列增加1人,就少4人,共抽出学生多少人?分析:排成一个实心方阵多7人,增加一行一列后少4人,说明增加一行一列的总人数是()74+人,就可先求出原来方阵中一排的人数,然后求出抽出学生总数解:()+-÷=÷=(人)5572573274121025⨯+=+=(人)答:共抽出学生32人【能力训练】A 卷1.同学们排队,要排成每行10人,共10行的方阵,共需要多少人?2.同学们排成十行十列的方阵,如果去掉一行一列,要去掉多少人?3.小明用棋子摆了一个实心方阵,后来他又加上15个棋子,使横竖各增加一排,成为一个大的实心方阵,原来的实心方阵每排有几个棋子?4.一个正方形池塘四周栽满了树,已知每边栽了9棵,并且四个角上都有一棵,这个池塘四周一共栽了多少棵树?5.学校的升旗台成正方形,在四周共放了40盆花,每个角放一盆,每边放花多少盆?6.同学们站队,一共站了15行,如果要去掉2行2列,一共要去掉多少人?7.沿一个正方形水池的四周栽树一行,四角都要栽1棵,共载树152棵。
小学数学方阵问题应用题及参考答案

小学数学方阵问题应用题及参考答案1.全校排成一方阵做操.已知外层共有80人,那么这个学校共有多少学生做操?2.学校要美化校园,要在正方形水池四周摆花,四个角都摆一盆,每边都摆5盆,那么一共要准备多少盆花.3.同学们在操场上排队,每行人数和行数恰好相等,最外一圈有100人,每行多少人.4.同学们在操场上排队,每行人数和行数恰好相等,最外一圈有100人,每行同学们做操,排成一个正方形的队伍,从前,后,左,右数,小红都是第5个,问一共有多少人.5.把12枚棋子均匀围成一个正方形,每边是几枚棋子?6.一个池塘(正方形),每边都种10棵树,最少需要种多少棵,如果有48棵树苗,4角上都要种,平均每边种多少棵.7.四年级大家唱大家跳排成方阵,最外层每边都是25人,最外层一共有多少名队员?整个方阵共有多少名队员?8.一个方阵,最外层每边有10人,最外层一共有多少人?9.一个正方形的操场边长20米,如果每边栽5棵数(每个角的顶点栽一棵),一共要栽多少棵树?每两棵树之间的距离多少米?10.在一个边长是40米的正方形草地的四周擦彩旗,每隔5米插1面(正方形的每个顶点插1面),一共要插多少面彩旗.11.同学们用小红花排成了一个四层空心方阵,最外层每边12朵,共有红花多少朵?12.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少个棋子.摆这个三层空心方阵共用了多少个棋子.13.在迎接神七返回的庆祝活动中,瑞金三中的同学们朝气蓬勃地扭着秧歌,排成了两个正方形阵,每一边有20人,在每个方阵的中心空出了36人的正方形空地,你能算出这个队伍的人数吗?14.一群人排成n×n的方阵,最外3层共有120人,求n的数值.15.共有960名男生站成一个三层的空心方阵,问:中间一层每边有多少人?参考答案:1.解:80÷4+1=21(人),21×21=441(人);答:这个学校共有441个学生做操.【分析】由于四个顶点上的人属于相邻的两个边公共的人,所以每边的人数是:80÷4+1=21(人),因此这个方阵共有学生21×21=441(人),据此解答.2.解:(5-1)×4=4×4=16(盆)答:一共要准备16盆花.【分析】由题意,此题可看作是一个空心方阵,要求四周一共要摆多少盆花,根据“四周的盆数=(每边的盆数-1)×4”解答即可.3. 解:100÷4+1=25+1=26(人)答:每行26人.【分析】每行人数和行数恰好相等,即排成的是一个正方形实心方阵,已知最外一圈有100人,根据“每边的人数=四周的人数÷4+1”解答即可.4.解:每边人数是:5×2﹣1=9(人),共有:9×9=81(人),答:一共有81人.【分析】因为从前、后、左、右数,小红都是第5个,所以每行都有:5×2﹣1=9人,由此利用方阵问题中:总人数=每边人数×每边人数,即可解答.5.解:12÷4+1=4(枚),答:围成的正方形的每边棋子数是4枚.【分析】此题可以利用空心方阵的每边点数=四周点数÷4+1,先求出围成的这个正方形的每边上的棋子数,再进行选择.6.解:(10-1)×4 =9×4 =36(棵)48÷4+1 =12+1 =13(棵)答:最少需要种36棵,如果有48棵树苗,4角上都要种,平均每边种13棵.故答案为:36,13.7.解:25×4-4=100-4=96(名)25×25=625(名)答:最外层一共有96名队员,整个方阵共有625名队员.【分析】根据方阵问题中最外层人数=每边人数×4-4实心方阵中总人数=每边人数×每边人数;代入数据即可解答.8.解:10×4-4=40-4=36(人)答:最外层共有36人.故答案为:36.【分析】最外层每边都是10人,4条边共有:10×4=40(人),由于四个顶点重复计算了1次,实际最外层共有40-4=36(人).9.解:5×4-4 =20-4 =16(棵)20÷(5-1)=20÷4 =5(米)答:一共要栽16棵树,每两棵树之间的距离5米.故答案为:16,5.【分析】根据方阵问题中最外层点数=每边点数×4-4,即可求出植树的总棵数;因为每条边上植树5棵,所以每条边上都有5-1=4个间隔,据此可以求出每个间隔的长度是20÷4=5米.10.解:40÷5+1 =8+1 =9(面)9×4-4 =36-4 =32(面)答:一共要插32面彩旗.故答案为:32.【分析】(1)先求出40里面有几个5,再加1就是每边最多要插的面数;(2)再用每边插的面数×4-4即可解答.11.解:(12-4)×4×4=8×16=128(朵)答:共有红花128朵.【分析】由题意知,要求这个四层空心方阵共有红花多少朵,就是求这个方阵的总点数;根据方阵问题中:空心方阵的总人数=(最外层每边的人数-空心方阵的层数)×空心方阵的层数×4解答即可.12.解:根据分析可得,最里层:15﹣2×2=11(个),(11﹣1)×4=40(个)(15﹣3)×3×4=12×12=144(个)答:明明摆这个方阵最里层一周共有40个棋子.摆这个三层空心方阵共用了144个棋子.故答案为:40,144.【分析】由于方阵每减少一层,每边的围棋子数减少2个,所以这个方阵最里层每边有:15﹣2×2=11个,那么明明摆这个方阵最里层一周共有:(11﹣1)×4=40(个);根据公式:空心方阵的总点数=(最外层每边的点数﹣空心方阵的层数)×空心方阵的层数×4,可得:(15﹣3)×3×4=144(个);据此解答.13.解:(20×20﹣36)×2=(400﹣36)×2=364×2=728(人)答:这个队伍有728人.【分析】每一边有20人,则实心时应该有20×20=400人,减去36人的正方形空地,每一个方阵应有400﹣36=364人.两个方阵共有364×2=728人14.解:120÷4÷3+3=10+3=13(人)这个方阵的最外层每边13人,也就是n=13.答:n的数值是13.【分析】由题意知,可以先看成一个三层空心方阵,已知共有学生120人,要求最外层每边有多少名学生,据方阵问题中:空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,可得出:最外层每边人数=总人数÷4÷层数+层数,据此解答即可.15.解:最外层每边人数是:960÷4÷3+3,=80+3,=83(人),83﹣2=81(人),答:中间一层每边人数是81人.【分析】根据方阵问题中:空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,可得出最外层每边人数=空心方阵总人数÷4÷空心方阵的层数+空心方阵的层数,据此求出最外层每边人数,则再减去2人,就是中间一层的每边人数,据此解答即可.。
小学奥数之方阵问题—例题习题及含答案

方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:一、实心方阵1.方阵总人数=最外层每边人数的平方(方阵问题的核心)=每边数×每边数2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵外一层每边人数比内一层每边人数多24.去掉一行、一列的总人数=去掉的每边人数×2-15、每层数=(每边数-1)×4二、空心方阵1、外边人数=总人数÷4÷层数+层数2、总数=最外层人数2 - 最内层人数2=(最外层每边数-层数)×层数×4=(最外层数+最内层数)×层数÷23、内层数=外层数-84、每层数=(每边数-1)×45、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4的倍数。
例1 四年级同学参加广播操比赛,要排列成每行8人,共8行方阵。
排列这个方阵共需要多少名同学?解题分析这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。
排列成每行8人点,共8行,就是有8个8点。
求方阵里有多少名同学,就是求8个8人是多少人?解:8×8=64(人)答:排列这个方阵,共需要64名同学。
例2 有一堆棋子,刚好可以排成每边6只的正方形。
问棋子的总数是多少?最外层有多少只棋子?解题分析依题意可以知道:每边6只棋子的正方形,就是棋子每6只1排,一共有6排的实心方阵。
根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数=每边人数×每边人数,从而可以求出棋子的总数是多少只。
而最外层棋子数则等于每边棋子数减去1乘以行数4,即(6-1)×4只。
解:(1)棋子的总数是多少?6×6=36(只)(2)最外层有多少只棋子?(6-1)×4=20(只)答:棋子的总数是36只,最外层有20只棋子。
应用题板块-方阵问题(小学奥数四年级)

应用题板块-方阵问题(小学奥数四年级)“方阵问题”是以现实生活中的方阵为题材,通过对方阵中“每边数量”、“边数”、“总数”的自主探究,探索出此类问题中各个数量之间存在的数量关系。
在此过程中,让孩子充分体验模型思想建立的一般过程,感受数学模型的魅力。
【一、题型要领】士兵排队,横着排叫行,竖着排叫列,若行数与列数相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵。
根据不同的排列方式,方阵分为实心方阵和空心方阵。
1.实心方阵【基本概念】实心方阵是内部全部排满的方阵。
下图左侧是一个5 * 5的方阵,下图右侧是一个6 * 6的方阵,图中绿色表示的是方阵的最外层。
【基本公式】假设方阵最外层每边的人数是N(1)方阵层数 = (N + 1)÷ 2,当N为奇数时= N ÷ 2,当N为偶数时(2)方阵最外层总人数 = 最外层每边的人数* 4 - 4 = (N - 1)* 4 (3)方阵总人数 = 最外层每边的人数* 最外层每边的人数= N * N2. 空心方阵【基本概念】空心方阵是内部未全部排满的方阵,注意只能是内部未排满,且未排满的部分也是一个方阵。
下图左侧是一个整体5 * 5,内部1* 1未排满的空心方阵;下图右侧是一个整体6 * 6,内部2 * 2未排满的空心方阵【基本公式】假设方阵最外层每边的人数是N,层数是M(1)方阵最外层总人数 = 最外层每边的人数* 4 - 4 = (N - 1)* 4 (2)内部方阵最外层每边的人数 = 最外层每边的人数 - 2 * 层数 = N - 2 * M(3)方阵总人数 = 外部方阵总人数 - 内部方阵总人数 = N * N - (N - 2 * M)*(N - 2 * M)= 4 * M * (N - M)【二、重点例题】例题1【题目】一个正方形花坛,原来摆了一些花,组成了一个实心方阵,后来运走了11盆花,使行和列都减少了一排,原来摆了多少盆花?【分析】如下图所示,原先鲜花摆放成如下的方阵,蓝色部分为后来运走的鲜花,绿色及省略部分为剩下的鲜花。
【课后延时】小学数学专项《应用题》经典方阵问题基本知识-4星题(含解析)全国通用版

应用题-经典应用题-方阵问题基本知识-4星题课程目标知识提要方阵问题基本知识•概述在日常生活中,我们常把人或物排成正方形的形状,在数学上我们把研究这样的问题称为方阵问题。
在摆放的方阵中如果是实心的,我们叫它实心方阵,也叫中实方阵;如果这个方阵是空心的,我们叫它空心方阵,也叫中空方阵。
•实心方阵的特点总人(或物)数=每边人(或物)数×每边人(或物)数•空心方阵的特点总人(或物)数=(最外层每边人(或物)数−层数)×层数×4奇数层:总人数=中间层总数×层数偶数层:总人数=(外层+内层)×层数÷2若最外层每边有a人,内部虚方阵每边有b人,则空心方阵共有(a2−b2)人。
•变化规律相邻两边之间相差2;相邻两层之间相差8;每层人(或物)数=每边人(或物)数×4−4 =[每边人(或物)数−1 ] ×4精选例题方阵问题基本知识1. 五年级学生分成两队参加学校广播操比赛,他们排成甲、乙两个方阵,其中甲方阵每边的人数等于8,如果两队合并,可以另排成一个空心的丙方阵,丙方阵每边的人数比乙方阵每边的人数多4人,甲方阵的人数正好可以填满丙方阵的空心,那么,五年级参加广播操比赛的一共有人.【答案】260【分析】根据题意,乙方阵加上两个甲方阵的人数128人可以构成实心的丙方阵,且丙方阵每边人数比乙方阵多4人,所以由(b+4)2−b2=128,得到:4×(2×b+4)=128,所以b=14,因此乙方阵每边人数14人,五年级一共有14×14+8×8=260(人).2. 有一些人组成2个正方形方阵,2个正方形方阵之间相差97个人,那么这2个正方形方阵一共有人.【答案】4705【分析】假设A方阵有a人,B方阵有b人,那么应该有b2−a2=97,因此(b−a)(b+a)=97,49×49+48×48=4705.3. 有196枚围棋子,摆成一个14×14的正方形.甲、乙两人依次从最外一层起取走每一层的全部棋子,直到取完为止,甲比乙多取了枚棋子.【答案】28【分析】196枚围棋子围成的方阵,最外层棋子数为14×4−4=52,相邻两层棋子数相差8,从外向内每一层棋子数为:52、44、36、28、20、12、4.所以甲取走了52+36+20+4=112(枚)棋子,乙取走了44+28+12=84(枚)棋子,甲比乙多取了112−84=28(枚)棋子.4. 东风小学仪仗队的同学们排队,若排成正方形,则多余12名同学,如果把这个正方形扩大,纵横每排各增加一人,则缺少9人.【答案】112【分析】增加的一行一列有12+9=21(人),那么原来排成的正方形的每条边上有(21−1)÷2=10(人),东风小学仪仗队有学生10×10+12=112(人).5. 一个正方形方阵,其中的4行5列的人数总和为250人,那么如果将这个方阵去掉一行一列还剩人.【答案】841【分析】4行5列,包括重复计算的:250+20=270人,每行:270÷9=30人,所以还剩:30×30−30−30+1=841人6. 有大小相同的正方形白石和黑石各n个.首先,将黑石不留空隙地摆成一个正方形,然后在其外围摆一圈白石,再用剩下的黑石在白石圈的外围摆一圈,最后再用剩下的白石在黑石的外围再摆一圈,正好将所有石子用完(如下图所示).那么2n=.【答案】144个【分析】如上图所示,记最外层的一圈白石为a个,它里面的一圈黑石为b个,再里边的一圈白石为c个,最中间的黑石组成的正方形再分成外面一圈(d个)和里面的正方形(e个)两部分.注意到a−b=b−c=c−d=8,所以c=d+8,b=d+16,a=d+24.因为黑石的总数=白石的总数,所以b+d+e=a+c,d+16+d+e=d+8+d+24,e=32−16=4×4.最大的正方形的每一边有4+4×2=12(个)石子,所以石子的总数为12×12=144(个).7. 小虎在19×19的围棋盘的格点上摆棋子,先摆成了一个长方形的实心点阵.然后再加上45枚棋子,就正好摆成一边不变的较大的长方形的实心点阵.那么小虎最多用了枚棋子.【答案】285【分析】45=3×3×5,它小于19的最大约数为15,所以不变的边长应为15,另一边最长为19,所以小虎最多用了15×19=285(枚)棋子.8. 在一个实心学生方阵中加入13人,可将原来的方阵变成一个多一行,多一列的大方阵,则原来的方阵有学生多少人?【答案】36【分析】(13-1)÷2=6(人),所以原来的方阵有6×6=36(人).9. 用白、蓝两种颜色的正方形瓷砖铺满一面正方形的墙,共用了324块,最里面一层是蓝色的,第二层是白色,第三层是蓝色……这样下去,最外面一层是什么颜色?整面墙上共有白色瓷砖多少块?【答案】蓝色;144.【分析】324=18×18,共有9层,所以最外层是蓝色的;共有白色瓷砖:12+28+44+ 60=144块.10. 在一个实心学生方阵中加入若干人,原来的方阵变成一个多一行,多一列的方阵;若原来的方阵减少13人,可将原来的方阵变成一个少一行,少一列的方阵,问后来加入的学生有多少人?【答案】15【分析】(13+1)÷2=7(人),7×2+1=15(人),所以后来加入的学生有15人.11. 在一个实心学生方阵中减少11人,可将原来的方阵变成一个少一行,少一列的方阵,则原来的方阵有学生多少人?【答案】36【分析】(11+1)÷2=6(人),所以原来的方阵有6×6=36(人).12. 有大小一样,张数相同的黑白两种颜色的正方形纸片.小高用白色纸片拼成中间没有缝隙的长方形,然后用黑色纸片围绕已经拼成的白色长方形继续拼成更大的长方形,之后有用白色纸片拼下去,……,这样重复拼.当小高用黑色纸片拼过5次以后,黑、白纸片正好用完.请问:黑色纸片至少有多少张?【答案】350张.【分析】不妨设每张小纸片的边长为1.从外往内,每次同时“剥开”一层黑纸片和一层白纸片,剥了5次之后,就只剩下中心的一个由白纸片组成的长方形.每次“剥开”的过程,黑纸片比白纸片多8张.由于一共有5层黑纸片,所以一共可以剥除5次,所有被剥除的黑纸片比所有被刹除的白纸片多40张,而总共的黑白纸片数量相同,所有最后剩余的只有白纸片构成的长方形中有40张白纸片.这个长方形的长和宽都是整数,它的长与宽的所有可能是:40×1、20×2、10×4、8×5.由于全部纸片铺成的大长方形的长和宽比被“剥除”五次之后剩下的长方形的长和宽都大20,所以大长方形的面积可以是60×21=1260、40×22=880、30×24=720、28×25= 700,其中最小的面积是700.而黑纸片的张数是这个面积的一半,所以最少有黑纸片350张.13. 如图,一块绿地由3块相同的等边三角形草地和一个水池构成.现在要在草地上种花,要求在草地与草地的公共点都种上(即图中的A、B、C点),且每块草地上的花朵排成了一个三角形点阵,且每条边上有10朵花.请问:整个绿地一共要种多少朵花?【答案】162朵.【分析】每个三角形草地里每边都有10朵花,所以每片草地有:1+2+3+4+5+6+7+8+9+10=55朵花,三片草地共有:55×3=165朵花.但这样算,三角形的连接处都被算了2次,多算1次,所以整个绿地一共种花165−3=162朵.14. 某小学三年级共有学生120人,排成一个三层的空心方阵.这个方阵最外层每边有多少人?如果在外面加一层,变成一个四层的空心方阵,那应该增加几个人?如果在内部再加一层,变成一个五层的空心方阵,那么还需要增加几个人?【答案】13;56;24.【分析】一个三层方阵,外层比中层多8人,中层比内层多8人,所以中层有:120÷3=40人,最外层共有40+8=48人,所以,最外层每边48÷4+1=13人;外面加一层需要有48+8=56人;内部加一层需要40−8−8=24人.15. 某校少先队员可以排成一个四层空心方阵,如果最外层每边有20个学生,问这个空心方阵最内层共有多少个学生?这个四层空心方阵共有多少个学生?【答案】52;256【分析】20−2−2−2=14(人);14×4−4=56−4=52(人);14−2=12(人),202−122=400−144=256(人).所以这个空心方阵最内层共有52个学生,这个四层空心方阵共有256个学生.16. 在学校的运动会上,同学们集体表演一个节目,站成了一个空心的正六边形阵列,与图中的阵列类似.从外向内一共8层,分别站着两层六年级的同学、两层五年级的同学、两层四年级的同学以及两层三年级的同学.已知参加表演的六年级同学有126名,那么:(1)最外层有多少人?(2)现在阵列中一共有多少人?(3)如果想要让一、二年级的同学把这个空心阵列填满,还需要多少人?(最里层可站1个人)【答案】(1)66人;(2)360人;(3)37人.【分析】(1)六边形阵列中,相邻两层相差6人,所以最外层共有:(126+6)÷=66人.(2)共有:66+60+54+48+42+36+30+24=360人(3)还需要:18+12+6+1=37人.17. 若干学生排成一个实心方阵,最外一层每边有12人,共有多少层?1∼4层一共有多少人?【答案】6;64【分析】12÷2=6(层),2×4=8(人),8×8=64(人),所以共有6层,1∼4层一共有64人.18. 120个棋子摆成一个三层空心方阵,最外层每边有多少棋子?【答案】13个【分析】中间层总数为120÷3=40(人),则每边有40÷4+1=11(人),所以最外层每边有11+2=13(人).19. 若干学生排成一个实心方阵,最外一层每边比最内一层多10人,共有多少层?【答案】6【分析】(10÷2)+1=6(层),所以共有6层.20. 同学们用64盆花排出一个两层空心方阵,后来又决定在外面再增加一层成为三层方阵,还需多少盆花?【答案】44【分析】对于两层方阵,外层比内层多8盆,两层共64盆,利用和差问题的解法,可以求出外层盆数是(64+8)÷2=36(盆),从而得出需增加的盆数,36+8=44(盆).21. 刘老师把一些树苗栽种成一个尽量大的实心方阵,结果还多出了6棵树苗;后来又运来了34棵树苗,恰好能补成一个更大的实心方阵.那么后来的方阵最外层每边有多少棵树?【答案】11或7【分析】若增加了1层,则现在最外层共有40棵树,所以最外层每边共有:(40+4)÷4= 11;若增加了2层,则40=16+24,此时最外层有:(24+4)÷4=7(棵)树.22. 在一个实心学生方阵中加入9人,可将原来的方阵变成一个多一行,多一列的大方阵,则原来的方阵有学生多少人?【答案】16【分析】(9-1)÷2=4(人),所以原来的方阵有4×4=16(人).23. 在一次运动会开幕式上,有一大一小两个方阵合并变换成一个10行10列的方阵,求较小方阵有多少人?【答案】36【分析】10行10列的方阵由100人组成,原来的小方阵每行或每列人数都不会超过10人,大方阵人数应该在50∼100之间,可取64或81,运用枚举法,可求出满足条件的是:大方阵有64人,小方阵有36人.24. 用黑、白两种颜色的正方形瓷砖共256块铺满一面正方形的墙,最外一层是黑色,第二层是白色,第三层是黑色……这样下去,那么整面墙上共有黑色瓷砖多少块?【答案】144.【分析】256=16×16,所以最外层每边16块,从外往里共有8层,所以黑的共有:60+ 44+28+12=144块.25. 一队战士排成一个三层空心方阵多出16人,如果在空心部分再增加一层又缺28人,这队战士共有多少人?【答案】196【分析】16+28=44(人),所以空心部分新增一层每边有44÷4+1=12(人),所以最外层每边有12+2×3=18(人),所以排好的三层共182−122=324−144=180(人),因此这队战士共180+16=196(人).26. 如图所示,用10枚棋子可以摆出一个正三角形点阵,每边4枚棋子;用9枚棋子可以摆成一个正方形点阵,每边3枚棋子.今有一堆棋子,棋子总数小于100,用这堆棋子既可以摆出一个正三角形点阵,也可以摆出一个正方形点阵,问这堆棋子共有多少枚?【答案】36【分析】100以内的平方数,只有62=36=1+2+3+4+5+6+7+8所以36既可以组成边长为6的方阵,也能组成边长为8的正三角形点阵.27. 有一个240人排成的5层空心方阵,再增加多少人在最内层,就可以使该方阵变成一个6层空心方阵?【答案】24【分析】240÷4÷5+5=12+5=17(人),17−2−2−2−2−2=7(人),(7−1)×4=24(人),答:再增加24人在内部,就可以使该方阵变成一个6层空心方阵.28. 晓晓爱好围棋,他用棋子在棋盘上摆了一个二层空心方阵,如图所示,外层每边有14个棋子,你知道他一共用了多少个棋子吗?【答案】96【分析】方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个棋子,就可以求出第二层每边的个数.知道各层每边的个数,就可以求出总数.(14−1)×4=52(个)(14−2−1)×4=44(个)52+44=96(个)一共用了96个棋子.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学应用题之方阵问题
【含义】
将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
【数量关系】
(1)方阵每边人数与四周人数的关系:
四周人数=(每边人数-1)×4
每边人数=四周人数÷4+1
(2)方阵总人数的求法:
实心方阵:总人数=每边人数×每边人数
空心方阵:总人数=外每边的人数平方-内每边的人数平方内每边人数=外每边人数-层数×2
(3)若将空心方阵分成四个相等的矩形计算,则:
总人数=(每边人数-层数)×层数×4
【解题思路和方法】
方阵问题有实心与空心两种。
实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1:
佳一学校参加运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少23人。
那么参加团体操表演的运动员一共有多少人?
解:
1、要知道参加表演的运动员共有多少人,只需要找到最外层每边有多少人即可。
2、一个正方形队列,减去一行和一列,就是去掉了两条边上的人数,其中顶点上的人数计算了两次,所以减少的人数=每边的人数×2-1。
所以开始每边有(23+1)÷2=12(人),参加表演的有12×12=144(人)。
例2:
欢欢用围棋子围成一个三层空心方阵,最外一层每边有围棋子16枚,欢欢摆这个方阵共用了多少枚围棋子?
解法1:
1、本题考查的空心方阵,根据四周的枚数和每边上的枚数之间的关系,算出每一层的棋子数。
2、方阵每向里一层,每边的枚数就减少2枚。
知道最外一层每边放16枚,就可求出第二层及第三层每边枚数,知道各层每边的枚数,就可以求出各层的总数。
最外一层的棋子的枚数:(16-1)×4=60(枚),第二层棋子的枚数:(16-2-1)
×4=52(枚),第三层棋子的枚数:(16-2-2-1)×4=11×4=44(枚),摆这个方阵共用了60+52+44=156(枚)棋子。
解法2: 若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4。
则:(16-3)×3×4=156(枚)
例3:
一个实心方阵由81人组成,这个方阵的最外层有多少人?
解:
方阵的行数和列数相同,9×9=81,所以这是一个9行9列的方阵。
最外层人数与一边人数的关系:一边人数×4-4=一层人数。
所以最外层的人数是9×4-4=32(人)。
例4:
明明在一个用棋子排成的实心方阵的下面和右面各多排一排棋子,一共用了23个棋子,这样排成了一个新方阵,他又把这个新方阵改排成一个4层的空心方阵,这个方阵最外层每边有多少个棋子?
解:
1、根据题意,排成的这个新方阵的每边棋子数是(23+1)÷2=12(个),那么这个实心方阵的棋子总数是12×12=144(个)。
2、根据空心方阵中,每相邻的两层的棋子数相差8的关系,我们可以找出等量关系,列方程解决。
设最外层有x个棋子,则从外到内每层的棋子数分别是(x-8)个、(x-16)个、(x-24)个。
则:x+ x-8+x-16+x-24=144,x=48
所以这个方阵最外层每边有48÷4+1=13(个)棋子。