数学分析教案(华东师大版)第十七章多元函数微分学
《数学分析》第十七章多元函数微分学

06 曲线积分与曲面积分在多 元函数中的应用
曲线积分计算及其在电磁学中的应用
曲线积分的定义与计算方法
包括第一类曲线积分和第二类曲线积分的概念、性质及计算 方法。
曲线积分在电磁学中的应用
通过曲线积分可以计算电场强度、磁场强度等物理量,进而 研究电磁场的分布和变化规律。
曲面积分计算及其在流体力学中的应用
如果函数$f(x,y)$在点$P_0(x_0,y_0)$ 的某一邻域内有定义,且$lim_{(x,y) to (x_0,y_0)}f(x,y)=f(x_0,y_0)$,则称 函数$f(x,y)$在点$P_0(x_0,y_0)$连续。
如果函数$f(x,y)$在点$P_0(x_0,y_0)$ 不连续,则称$P_0(x_0,y_0)$为函数 $f(x,y)$的间断点。
全微分概念与计算
全微分的定义
全微分是多元函数微分学中的一个重要概念,表示函数在某一点附 近的变化量可以近似地用一个线性函数来表示。
全微分的计算
全微分可以通过偏导数来计算,具体为将函数的增量表示为各自变 量增量的线性组合,系数即为偏导数。
全微分的几何意义
全微分表示函数在某一点附近的变化量,可以用来近似计算函数值 的增量。
多元反函数微分法
多元反函数存在定理
若函数$f: D subseteq mathbb{R}^n to mathbb{R}^n$在点$x_0$处可逆,即存在反函数$f^{-1}$,则$f^{1}$在点$f(x_0)$处也可微。
多元反函数微分法
设$y = f(x)$在点$x_0$处可微,且$f'(x_0)$可逆,则反函数$x = f^{-1}(y)$在点$y_0 = f(x_0)$处也可微,且其 导数为$[f^{-1}]'(y_0) = [f'(x_0)]^{-1}$。
《数学分析》多元函数微分学

《数学分析》多元函数微分学多元函数微分学是数学分析的重要分支之一,研究的对象是多元函数。
在微积分领域,一元函数的微分学研究的是一元函数的导数及其应用,而多元函数微分学则研究的是多元函数的偏导数、全微分、方向导数等。
在多元函数微分学中,最基本的概念是偏导数。
对于一个多元函数,其偏导数就是固定其它变量,只对一个变量求导。
偏导数描述了函数在其中一方向上的变化率。
一元函数的导数可以理解为函数在一条直线上的变化率,而偏导数可以理解为函数在一个坐标轴上的变化率。
在多元函数微分学中,我们也可以定义高阶偏导数。
高阶偏导数描述了多元函数的曲率和变化率的变化。
高阶偏导数可以通过迭代地对偏导数求导得到。
除了偏导数以外,多元函数微分学还研究了全微分。
全微分是函数在其中一点的微小增量与自变量的增量之间的线性关系。
全微分可以用来近似表示函数的改变。
多元函数微分学还研究了方向导数。
方向导数是函数在其中一点沿着其中一方向的变化率。
方向导数可以用来描述函数在一些方向上的变化速率,其计算方法与偏导数类似。
在多元函数微分学中,还有许多重要的定理和应用。
例如,拉格朗日中值定理可以描述函数在一些区间上的变化率与端点的关系;极值定理可以帮助我们找到函数的最大值和最小值;隐函数定理可以帮助我们求解由方程组确定的隐函数。
多元函数微分学在各个科学领域具有广泛的应用。
在物理学中,多元函数微分学可以帮助我们描述物体运动的速度和加速度;在经济学中,多元函数微分学可以帮助我们描述生产函数和边际效益;在工程学中,多元函数微分学可以帮助我们分析电路、流体力学等问题。
总之,多元函数微分学是数学分析的重要分支,研究的是多元函数的偏导数、全微分、方向导数等。
多元函数微分学具有广泛的应用,是许多科学领域的基础。
《数学分析》多元函数微分学

《数学分析》多元函数微分学数学分析是数学中的一个重要分支,它主要研究的是函数的变化规律。
在数学分析中,多元函数微分学是一个重要的内容,它研究的是多元函数在其中一点的微分性质。
本文将介绍多元函数微分学的基本概念和定理,以及一些相关的应用。
一、多元函数的定义在数学中,多元函数是指定义在多维空间中的函数。
通常情况下,多元函数可以用一个或多个自变量来描述,例如二元函数可以写成f(x,y),三元函数可以写成f(x,y,z)等。
多元函数在数学分析中有着重要的应用,因此多元函数微分学也是数学分析的重要内容之一二、偏导数的定义在多元函数微分学中,偏导数是一个重要的概念。
偏导数表示函数在其中一个方向上的变化率,可以通过对函数的自变量进行偏微分来得到。
偏导数的定义如下:对于一个具有多个自变量的函数f(x₁, x₂, ..., xn),其在点(a₁,a₂, ..., an)处关于第i个自变量的偏导数定义为:∂f/∂xi = lim(h→0) [f(a₁, ..., ai+h, ..., an) - f(a₁, ...,ai, ..., an)] / h其中偏导数表示在变量xi方向上的变化率,可以通过对xi进行微小改变来计算函数f的变化量。
三、偏导数的性质偏导数具有一些性质,其中最重要的是混合偏导数的性质。
对于一个具有多个自变量的函数f,它的混合偏导数可以通过对其各个自变量的偏导数进行求导得到。
混合偏导数的性质如下:∂/∂x(∂f/∂y)=∂/∂y(∂f/∂x)这个性质表明对于一个函数f,其混合偏导数与求导的顺序无关,这为我们在实际应用中提供了便利。
四、多元函数的微分多元函数的微分是多元函数微分学中的一个重要内容。
对于一个具有多个自变量的函数f,其在其中一点处的微分可以表示为:df = ∂f/∂x₁dx₁ + ∂f/∂x₂dx₂ + ... + ∂f/∂xn dxn其中dx₁, dx₂, ..., dxn表示自变量的微小变化量。
数学分析课本(华师大三版)-习题及答案第十七章

第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有x y1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1xZ ∂∂+y 1y Z ∂∂=2y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x x F x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx m k =f t n (x,y,z)(t>0) 证明:(1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x x f x +()z ,y ,x kyf y +()z ,y ,x m zf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n k n k 21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 22e t a 21--π(a,b 为常数)满足热传导方程:tu ∂∂=222x u a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22yu ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22yu ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂x u y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=z y x.2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctg x y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求xdZ α; (2) 设Z=xy y x 2222e xy y x ++,求x Z ∂∂,y Z ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模. 20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度. 22.设r=222z y r ++,试求:(1)grad r; (2)grad r1. 23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23yx z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数;(6) u=f(x 2+y 2+x 2),所有二阶偏导数; (7)Z=f(x+y,xy,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止); (2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤; (2) Z=22y x y x +-,(){}1y x y ,x ≤+; (3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1nn1n 21n 12n 2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n 1k k0;x u (2) ∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f(a y k xh dt g(t)d n n n ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求xk z h y g y f x e z d z c y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z)h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明 1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin xy ,试证 m y y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0.。
数学分析课本(华师大三版)-习题及答案第十七章

第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有x y1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1xZ ∂∂+y 1y Z ∂∂=2y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x x F x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx m k =f t n (x,y,z)(t>0) 证明:(1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x x f x +()z ,y ,x kyf y +()z ,y ,x m zf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n k n k 21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 22e t a 21--π(a,b 为常数)满足热传导方程:tu ∂∂=222x u a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22yu ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22yu ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂x u y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=z y x.2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctg x y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求xdZ α; (2) 设Z=xy y x 2222e xy y x ++,求x Z ∂∂,y Z ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模. 20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度. 22.设r=222z y r ++,试求:(1)grad r; (2)grad r1. 23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23yx z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数;(6) u=f(x 2+y 2+x 2),所有二阶偏导数; (7)Z=f(x+y,xy,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止); (2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤; (2) Z=22y x y x +-,(){}1y x y ,x ≤+; (3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1nn1n 21n 12n 2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n 1k k0;x u (2) ∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f(a y k xh dt g(t)d n n n ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求xk z h y g y f x e z d z c y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z)h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明 1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin xy ,试证 m y y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0.。
17-3——华东师范大学数学分析课件PPT

高等教育出版社
§3 方向导数与梯度
说明 (i) 函数在一点可微是方向导数存在的充分条 件而不是必要条件; (ii) 函数在一点连续同样不是方向导数存在的必要 条件, 当然也非充分条件 ( 对此读者应能举出反例 ).
定义2
若 f ( x, y, z) 在点 P0( x0 , y0 , z0 ) 存在对所有自变量 的偏导数, 则称向量 ( fx (P0 ), f y (P0 ), fz (P0 ))为函数 f 在点 P0 的梯度, 记作
(2)
其中 , 是 R2 中向量 l 的方向角.
数学分析 第十七章 多元函数微分学
高等教育出版社
§3 方向导数与梯度
例 1 设 f ( x, y, z) x y2 z3, 求 f 在点 P0(1,1,1) 处
沿着指向点 P1(3, 1, 2) 方向的方向导数.
解 易见 f 在点 P0 可微. 故由
U (P0 ) R3 内有定义,l 为从点 P0 出发的射线.
任给 P( x, y, z) l U(P0 ), 记 | P0P |,若极限
f lim l lim
f (P) f (P0 )
0
0
存在, 则称此极限为函数 f 在点 P0 沿方向 l 的
方向导数, 记作 f l
,
f l
z P• P0 •
l
O
x y
y
由假设 f 在点 P0 可微,则有
x
图17 – 5
f (P) f (P0 ) fx (P0 ) x f y(P0 ) y
fz (P0 ) z o ( ). 上式左、右两边皆除以 , 并根据 (2) 式可得
数学分析 第十七章 多元函数微分学
数学分析2课件:第十七章 多元函数微分学

lim
x0
00 x
0.
于是,
f
x
(
x
,
y
)
y( (x
y
2
2 x2) y2 )2
,
x2 y2 0,
0,
x2 y2 0.
(2) 求 f y ( x, y). 当 x2 y2 0 时, 即 x 0 且 y 0时,
f y(x,
y)
xy x2 y2
y
x ( x2 y2) 2 y xy ( x2 y2 )2
第十七章 多元函数微分学
§1 可微性 §2 复合函数微分法 §3 方向导数与梯度 §4 泰勒公式与极值问题
§1 可微性
一、全微分的定义 二、偏导数的定义及其计算法 三、可微的条件 四 可微性的几何意义与应用
一、全微分的定义
由一元函数微分学中增量与微分的关系得
f ( x x, y) f ( x, y) f x ( x, y)x
T p
RT V2
R p
V R
RT pV
1.
有关偏导数的几点说明:
1、
偏导数 u 是一个整体记号,不能拆分; x
2、 求分界点、不连续点处的偏导数要用定义求;
例6
设
f
( x,
y)
xy x2 y2
,
x2 y2 0, 。
0,
x2 y2 0
求 f x ( x, y), f y ( x, y). 解 (1) 先求 f x ( x, y).
如果考虑点 P(x, y)沿着直线 y x 趋近于(0, 0),
则
x y (x)2 (y)2
x x (x)2 (x)2
1 2
,
数学分析课件华东师大版

数学分析课件华东师大版
汇报人:
目录
• 引言 • 数学分析基础 • 导数与微分 • 积分学 • 无穷级数 • 多元函数微积分
01
引言
课程简介
01
数学分析是数学专业的一门基础 课程,主要研究实数、函数、极 限、连续性、可微性和积分等概 念及其性质。
02
通过学习数学分析,学生可以掌 握数学的基本原理和方法,培养 逻辑思维能力、抽象思维能力和 解决问题的能力。
总结词
理解无穷级数的定义和性质是掌握无穷级数的基础。
详细描述
无穷级数是数学分析中的一个重要概念,它是由无穷多个数按照一定的规则排列组成的数列。无穷级数具有一些 重要的性质,如线性性质、可加性、可乘性和收敛性等。这些性质在无穷级数的运算和证明中有着广泛的应用。
无穷级数的收敛性判别法
总结词
掌握无穷级数的收敛性判别法是判断无穷级数收敛性的关键。
定积分的计算
牛顿-莱布尼兹公式
分部积分法
牛顿-莱布尼兹公式是计算定积分的常 用方法,它通过求不定积分的原函数 (即不定积分),然后利用原函数计 算定积分。
分部积分法是另一种计算定积分的方 法,通过将两个函数的乘积进行求导 ,将定积分转化为容易计算的积分。
换元法
换元法是一种常用的计算定积分的方 法,通过改变定积分的积分变量或积 分区间,将复杂的积分转化为容易计 算的积分。
极限的性质
极限具有唯一性、局部有界 性、局部保序性、迫近性等 性质。
连续函数的性质
连续函数具有局部有界性、 局部保序性、迫近性等性质 。
偏导数与全微分
偏导数的定义
如果一个函数在某个点的某个 自变量的偏导数存在,则称该 函数在该点关于该自变量可偏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章多元函数微分学
教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。
教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。
教学时数:18学时
§1 可微性
一.可微性与全微分:
1.可微性:由一元函数引入. 亦可写为, 时.
2.全微分:
例1 考查函数在点处的可微性 . P107例1
二.偏导数:
1.偏导数的定义、记法:
2.偏导数的几何意义: P109 图案17—1.
3.求偏导数:
例2 , 3 , 4 . P109—110例2 , 3 , 4 .
例5. 求偏导数.
例6. 求偏导数.
例7. 求偏导数, 并求.
例8. 求和.
解=,
=.
例9
证明函数在点连续, 并求和.
证
. 在点连续 .
,
不存在 .
三.可微条件:
1.必要条件:
Th 1 设为函数定义域的内点.在点可微, 和存在, 且
. ( 证) 由于, 微分记为
.
定理1给出了计算可微函数全微分的方法.
两个偏导数存在是可微的必要条件, 但不充分.
例10考查函数
在原点的可微性 . [1]P110 例5 .
2.充分条件:
Th 2 若函数的偏导数在的某邻域内存在, 且和在点处连续 . 则函数在点可微 . ( 证) P111 Th 3 若在点处连续, 点存在,
则函数在点可微 .
证
.
即在点可微 .
要求至少有一个偏导数连续并不是可微的必要条件 .
例11
验证函数在点可微, 但和在点处不连续 . (简证,留为作业)
证
因此, 即,
在点可微, . 但时, 有
,
沿方向不存在, 沿方向极限
不存在; 又时,
,因此, 不存在, 在点处不连续. 由关于和对称,也在点处不连续 .
四.中值定理:
Th 4 设函数在点的某邻域内存在偏导数 . 若属于该邻域, 则存在和, , 使得
. ( 证) 例12设在区域D内. 证明在D内.
五.连续、偏导数存在及可微之间的关系:
六.可微性的几何意义与应用:
1.可微性的几何意义:切平面的定义. P113.
Th 5 曲面在点存在不平行于轴的切平面的充要条件是函数在点可微 . ( 证略)
2. 切平面的求法: 设函数在点可微,则曲面
在点处的切平面方程为(其中
)
,
法线方向数为,
法线方程为.
例13试求抛物面在点处的切平面方程和法线方程 . P115例6
3. 作近似计算和误差估计: 与一元函数对照, 原理 .
例14 求的近似值. P115例7
例15 应用公式计算某三角形面积 . 现测得
,. 若测量的误差为的误差为. 求用此公式计算该三角形面积时的绝对误差限与相对误差限. P116.
§2 复合函数微分法
简介二元复合函数: .
以下列三种情况介绍复合线路图
;
, ;
.
一.链导法则: 以“外二内二”型复合函数为例.
Th 设函数在点D可微, 函数
在点可微, 则复合函数
在点可微, 且
,
. ( 证) P118
称这一公式为链导公式 . 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括 .
对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.
链导公式中内函数的可微性可减弱为存在偏导数 . 但对外函数的可微性假设不能减弱.
对外元, 内元, 有
,.
外元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数.
例1. 求和. P120例1
例2, . 求和.
例3, 求和.
例4设函数可微 ..求、和.
例5用链导公式计算下列一元函数的导数:
ⅰ> ; ⅱ> . P121例4
例6设函数可微. 在极坐标变换下, 证明
. P120例2 例7设函数可微, . 求证
.
二.复合函数的全微分: 全微分和全微分形式不变性 .
例8. 利用全微分形式不变性求, 并由此导出和.P122 例5
§3 方向导数和梯度
一.方向导数:
1.方向导数的定义:
定义设三元函数在点的某邻域内有定义 .
为从点出发的射线 . 为上且含于内的任一点, 以表示与两点间的距离 . 若极限
存在, 则称此极限为函数在点沿方向的方向导数, 记为或、.
对二元函数在点, 可仿此定义方向导数 .
易见, 、和是三元函数在点分别沿轴正向、轴正向和轴正向的方向导数 .
例1=. 求在点处沿方向的方向导数,其中ⅰ>为方向; ⅱ>为从点
到点的方向.
解ⅰ>为方向的射线为. 即
. ,
.
因此,
ⅱ>从点到点的方向的方向数为
方向的射线为.
, ;
.
因此,
2. 方向导数的计算:
Th 若函数在点可微, 则在点处沿任一方向的方向导数都存在, 且
++,
其中、和为的方向余弦. ( 证) P125 对二元函数, +, 其中和是的方向角.
註由++=
=, , , , , 可见, 为向量, , 在方向上的投影.
例2 ( 上述例1 )
解ⅰ>的方向余弦为=, =, =.
=1 , =, =.
因此, =++
=.
ⅱ>的方向余弦为
=, =, =. 因此, =.
可微是方向导数存在的充分条件, 但不必要 .
例3 P126 .
二. 梯度( 陡度):
1. 梯度的定义: , , .
|= .
易见, 对可微函数, 方向导数是梯度在该方向上的投影.
2. 梯度的几何意义: 对可微函数, 梯度方向是函数变化最快的方向 . 这是因为
|.
其中是与夹角. 可见时取最大值, 在的反方向取最小值 .
3. 梯度的运算:
ⅰ> .
ⅱ>(+) = +.
ⅲ> () = +.
ⅳ> .
ⅴ> () = .
证ⅳ> , .
.
§4 Taylor公式和极值问题
一、高阶偏导数:
1.高阶偏导数的定义、记法:
例9 求二阶偏导数和. P128例1 例10 . 求二阶偏导数. P128例2 2.关于混合偏导数: P129—131.
3.求含有抽象函数的二元函数的高阶偏导数: 公式, P131-132
例11 . 求和. P132例3
4. 验证或化简偏微分方程:
例12 . 证明+ . ( Laplace方程) 例13 将方程变为极坐标形式.
解.
, , , .
, ;
因此, .
方程化简为.
例14试确定和, 利用线性变换将方程
化为.
解, .
=+++=
=+2+.
=+++=
=++.
=++.
因此,
+ (+ . 令, 或
或……, 此时方程化简为.
二.中值定理和泰肋公式:
凸区域 .
Th 1 设二元函数在凸区域D 上连续, 在D的所有内点处可微 . 则对D内任意两点 D , 存在, 使
.
证令.
系若函数在区域D上存在偏导数, 且, 则是D上的常值函数.
二. Taylor公式:
Th 2 (Taylor公式) 若函数在点的某邻域内有直到阶连续偏导数, 则对内任一点,存在相应的, 使
证P134
例1 求函数在点的Taylor公式( 到二阶为止) . 并用它计算P135—136例4 .
三. 极值问题:
1. 极值的定义: 注意只在内点定义极值.
例2 P136例5
2.极值的必要条件:与一元函数比较 .
Th 3 设为函数的极值点 . 则当和存在时, 有
=. ( 证)
函数的驻点、不可导点,函数的可疑点 .
3. 极值的充分条件:
代数准备: 给出二元( 实)二次型. 其矩阵为
.
ⅰ> 是正定的,顺序主子式全,
是半正定的,顺序主子式全;
ⅱ> 是负定的,, 其中为阶顺序主子式.
是半负定的, .
ⅲ> < 0时, 是不定的.
充分条件的讨论: 设函数在点某邻域有二阶连续偏导数 . 由Taylor公式, 有
++ .
令, , , 则当为驻点时, 有
.其中
.
可见式的符号由二次型完全决定.称该二次型的矩阵为函数的Hesse矩阵. 于是由上述代数准备, 有ⅰ> , 为( 严格) 极小值点;
ⅱ> , 为( 严格) 极大值点;
ⅲ> 时, 不是极值点;
ⅳ> 时, 可能是极值点, 也可能不是极值点 .
综上, 有以下定理 .
Th 4 设函数在点的某邻域内有连续的二阶偏导数, 是驻点 . 则
ⅰ> 时, 为极小值点;
ⅱ> 时, 为极大值点;
ⅲ> 时, 不是极值点;
ⅳ> 时, 可能是极值点, 也可能不是极值点 .
例3—7 P138—140 例6—10 .
四.函数的最值:
例8 求函数
在域D = 上的最值 .
解令解得驻点为. .
在边界上, , 驻点为, ;
在边界上, , 没有驻点;
在边界上, ,
驻点为, .
又.
于是,
.
.[]。