湖北省孝感市文昌中学2018-2019学年九年级上学期期末考试数学试题

合集下载

人教版2018-2019学年初三数学第一学期期末试卷及答案解析

人教版2018-2019学年初三数学第一学期期末试卷及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.。

湖北省鄂州市2018-2019学年度人教版九年级上期末数学试题及答案

湖北省鄂州市2018-2019学年度人教版九年级上期末数学试题及答案

湖北省鄂州市2018-2019学年度人教版九年级上期末数学试题及答案一、选择题(每小题3分,共30分) 1.下列式子是最简二次根式的是( )A .21B .313C .51D .82.在平面直角坐标系中,点A (1,3)关于原点O对称的点A′的坐标为( )A .(-1,3)B .(1,-3)C .(3,1)D .(-1,-3)3. 下列函数中,当x >0时,y 的值随x 的值增大而增大的是( )A .y =-x 2B .y =x -1C .y =-x +1D .y =x14.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( )A .抽10次必有一次抽到一等奖B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 5.若式子12x -x +有意义,则x 的取值范围是( ) A .x ≥-2B .x >-2且x ≠1C .x ≤-2D .x ≥-2且x ≠16.将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB′C′,若AC =1,则图中阴影部分面积为( ) A .33 B .63C .3D .337.如图,直线AB 、AD 分别与⊙O相切于点B 、D ,C 为⊙O上一点,且∠BCD =140°,则∠A 的度数是( ) A .70°B .105°C .100°D .110°8.已知21,x x 是方程0152=+-x x 的两根,则2221x x +的值为 A .3 B .5 C .7 D .59.如图,在⊙O 内有折线OABC ,点B 、C 在圆上,点A 在⊙O 内,其中OA =4cm ,BC =10cm ,∠’第6题图A =∠B =60°,则AB 的长为( )A .5cmB .6cmC .7cmD .8cm10.已知二次函数y =ax 2+bx +c 的图象如图,其对称轴x =-1,给出下列结果:①b 2>4ac ;②abc >0;③2a +b =0;④a +b +c >0;⑤a-b +c <0;则正确的结论是( )A .①②③④B .②④⑤C .②③④D .①④⑤二、填空题(每小题3分,共18分) 11.计算=÷6482 .12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .14.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 .15.如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 . 16.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 . 三、解答题(共72分) 17.(9分)先化简,再求值 (b a +1-b a -1)÷222b ab -a b+,其中a =1-2,b =1+2.A D C ·OB 第7题图 第16题图第15题图18.(8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. ⑴求k 的取值范围;(4分)⑵若|x 1+x 2|=x 1x 2-1,求k 的值.(4分)19.(8分)如图,在四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,AF ⊥DF 于F ,△BEA 旋转后能与△DFA 重叠.⑴△BEA 绕_______点________时针方向旋转_______度能与△DFA 重合;(4分)⑵若AE =6cm ,求四边形AECF 的面积.(4分)20.(9分)为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2018元,请问该班共有多少人参加这次春游活动?B如果人数不超过25人,人均活动费用为100元。

湖北省孝感市孝昌县2018-2019学年九年级数学上学期期末模拟试卷(pdf)

湖北省孝感市孝昌县2018-2019学年九年级数学上学期期末模拟试卷(pdf)

第 1 个三角形 ACD;DE⊥BC 于点 E,作 Rt△BDE 斜边 DB 上中线 EF,得到第 2 个三角
形 DEF;依次作下去…则第 1 个三角形的面积等于
,第 n 个三角形的面积等


三.解答题(共 6 小题,满分 30 分,每小题 5 分) 13.计算:2cos30°﹣tan60°+sin30°+ tan45°.
18.将三个除号码外完全相同的小球放入不透明的盒子中,小球上分别标有数字 1,2,3, 游戏者从中随机摸出一球,记下数字后放回盒中,充分摇匀,再随机摸出一球并记下数 字.如果摸得的两球所标数字之积为奇数,那么游戏者获胜;否则,其游戏结果为输.你 认为该游戏规则是否公平?请画树状图或列表予以说明.
四.解答题(共 3 小题,满分 15 分,每小题 5 分) 19.如图,某市郊外景区内一条笔直的公路 l 经过 A、B 两个景点,景区管委会又开发了风
A.
B.
C.
D.
二.填空题(共 4 小题,满分 16 分,每小题 4 分)
9.计算;sin30°•tan30°+cos60°•tan60°=

10.如图,AB 是⊙O 的直径,点 P 在 BA 的延长线上,PD 与⊙O 相切与点 D,过点 B 作
PD 的垂线,与 PD 的延长线相交于点 C,若⊙O 的半径为 4,BC=6,则 PA 的长为
2018-2019 学年湖北省孝感市孝昌县九年级(上)期末数学模拟
试卷
一.选择题(共 8 小题,满分 32 分,每小题 4 分) 1.已知 2x=3y,则下列比例式成立的是( )
A. =
B. =
C. =
D. =
2.已知∠A+∠B=90°,且 cosA= ,则 cosB 的值为( )

孝感市数学九年级上册期末试卷(解析版)

孝感市数学九年级上册期末试卷(解析版)

孝感市数学九年级上册期末试卷(解析版)一、选择题1.已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x <0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③2.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个B.2个C.3个D.4个3.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是()A.2sin3B=;B.2cos3B=;C.2tan3B=;D.以上都不对;4.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x2-2x+d=0有实数根,则点P ( )A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O内部5.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.43B.23C.33D.3226.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.567.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30°B.35°C.40°D.50°8.一个扇形的半径为4,弧长为2π,其圆心角度数是()A.45B.60C.90D.1809.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.73B.234+C.1433D.223310.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.8911.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=12.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD =1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.3B.3C.7D.713.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A .②④B .①③④C .①④D .②③ 14.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .1015.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.17.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 18.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.19.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.20.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.21.如图,D、E分别是△ABC的边AB,AC上的点,ADAB=AEAC,AE=2,EC=6,AB=12,则AD的长为_____.22.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.23.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.24.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.25.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________.26.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.27.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .28.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.29.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.30.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题31.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像; (2)直接写出不等式221x x x -->+的解集.32.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:平均数(环) 中位数(环) 方差(环2) 小华 8 小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)33.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t = 时,两点停止运动; (2)设△BPQ 的面积面积为S (平方单位) ①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?34.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .35.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.四、压轴题36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.37.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.38.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论.39.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键. 2.C解析:C【解析】【分析】 根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.3.C解析:C【解析】【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC ++==,所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C .此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.4.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.5.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC =∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.6.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个, ∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 7.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 8.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π, ∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.9.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==;【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.D解析:D【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;C 、添加AD AB AE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意; D 、添加AC BC AE DE=不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D .【点睛】 本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.解析:B【解析】【分析】如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .首先证明∠CE ′B =∠D ′=60°,解直角三角形求出HE ′,BH 即可解决问题.【详解】解:如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .∵∠ACB =90°,∠ABC =30°,∴∠CAB =60°,∵DE ∥AB , ∴CD CA =CE CB ,∠CDE =∠CAB =∠D ′=60° ∴'CD CA ='CE CB, ∵∠ACB =∠D ′CE ′,∴∠ACD ′=∠BCE ′,∴△ACD ′∽△BCE ′,∴∠D ′=∠CE ′B =∠CAB ,在Rt △ACB 中,∵∠ACB =90°,AC ,∠ABC =30°,∴AB =2AC =,BC AC ,∵DE ∥AB , ∴CD CA =CE CB ,,∴CE∵∠CHE ′=90°,∠CE ′H =∠CAB =60°,CE ′=CE∴E ′H =12CE CH HE ′=32,∴BH∴BE ′=HE ′+BH =故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.13.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x轴没有交点.14.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=5 =解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.8【解析】【分析】根据平均数是5,求m值,再根据方差公式计算,方差公式为:(表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.18.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率. 【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:23【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360-=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.19.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.20.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:x解析:13【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.21.3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.22.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 23.60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.24..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38. 【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.25..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长. 试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴2210=3AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.26.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.27.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.28.8【解析】【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC22AC AD=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt △ABD 中,∵tan B =AD BD =1213, 而AD =12x ,∴BD =13x ,∴13x +5x =12,解得x =23, ∴AD =12x =8.故答案为8.【点睛】 本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.29.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =,故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 30.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1。

湖北省孝感市2018-2019学年上学期期末九年级考试试卷

湖北省孝感市2018-2019学年上学期期末九年级考试试卷

孝感市2018-2019学年度上学期九年级期末学业水平测试语文试卷温馨提示:1.答题前,考生务必将自己所在的县市区、学校、姓名、考号填写在试卷上指定的位置。

2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效。

3.本试卷满分120分,考试时间150分钟。

一.阅读理解(60分)(一)现代文阅读理解(30分)老邱上网记(15分)①这年头,女强人女汉子女达人,比比皆是,要说服谁,我最服“九〇后”老邱。

老邱真名已很少有人知道。

最近,微信群里倒有很多人突然记起她的名字,还衍化成很多昵称。

每次我们用昵称喊她,她都笑弯眉眼,嗔怪我们不正经。

②自从当上“九〇后”,老邱的生活突然丰富多彩起来,只因她上了网。

③老邱有一片菜地,都是她从路边、屋前屋后、犄角旮旯新挖掘出来的。

破脸盆、泡沫盒、旧木箱、豁口罐装了土,也成为菜地主力军。

屋前有一堆石头,很多很多年了。

一个春天的清晨,没地可种的老农民老邱被春花春草撩拨得手脚痒痒,对着这堆石头,突然兴起愚公精神。

半个月后,这些石头就筑成菜地的围墙,垒成鸡窝,砌成洗衣台。

老邱翻出锄头,扒拉扒拉,一块黑黝黝的菜地从天而降般地生长出来。

种田能手老邱摩拳擦掌,跃跃欲试。

④可种子呢?孙子看她愁眉不展,笑了:网上买啊,网上啥都有,还包邮!老邱以为自己听错了,啥?网?她嫁给渔民施艮,这一生不知道织过补过多少渔网。

她也抬头低头见过不少蜘蛛网。

能出种子的网?她是不信的。

孙子但笑不语,拍拍她的肩让她少安毋躁,等个两三天,保她有种子可种。

两天后,老邱在家听着越剧折着纸钱。

“邱真,邱真,有快递!”老邱过了半晌才想起这是叫她呢。

接二连三,丝瓜冬瓜花菜芹菜秋葵种子,大包小包,都经快递小哥的手,到达老邱的手里。

老邱边扒拉着菜地,边嘀咕,这啥网啊,长啥样?⑤种田能手老邱果然出手不凡,瓜果蔬菜吃错药似地猛长,又胖又俊。

儿子来了拿一袋,女儿来了装一箩。

2019年孝感市孝昌县九年级上期末数学模拟试卷含答案

2019年孝感市孝昌县九年级上期末数学模拟试卷含答案

2018-2019 学年湖北省孝感市孝昌县九年级(上)期末数学模拟试卷一.选择题(共8 小题,满分32 分,每小题4 分)1.已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=2.已知∠A+∠B=90°,且cos A=,则cos B 的值为()A.B.C.D.3.不透明的袋子中装有红球1 个、绿球1 个、白球2 个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.4.点M(a,2a)在反比例函数y=的图象上,那么a 的值是()A.4 B.﹣4 C.2 D.±25.如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,﹣3),那么经过点P 的所有弦中,最短的弦的长为()A.4 B.5 C.8D.10 6.抛物线y=(x﹣2)2+3 的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.如图,小正方形的边长均为1,下面A,B,C,D 四个图中的格点三角形(顶点在正方形的顶点上的三角形)与△ABC 相似的是()A.B.C.D.8.如图,矩形ABCD 中,AB=1,BC=2,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,设点P 走过的路程为x,△ABP 的面积为S,能正确反映S 与x 之间函数关系的图象是()A.B.C.D.二.填空题(共4 小题,满分16 分,每小题 4 分)9.计算;sin30°•tan30°+cos60°•tan60°=.10.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切与点D,过点B 作PD的垂线,与PD的延长线相交于点C,若⊙O的半径为4,BC=6,则PA的长为.11.给出下列说法及函数y=x,y=x2 和y=.①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果>a2>a,那么﹣1<a<0;④如果a2>>a 时,那么a<﹣1.以上说法正确的是.12.如图,在△ABC 中,∠ACB=90°,∠A=60°,AC=a,作斜边AB 上中线CD,得到第1 个三角形ACD;DE⊥BC 于点E,作Rt△BDE 斜边DB 上中线EF,得到第2 个三角形DEF;依次作下去…则第1 个三角形的面积等于,第n 个三角形的面积等于.三.解答题(共6 小题,满分30 分,每小题5 分)13.计算:2cos30°﹣tan60°+sin30°+ tan45°.14.已知:点E 在线段AB 上,.(1)如图1,AB 是△ABC 的边,作EF∥BC 交边AC 于点F,连接BF.求的值.(2)如图2,AB 是梯形ABCD 的一腰,AD∥BC,且BC=2AD,作EF∥BC 交边DC 于点F,连接BF.求的值.15.如图,在△ABC 中,∠B 为锐角,AB=3 ,BC=7,sin B=,求AC 的长.16.如图,AE 是⊙O 的直径,半径OD 垂直于弦AB,垂足为C,AB=8cm,CD=2cm,求BE 的长.17.如图,抛物线y=+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式;(2)求抛物线与x 轴另一个交点B 的坐标,并观察图象直接写出当x 为何值时y>0?18.将三个除号码外完全相同的小球放入不透明的盒子中,小球上分别标有数字1,2,3,游戏者从中随机摸出一球,记下数字后放回盒中,充分摇匀,再随机摸出一球并记下数字.如果摸得的两球所标数字之积为奇数,那么游戏者获胜;否则,其游戏结果为输.你认为该游戏规则是否公平?请画树状图或列表予以说明.四.解答题(共3 小题,满分15 分,每小题5 分)19.如图,某市郊外景区内一条笔直的公路l 经过A、B 两个景点,景区管委会又开发了风景优美的景点C.经测量,C 位于A 的北偏东60°的方向上,C 位于B 的北偏东30°的方向上,且AB=10km.(1)求景点B 与C 的距离;(2)为了方便游客到景点C 游玩,景区管委会准备由景点C 向公路l 修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)20.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c 的图象上有一对“互换点”A、B,其中点A 在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.21 .已知四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,∠ DAB =45°.(Ⅰ)如图①,判断CD 与⊙O 的位置关系,并说明理由;(Ⅱ)如图②,E 是⊙O 上一点,且点E 在AB 的下方,若⊙O 的半径为3cm,AE=5cm,求点E 到AB 的距离.五.解答题(共1 小题,满分 6 分,每小题 6 分)22.如图(1),是一面矩形彩旗完全展开时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF 为矩形绸锻旗面.(1)用经加工的圆木杆穿入旗裤做旗杆,求旗杆的最大直径.(精确到1cm)(2)在一个无风的天气里,如图(2)那样将旗杆斜插在操场上,旗杆与地面成60°角,如果彩旗下角E恰好垂直地面,求旗杆露在地面以上部分的长度DG的近似值.(此时旗杆的直径忽略不计,精确到1cm)六.解答题(共1 小题,满分 6 分,每小题 6 分)23.已知关于x 的两个一元二次方程:方程①:;方程②:x2+(2k+1)x﹣2k﹣3=0.(1)若方程①有两个相等的实数根,求:k 的值(2)若方程①和②只有一个方程有实数根,请说明此时哪个方程没有实数根.(3)若方程①和②有一个公共根a,求代数式(a2+4a﹣2)k+3a2+5a 的值.七.解答题(共1 小题,满分7 分,每小题7 分)24.如图:已知梯形ABCD 中,AB∥CD,E,F 分别为AD,BC 的中点,连结DF 并延长交AB 的延长线于点G,请解答下列问题:(1)△BFG≌△CFD 吗?为什么?(2)试说明EF=(AB+CD)且EF∥AB,EF∥CD.八.解答题(共1 小题)25.已知抛物线y=﹣x2﹣x+2 与x 轴交于点A,B 两点,交y 轴于C 点,抛物线的对称轴与x 轴交于H 点,分别以OC、OA 为边作矩形AECO.(1)求直线AC 的解析式;(2)如图2,P 为直线AC 上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的最大值.(3)如图3,将△AOC 沿直线AC 翻折得△ACD,再将△ACD 沿着直线AC 平移得△A'C′ D'.使得点A′、C'在直线AC 上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.参考答案一.选择题(共8 小题,满分32 分,每小题4 分)1.【解答】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.2.【解答】解:∵∠A+∠B=90°,∴cos B=cos(90°﹣∠A)=sin A,又∵sin2A+cos2A=1,∴cos B==.故选:D.3.【解答】解:画树状图为:共有12 种等可能的结果数,其中两次摸出的球都是的白色的结果共有2种,所以两次都摸到白球的概率是=,故选:B.4.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.5.【解答】解:过P 作弦AB⊥OP,则AB 是过P 点的⊙O 的最短的弦,连接OB,则由垂径定理得:AB=2AP=2BP,在Rt△OPB 中,PO=3,OB=5,由勾股定理得:PB=4,则AB=2PB=8,故选:C.× .6. 【解答】解:y =(x ﹣2)2+3 是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3). 故选:A .7. 【解答】解:∵AC = ,BC =2,AB =A :三边分别为:1, ,2B :三边分别为:1,,, C :三边分别为:,,3 D :三边分别为:2, ,根据如果两个三角形的三组对应边的比相等,那么这两个三角形相似∴B 中的三角形与△ABC 相似. 故选:B .8. 【解答】解:由题意知,点 P 从点 B 出发,沿 B →C →D 向终点 D 匀速运动,则当 0<x ≤2,s =, 当 2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .二.填空题(共 4 小题,满分 16 分,每小题 4 分)9. 【解答】解:sin30°•tan30°+cos60°•tan60°=+ ×=故答案为:.10.【解答】解:连接DO解:连接DO,∵PD 与⊙O 相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴∴∴PA=4 故答案为 41.【解答】解:联立,解得,,所以,两交点坐标分别为(﹣1,﹣1),(1,1),由图可知,>a>a2 时,0<a<1,故①正确;a2>a>时,a>1 或﹣1<a<0,故②错误;>a2>a 时,a 值不存在,故③错误;a2>>a 时,a<﹣1,故④正确;综上所述,说法正确的是①④.故答案为:①④.12.【解答】解:∵∠ACB=90°,CD 是斜边AB 上的中线,∴CD=AD,∵∠A=60°,∴△ACD 是等边三角形,同理可得,被分成的第二个、第三个…第n 个三角形都是等边三角形,∵CD 是AB 的中线,EF 是DB 的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n 个等边三角形的边长为a,所以,第n 个三角形的面积=×a×(•a)=.故答案为a2,.三.解答题(共6 小题,满分30 分,每小题 5 分)13.【解答】解:原式=2×﹣+ +=1.14.【解答】解:(1)如图1,∵,∴,∵EF∥BC,∴△AEF∽△ABC,∴,==,设S△AEF=a,则S△ABC=9a,∴S 四边形EBCF=9a﹣a=8a,∵,∴=,∴S△BEF=2a,∴= = ;(2)如图 2,设 AD =x ,则 BC =2x , 连接 AC ,交 EF 于 G ,连接 AF , ∵EF ∥BC ,∴△AEG ∽△ABC , ∴ ,∴,EG = x ,∵AD ∥EF ∥BC , ∴ , 同理可得 ,∴,FG = x ,∴EF = x +x = x ,∵ = = ,设 S △AEF =S ,则 S △BEF =2S , ∴= == ,∴S △ADF = S ,= , ,∴S △BFC =3S ,∴== .∵ = =15.【解答】解:作AD⊥BC 于点D,∴∠ADB=∠ADC=90°,∵sin B=,∴∠B=∠BAD=45°,∵AB=,∴AD=BD=AB=3,∵BC=7,∴DC=4,∴在Rt△ACD 中,AC==5.16.【解答】解:∵半径OD 垂直于弦AB,垂足为C,AB=8cm,∴AC=4cm,设CO=xcm,则DO=AO=(x+2)cm,在Rt△AOC 中:AO2=CO2+AC2,∴(x+2)2=42+x2,解得:x=3,∵AO=EO,AC=CB,17.【解答】解:(1)把A(﹣1,0)代入y=x2+bx﹣2得﹣b﹣2=0,解得b=﹣,所以抛物线解析式为y=x2﹣x﹣2.(2)当y=0 时,x2﹣x﹣2=0,整理得x2﹣3x﹣4=0,解得x1=﹣1,x2=4,所以B点坐标为(4,0),当x<﹣1 或x>4 时,y>0.18.【解答】解:不公平.因为根据题意从列表可以看出所有可能结果共有9 种,且每种结果发生的可能性相同,其中结果为奇数的有 4 种,结果为偶数的有 5 种,即结果为奇数的概率为,而结果为偶数的概率为,所以游戏规则不公平.四.解答题(共3 小题,满分15 分,每小题 5 分)19.【解答】解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10km,即景点B、C 相距的路程为10km.(2)过点C 作CE⊥AB 于点E,∵BC=10km,C 位于B 的北偏东30°的方向上,在Rt△CBE 中,CE=km.20.【解答】解:(1)任意一对“互换点”都能在一个反比例函数的图象上.理由如下:设A(a,b)在反比例函数y=的图象上,则k=ab.根据“互换点”的意义,可知A(a,b)的“互换点”是(b,a).∵ba=ab=k,∴(b,a)也在反比例函数y=的图象上.故答案为:都能;(2)∵M、N是一对“互换点”,点M的坐标为(2,﹣5),∴N(﹣5,2).设直线MN 的表达式为:y=kx+b,∴,解得:,∴直线MN 的表达式为y=﹣x﹣3;(3)∵点A 在反比例函数y=﹣的图象上,∴设A(k,﹣),∵A,B是一对“互换点”,∴B(﹣,k),设直线AB 的解析式为y=mx+n,∵直线AB经过点P(,),∴,解得,∴A(2,﹣1),B(﹣1,2),或A(﹣1,2),B(2,﹣1).∴ =∴EF =.将 A 、B 两点的坐标代入 y =x 2+bx +c , 得 ,解得,∴此抛物线的表达式为 y =x 2﹣2x ﹣1.21. 【解答】解:(1)CD 与圆 O 相切.证明:如图①,连接 OD ,则∠AOD =2∠DAB =2×45°=90°, ∵四边形 ABCD 是平行四边形,∴AB ∥DC .∴∠CDO =∠AOD =90°.∴OD ⊥CD .∴CD 与圆 O 相切.(2)如图②,作 EF ⊥AB 于 F ,连接 BE , ∵AB 是圆 O 的直径,∴∠AEB =90°,AB =2×3=6.∵AE =5,∴BE = = ,∵sin ∠BAE = = .五.解答题(共1 小题,满分 6 分,每小题 6 分)2.【解答】解:(1)根据题意得,12=2πR,∴2R=≈4(cm),所以旗杆的最大直径为4cm.(2)在图(1),连接DE,如图,∵阴影部分DCEF 为矩形绸锻旗面,∴DE===150(cm),在图(2)中,连DE,彩旗下角E 恰好垂直地面,则DE⊥GE,∵∠DEG=60°,∴∠GDE=30°,∴DE=GE,即GE=DE=×150=50 ,∴DG=2GE=100 ≈173cm.六.解答题(共1 小题,满分 6 分,每小题 6 分)23.【解答】解:(1)∵方程①有两个相等的实数根,∴,则k≠﹣2,△1=b2﹣4ac=(k+2)2﹣4(1+)×(﹣1)=k2+4k+4+4+2k=k2+6k+8,则(k+2)(k+4)=0,∴k=﹣2,k=﹣4,∵k≠﹣2,∴k=﹣4;(2)∵△2=(2k+1)2﹣4×1×(﹣2k﹣3)=4k2+4k+1+8k+12=4k2+12k+13=(2k+3)2+4>0,∴无论k 为何值时,方程②总有实数根,∵方程①、②只有一个方程有实数根,∴此时方程①没有实数根.(3)根据a 是方程①和②的公共根,∴③,a2+(2k+1)a﹣2k﹣3=0④,∴③×2得:(2+k)a2+(2k+4)a﹣2=0⑤,⑤+④得:(3+k)a2+(4k+5)a﹣2k=5,代数式=(a2+4a﹣2)k+3a2+5a=(3+k)a2+(4k+5)a﹣2k=5.故代数式的值为5.七.解答题(共1 小题,满分7 分,每小题7 分)24.【解答】解:(1)△BFG≌△CFD,∵AB∥CD,∴∠CDF=∠G,∠C=∠FBG,在△BFG 和△CFD 中,,∴△BFG≌△CFD;(2)∵△BFG≌△CFD,∴BG=CD,∵E,F 分别为AD,BC 的中点,∴EF=AG,EF∥AB,又AB∥CD,∴EF∥CD,∴EF=(AB+CD)且EF∥AB,EF∥CD.八.解答题(共1 小题)25.【解答】解:(1)令x=0,则y=2,令y=0,则x=2或﹣6,则:点A、B、C坐标分别为(﹣6,0)、(2,0)、(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A 坐标代入上式,解得:k=,则:直线AC 的表达式为:y=x+2;(2)如图,过点P 作x 轴的垂线交AC 于点H,四边形AOCP 面积=△AOC 的面积+△ACP 的面积,四边形AOCP 面积最大时,只需要△ACP 的面积最大即可,设:点P坐标为(m,﹣m2﹣m+2),则点G坐标为(m,m+2),S△ACP=PG•OA=•(﹣m2﹣m+2﹣m﹣2)•6=﹣m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,),连接OP 交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP 的表达式为:y=﹣x,当x=﹣2 时,y=,即:点M坐标为(﹣2,);(3)存在;, ), , +∵AE =CD ,∠AEC =∠ADC =90°,∠EMA =∠DMC ,∴△EAM ≌△DCM (AAS ),∴EM =DM ,AM =MC ,设:EM =a ,则:MC =6﹣a ,在 Rt △DCM 中,由勾股定理得:MC 2=DC 2+MD 2, 即:(6﹣a )2=22+a 2,解得:a =,则:MC = ,过点 D 作 x 轴的垂线交 x 轴于点 N ,交 EC 于点 H ,在 Rt △DMC 中,DH •MC = MD •DC ,即:DH ×=×2, 则:DH = ,HC == , 即:点 D 的坐标为(﹣,); 设:△ACD 沿着直线 AC 平移了 m 个单位, 则:点 A ′坐标(﹣6+点 D ′坐标为(﹣ + ),而点 E 坐标为(﹣6,2),则:直线 A ′D ′表达式的 k 值为: ,则:直线 A ′E 表达式的 k 值为: ,则:直线 E ′D 表达式的 k 值为: ,根据两条直线垂直,其表达式中 k 值的乘值为﹣1,可知:当A′D′⊥A′E 时,=﹣,解得:m=,D坐标为:(0,4),当A′D′⊥ED′时,=﹣,解得:m=﹣,D坐标为:(﹣6,2)同理,当ED′⊥A′E时,点D的坐标为:(﹣0.6,3.8),则:D坐标为:(0,4)或(﹣6,2)或(﹣0.6,3.8).。

湖北省孝感市九年级上学期数学期末考试试卷

湖北省孝感市九年级上学期数学期末考试试卷

湖北省孝感市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2017八下·射阳期末) 下列四个图案中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (1分)(2017·祁阳模拟) 已知反比例函数y= ,当1<x<2时,y的取值范围是()A . y>10B . 5<y<10C . 1<y<2D . 0<y<53. (1分)小明、小雪、丁丁和东东在公园玩飞行棋,四人轮流掷骰子,小明掷骰子7次就掷出了4次6,则小明掷到数字6的概率是()A .B .C .D . 不能确定4. (1分)(2018·莱芜模拟) 如图.在△ABC中,∠ABC=90°,∠BAC=30°,AC=2,将△ABC绕点A逆时针旋转至△AB1C1 ,使AC1⊥AB,则BC扫过的面积为()A .B .C .D .5. (1分)鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为()A . 10只B . 11只C . 12只D . 13只6. (1分)(2016·平房模拟) 在平面直角坐标系中,点O是坐标原点,点A是x轴正半轴上的一个动点,过A点作y轴的平行线交反比例函数y= (x>0)的图象于B点,当点A的横坐标逐渐增大时,△OAB的面积将会()A . 逐渐增大B . 逐渐减小C . 不变D . 先增大后减小7. (1分)在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601请估算口袋中白球约是()只.A . 8B . 9C . 12D . 138. (1分)如图,⊙O内切于△ABC,切点为D、E、F,∠B=45°,∠C=55°,连接OE、OF、OE、OF,则∠EDF 等于()A . 45°B . 55°C . 50°D . 70°9. (1分)小明从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息的个数有()A . 2个B . 3个C . 4个D . 5个10. (1分)如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D. 若⊙O的半径为,AB=8,则BC的长是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为________.12. (1分)如图所示,该图形是________对称图形.13. (1分) (2017九上·上城期中) 如图,的顶点都在方格线的交点(格点)上,若将绕原点旋转,点走过的路程是________.14. (1分) (2018九上·鄞州期中) 如图,点A是抛物线y=x2-4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为________.15. (1分) (2019八下·北京期中) 两个反比例函数在第一象限内的图象如图所示,点,…,在反比例函数图象上,它们的横坐标分别是,…,,纵坐标分别是1,3,5,…,共2019个连续奇数,过点,…,分别作y轴的平行线,与的图象交点依次是,…,,则=________,三角形的面积为________.16. (1分) (2019九上·大丰月考) 如图,已知等边三角形的边长为,点为平面内一动点,且,将点绕点按逆时针方向转转,得到点,连接,则的最大值________.三、解答题 (共8题;共18分)17. (1分)已知,a=﹣+1(1)求a、c的值;(2)若一元二次方程ax2+bx+c=0有一个根是1,求b的值和方程的另一个根.18. (2分) (2016九上·临河期中) 如图,在正方形网格中,△AB C各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)①画出△ABC关于y轴对称的△A1B1C1;②画出△ABC关于原点O对称的△A2B2C2;(2)点C1的坐标是________;点C2的坐标是________;(3)试判断:△A1B1C1与△A2B2C2是否关于x轴对称?(只需写出判断结果)________.19. (3分)(2016·镇江模拟) 为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,请完成下列问题:(1)周三没有被选择的概率;(2)选择2天恰好为连续两天的概率.20. (2分) (2017九上·乐昌期末) 如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0),B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)点P为y轴右侧抛物线上一个动点,若S△PAB=32,求出此时P点的坐标.21. (2分)(2017·市北区模拟) 如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2= (m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n)(1)求反比例函数与一次函数的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出当y1<y2时,自变量x的取值范围.22. (2分)(2017·奉贤模拟) 已知:如图,选段AB=4,以AB为直径作半圆O,点C为弧AB的中点,点P 为直径AB上一点,联结PC,过点C作CD∥AB,且CD=PC,过点D作DE∥PC,交射线PB于点E,PD与CE相交于点Q.(1)若点P与点A重合,求BE的长;(2)设PC=x, =y,当点P在线段AO上时,求y与x的函数关系式及定义域;(3)当点Q在半圆O上时,求PC的长.23. (3分) (2017九下·无锡期中) 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当△BCP的面积最大时,求点P的坐标和△BCP的最大面积.(3)当△BCP的面积最大时,在抛物线上是否点Q(异于点P),使△BCQ的面积等于△BCP,若存在,求出点Q的坐标,若不存在,请说明理由.24. (3分) (2019九上·椒江期末)(1)尺规作图:已知:如图,线段AB和直线且点B在直线上求作:点C,使点C在直线上并且使△ABC为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C.(2)特例思考:如图一,当∠1=90°时,符合(1)中条件的点C有________个;如图二,当∠1=60°时,符合(1)中条件的点C有________个.(3)拓展应用:如图,∠AOB=45°,点M,N在射线OA上,OM=x,ON=x+2,点P是射线OB上的点.若使点P,M,N构成等腰三角形的点P有且只有三个,求x的值。

每日一学:湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题解答

每日一学:湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题解答

每日一学:湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题解答答案湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题~~第1题 ~~(2018孝感.九上期末) 抛物线 与 轴交于A(4,0),B(6,0)两点,与 轴交于点C(0,3).(1) 求抛物线的解析式;(2) 点P 从点O 出发,以每秒2个单位长度的速度向点B 运动,同时点E 也从点O 出发,以每秒1个单位长度的速度向点C 运动,设点P 的运动时间为t 秒(0<t<3).①过点E 作x 轴的平行线,与BC 相交于点D (如图所示),当t 为何值时,△PDE 的面积最大,并求出这个最大值;②当t =2时,抛物线的对称轴上是否存在点F ,使△EFP 为直角三角形?若存在,请你求出点F 的坐标;若不存在,请说明理由.考点: 待定系数法求二次函数解析式;二次函数的实际应用-几何问题;几何图形的动态问题;~~第2题 ~~(2018孝感.九上期末) 如图,正△ABC 的边长为4,将正△ABC 绕点B 顺时针旋转120°得到△C'A'B ,若点D 为直线A'B 上的一动点,则AD+CD 的最小值是________.~~ 第3题 ~~(2018孝感.九上期末) 如图,抛物线的顶点为B(1,3),与轴的交点A 在点 (2,0)和(3,0)之间.以下结论:①;②;③;④ ≥ ;⑤若 ,且 ,则 .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:A解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文昌中学2018-2019学年度九年级上学期期末考试
数学试卷
一、精心选一选,相信自己的判断!(本题12小题,每小题3分,共36分.每小题给出的四个选项中只有一项符合题目要求 ,不选、选错或选的代号超过一个的,一律得0分) 1.下列二次根式中,与2是同类二次根式的是( ). A.3 B .5 C .7 D .22
2.下列图形中是中心对称图形的是( ).
A. B. C. D.
3.已知:4≤x - 1 -则下列式子中有意义的是( ).
A .1-x
B .4+x
C .x -4
D .4-x
4.下列事件是必然事件的是( ).
A .掷两个均匀的骰子,朝上面的点数和不小于2
B .2019年2月1日孝感市可能下雪
C .打开电视机,正在播放体育节目
D .抛一枚硬币,正面朝上 5.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中概率是( ). A .
141
B .
241
C .0
D .1
6.方程(x +1)(x -2)=x +1的解是( ). A .2=x
B .3=x
C .2 ,121=-=x x
D .3 ,121=-=x x
7.半径分别为2cm 、3 cm 的两圆相交,则两圆圆心距d 的取值范围是( ). A .2cm <<d 3cm
B .1cm <<d 3cm
C .2cm <<d 5cm
D .1cm <<d 5cm
8.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“开”、“心”、“快”、“乐”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2、图3分别表示第1次变换和第2次变换.按上述规则完成第2019次变换后,“开”字位于转盘的位置是( ).
图1 图2
1 次变换第 图3
2 次变换第
A .上
B .下
C .左
D .右
9.抛物线()2
23y x =+-由抛物线2
y x =平移得到,则下列平移过程正确的是( ).
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个单位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位
10.如图,已知正方形ABCD ,以BC 为直径作半⊙O , E 是边CD 上一点,AE 切半⊙O 于F ,
若△AED 的周长为6,则半⊙O 的弧长是( ).
A .π
B .2π
C .3π
D .4π
11.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积
为π9,则弦AB 的长为( ).
A .6
B .5
C .4
D .3
12.二次函数)0(2
≠++=a c bx ax y 的图象如图所示,下列结论:(1)c <0
02)2(=+a b
(3)420a b c ++> (4)042
≤-ac b 其中正确的有( ).
A.0个
B. 1个
C. 2个
D. 3个
二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)
13.已知1=x 是方程022
=--bx x 的一个根,则b 的值是 .
14.点)3 ,2(-P 关于原点对称的点P '的坐标是 .
15.底面半径为6㎝的圆锥,其侧面展开图扇形的圆心角为240°,则圆锥母线长为 . 16.正方形A 1B 1C 2C 1,A 2B 2C 3C 2,A 3B 3C 4C 3按如图所示的方式放置,点A 1、A 2、A 3和点C 1、C 2、C 3、
C 4分别在抛物线2x y =和y 轴上,若点C 1(0,1),则正方形A 3B 3C 4C 3的面积是 .
(第16题图)
(第17题图)
y
B 3 A
3
C 2 A 1 C 3
B 1 A 2
C 1
x C 4 B 2
(第11题图)
17.如图, ⊙O 与正六边形的相邻两边相切,切点分别是D 、E ,若P 是⊙O 上任一点,那么
DPE ∠的度数为 .
18.对于任意的两个实数a 、b ,定义运算※如下:a ※b ⎩⎨⎧>≤+=)(
)
( 2b a ab b a b a , 若x ※2=8
时,
则x 的值是 .
三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.) 19.(本小题满分6分)已知:.21 ,21-=+=y x 求 ()
2012
xy - 的值.
20.(本题满分8分)如图,在平面直角坐标系中,已知△ABC 与△DEF 关于点P 中心对称 (1)求出点P 的坐标;
(2)将△DEF 绕P 点逆时针方向旋转90,画出旋转后的△F E D ''',并指出△F E D '''可
由△ABC 经过怎样的旋转而得到?
21.(本小题满分8分)小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数,则小明胜;如果组成的两位数恰好是3的倍数,则小亮胜.
你认为这个游戏规则对双方公平吗?请用画树状图或列表的方法说明理由. 22.(本小题满分8分)已知关于x 的一元二次方程0)12(22=+-+m x m x 有两个实数根1x 和2x .(1)求实数m 的取值范围; (2)当02
22
1=-x x 时,求m 的值.
温馨提示:一元二次方程)0(02
≠=++a c bx ax 有两个实数根1x 和2x ,满足关系
(第20题图)
a
c x x a b x x =
-=+2121 ,. 23.(本小题满分10分)如右图,已知等边△ABC ,以BC 为直径作半⊙O 交AB 于D ,DE ⊥AC 于点E .
(1)、求证:DE 是半⊙O 的切线;
(2)、若DE=3,求△ABC 与半⊙O 重合部分的面积.
24.(本小题满分12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价
不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)
符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.
(1)、求一次函数的表达式;(3分)
(2)、设该商场获得利润为W 元,试写出利润W 与销售单价x 之间的函数关系式,并指出销售单价x 的取值范围;(4分)
(3)、若该商场获得利润等于500元,试求x 的值.(5分)
25.(本小题满分14分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)、求抛物线对应的二次函数关系式;(5分)
(2)、在直线AC 上方抛物线上有一动点D ,求使DCA △面积最大的点D 的坐标;(5分) (3)、x 轴上是否存在P 点,使得以A 、P 、C 为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(4分)
(第23题图)。

相关文档
最新文档