2018年高考真题——理科数学(全国卷Ⅰ)+Word版含解析
2018年高考理科数学全国(Ⅰ)卷第16题几种解题思路-精选教育文档

2018年高考理科数学全国([)卷第16题几种解题思路问题(2018年高考理科数学全国(I)卷第16题)巳知函数f(x)=2sinx+sin2x,则f(x)的最小值是.解法赏析思路If(x)=2sinx+sin2x,由周期函数不妨设xeO,2n,f7x=2cosx+2cos2x=2(2cos2x+cosxT)=2(2cosx~l) (cosx+1).所以,fx在0,n3,5n3,2n上递增,在n3,5n3上递减.所以f(x)min=min(f(0),f(5n3)}=minO,-332=-332,当x=2kn-n3,ke[WTHZ]Z[WTBX]时取等号.思路2f(x)=2sinx+2sinxcosx=2sinxl+cosxN-21-cos2x?l+cosx2=-23l+cosx33-3cosx,-233l+cosx+3-3cosx443-23644=-332,所以f(x)min=-332.取等号条件同思路1.思路3f(x)=2sinx+2sinxcosx=2sinxl+cosx=8sinx2cos3x2.令t=sinx2cos3x2t2=13X3sin2x2?cos2x2?cos2x2?cos2x2W133sin2x2+cos2x2+c os2x2+cos2x244=13344,所以te-3316,3316,f(x)min=-332,取等号条件同思路1.或者f2(x)=4(1-cosx)(1+cosx)3=[SX (]4[]3[SX)] (3-cosx)(1+cosx)(1+cosx)(1+cosx)W[SX(]4[]3[SX)][JB((][SX(]3-3cosx+l+cosx+l+cosx+l+cosx口4[SX)][JB))]4=[SX(]27[]4[SX)],当且仅当3-3cosx=l+cosx,即cosx=[SX(]1[]2[SX)]时,取等号.有f(x)min=-[SX(]3[KF(]3[KF)][]2[SX)].思路4f(x)=8sinx2cos3x2=8sinx2cos3x2sin2x2+cos2x22=8tanx2tan4x2+2 tan2x2+l令t=tanx2,所以fx=ft=8tt2+12.f't=-83t4+2t2-lt2+14,ft在-SymboleB,-33,33,+SymboleB上?f减,在-33,33上递增.又tf+SymboleB时,ft-*0,所以f(x)min=f(t)min=f(-33)=-332.取等号条件同思路1.[HT][HJ][FL)][JZ(][HT2Y3]2018年高考数学浙江卷第21题引发的探究[HT][HT5K]浙江省宁波市第四中学315016[HT5H]魏定波[JZ)][HT][FL(K2][STFZ]1试题呈现[TP魏定波-l.tif,Y][TS(][JZ]S1[TS)]如图1,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x±存在不同的两点A,B满足PA,PB的中点均在C上.(I)设AB中点为M,证明:PM垂直于y轴;(II)若P是半椭圆x2+y24=l(x解法2设直线AB 的方程x=ty+m,由x=ty+m,y2=4x,得,y2~4ty-4m=0,因为yl+y2=2y0,yly2=8x0-y20,所以t=12y0,m=y204-2x0, |AB|=(l+t2)(y2-yl)2=(l+t2)(8y20~32x0),d=|x0-ty0~m|l+t2,所以SAPAB=12|AB|?d=324(y20-4x0)y20-4x0,以下同解法1.[STFZ]3性质再探将上述试题作进一步探究:(1)已知抛物线C:y2=4x的内接梯形ABCD,其中AB〃CD.①则该梯形的两腰所在直线的交点、对角线交点及上下底的中点都在垂直y轴的直线1上(如图3);②若直线1与抛物线C交于R,则过R点抛物线的切线与直线AB平行;[TP魏定波-3.tif,Y][TS(][JZ]图3[TS)]③若直线AB、AC、BD的斜率存在,则lkAC+lkBD=2kAB;④若直线AB的斜率不存在,则kAC+kBD=O;⑤若直线AC的斜率不存在,则kAB=2kBD;证明①的证明与试题(I)证明相仿,不再阐述.②当直线AB斜率不存在时,点R即为原点0,结论成立;当直线AB斜率存在时,对于y2=4x两边对x求导,得2y?y'=4,则k=y‘=2yR=2yM=kAB,即过R点抛物线的切线与直线AB平行.③1kAC+1kBD=xC-xAyC-yA+xB-xDyB-yD=yC+yA4+yB+yD4=yB+yA4+yC+yD4=yM+yN2=2?yM2=2kAB;下面证明⑤,对于④的证明同理可得.因为直线AC的斜率不存在,所以xC=xA,yC+yA=0,又yC+yD=yA+yB.则yD-yB=2yA,所以kAB=yB-yAxB-xA=4yB+yA=2X4yB+yD=2kBD.(2)已知抛物线C:y2=4x的内接梯形ABCD,其中AB//CD,过点P作抛物线的两切线PE和PF(其中切点为E、F),?t直线EF与AB平行,且直线EF经过Q点(如图4).[TP魏定波-4.tif,Y][TS(][JZ]图4[TS)]证明由P(xO,yO)向抛物线C:y2=4x作切线PE、PF,容易得到切点弦EF所在的直线方程为:2x-y0y+2x0=0,对比直线AB的方程4x-2y0y+yAyB=0,可得,EF〃AB.由2x-y0y+2x0=0得线段EF的中点Q'(y202~x0,yO),又直线AC的方程为4x-(yA+yC)y+yAyC=O,要证明Q',Q重合,只须等式(yA+yC)yO-yAyC=4(y202~x0)成立.由于直线BC过点P,所以(yB+yC)y0-yByC=4x0,上述二个等式相加,其右边等于4(y202-x0)+4x0=2y20,其左边等于(yB+yC)yO~yByC+(yA+yC)yO~yAyC=(yB+yA+2yC)y0~ (yB+yA)yC=(2yO+2yC)y0~2y0yC=(2yO+2yC)y0-2y0yC=2y20.故(yA+yC)yO-yAyC=4(y202~x0)成立,即直线EF经过Q点.进一步,当D、C分别趋向于A、B时,直线AD的方程由4x-(yA+yC)y+yAyC=O,变为4x~2yAy+yA2=0,即为2x~yAy+2xA=0,此为过点A的抛物线切线方程,APAB转化为著名的“阿基米德三角形”.[HT][HJ][FD][JZ(][HT2HJ2018年全国I卷理第19题的探究[HT][HT5K]江西省吉水中学331600EHT5H]孙春生[JZ)][HT][FL(K2]2018年高考全国I卷理科第19题设椭圆C:x22+y2=l的右焦点为F,过F的直线1与C交于A、B两点,点M的坐标为(2,0).(1)当1与x轴垂直时,求直线AM的方程;(2)设0为坐标原点,证明:ZOMA=ZOMB.本题围绕直线与椭圆的位置关系这一重点内容,加强了对解析几何基本概念、基本思想方法和关键能力的考查,着重考查了直线方程的求法,椭圆的简单几何性质、直线与椭圆的位置关系及直线的斜率等多个知识点.简洁明了的题意背后是命题人的匠心独运,笔者利用几何画板对本题作了较系统的探究,现结合2018年高考I卷文科第20题,一并阐述如下.解(1)略;(2)证明:当直线1与x轴重合时,ZOMA=ZOMB=O,符合题意;当直线1与x轴不重合时,设1的方程为:x=ty+c,由x=ty+l,x22+y2=l,得:(t2+2)y2+2ty~l=0,由于点F在曲线内,故方程存在两个根.设方程的两个根分别为yl,y2,则yl+y2=-2tt2+2,yly2=Tt2+2,要使ZOMA=ZOMB相等,则问题转化为证明直线MA与MB 的斜率互为相反数,设直线MA与直线MB的斜率分别为kMA,kMB,则kMA+kMB=ylxl-2+y2x2-2=yltyl-l+y2ty2-l=2tyly2-(yl+y2)(tyl-1)(ty2~l),将yl+y2,yly2的表达式分别代入,可得kMA+kMB=21y1y2-(yl+y2)(tyl~l)(ty2~l)=~2tt2+2~ -2tt2+2(tyl-1)(ty2-l)=0故此时ZOMA=ZOMB,综上所述,Z0MA=Z0MB.解题后进行探究:题中的点M有什么特殊性吗?由椭圆的简单几何性质,通过计算知M是椭圆准线与x轴的交点,将探究拓展成…般情形的猜想得到命题:命题1设椭圆C:x2a2+y2b2=l(a>b>0)的右焦点为F,过F的直线1与C交于A、B两点,点M的坐标为(a2c,0),0为坐标原点,则Z0MA=Z0N!B.证明当直线1与x轴重合时,Z0NfA=Z0MB=0,符合题意;当直线1与x轴不重合时,设1的方程为:x=ty+c,由x=ty+c,x2a2+y2b2=l,得:(b2t2+a2)y2+2tcb2y-b4=0,由于点F在曲线内,故方程存在两个根yl,y2,且yl+y2=~2tcb2b2t2+a2,y1y2=~b4b2t2+a2,设直线MA与直线MB的斜率分别为kMA,kMB,则kMA+kMB=y1xl~a2c+y2x2~a2c=cy1ctyI~b2+cy2cty2-b2=2c2tyly2-b2c(yl+y2)(ctyl~b2)(cty2~b2)将yl+y2,yly2的表达式分别代入,可得kMA+kMB=2c2tyly2~b2c(yl+y2)(ctyl~b2)(cty2~b2)=0.因此,对椭圆一般情况问题成立.将椭圆推广到双曲线,易证以下推广命题:推广1设双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C的右支同时交于A、B两点,点M的坐标为(a2c,0),0为坐标原点,则Z0MA=Z0MB.进一步探究,当过F的直线1与C的左、右支分别交于一点时,情形如何?从几何作图来看,猜想有Z0MA+Z0MB=180°.证明当直线1与x轴重合时,Z0MA+Z0MB=180°,符合题恩;当直线1与X轴不重合时,设1的方程为:x=ty+c,由x=ty+c,x2a2-y2b2=l,得:(b2t2-a2)y2+2tcb2y+b4=0,设方程的两个根为yl,y2,则yl+y2=-2tcb2b2t2-a2,yly2=b4b2t2~a2,设直线MA与MB的斜率分别为kMA,kMB,则kMA+kMB=y1x1-a2c+y2x2~a2c=cylctyl+b2+cy2cty2+b2=2c2tyly2+b2c(yl+y2)(ctyl-b2)(cty2-b2)=0因此直线MA与MB倾斜角互补,即Z0MA+Z0MB=180°成立.推广2设双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C的左右支分别交于A、B两点,点M的坐标为(a2c,0),0为坐标原点,则Z0MA+Z0MB=180o.椭圆中这一性质对于双曲线有类似的推广命题,对于抛物线也不难证得有相关结论:推广3设抛物线C:y2=2px的焦点为F,过F的直线与C交于A、B两点,点M(-p2,0),0?樽?标原点,则Z0MA=Z0MB.这一结论与2018年全国I卷文科第20题极为相似:(2018年高考I卷文科第20题)已知抛物线C:y2=2x,点A(2,0),B(-2,0),过A的直线1与C交于M,N两点,证明ZABM=ZABN.比照推广3与高考文科题20,易猜想在抛物线中,只需要满足x轴上的两点A,B对称地分布在原点两侧,命题成立.探究设A(a,0),B(-a,0)(a>0,aG[WTHZ]R[WTBX]),过A作直线1交抛物线C:y2=2px于M,N两点,则ZABM=ZABN.证明设1的方程为:x=ty+a,由x=ty+a,y2=2px,得:y2~2pty-2pa=0,设方程的两个根为yl,y2,则yl+y2=2pt,yly2=-2pa,由直线MA与直线MB的斜率之和为:kMA+kMB=ylxl+a+y2x2+a=yItyl+2a+y2ty2+2a=2tyly2+2a(yl+y 2)(tyl+2a)(ty2+2a)=0,因此猜想成立,故综合以上探究有以下命题:命题2设抛物线C:y2=2px,点A(a,0),点B(-a,0)(a>0,ae[WTHZ]R[WTBX]),过点A的直线1与C交于M,N两点,则ZABM=ZABN.进一步探究,可得以上命题的逆命题仍成立,故有以下推广命题:推论1己知椭圆C:x2a2+y2b2=l(a>b>0)的右焦点为F,过F的直线1与C交于A、B两点,0为坐标原点,则存在唯一—点M(a2c,0),使ZOMA=ZOMB.推论2己知双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C同时交于右支A、B两点,则存在唯一一点M(a2c,0),使Z0MA=Z0MB.推论3已知双曲线C:x2a2-y2b2=l(a>b>0)的右焦点为F,过F的直线1与C交于左右两支分别为A、B两点,0为坐标原点,则存在唯一一点M(a2c,0),使Z0MA+Z0MB=180°.推论4已知抛物线C:y2=2px,点A(a,0)(a>0,ae[WTHZ]R[WTBX]),过A的直线1与C交于M,N两点,则存在唯一一点B(-a,0),使ZMBA=ZNBA.一个看似平淡无奇的高考题,其产生的依据却是一些通用的性质作背景,若我们在解决数学问题后,能根据题中条件与结论之间蕴含的内在联系,在题后多反思,并由特殊推广到一般情形,则我们更能把握问题的实质,更能统领问题的全局.孙春生(1971—),男,江西吉水人.研究方向:高中数学教材教法,高考命题方向探究,高中数学解题方法探讨,经典题型母题研究.主要成绩:江西省骨干教师,吉水县名师,一直从事高中数学教学,兼任学校数学教研组长,指导学生在高考与奥赛中取得优异成绩,在《数学通报》、《数学教学》、《中学数学杂志》等省级以上刊物发表文章百余篇,撰写教辅书多部.[HT][HJ][FD][JZ(][HT2XBS]巧用结论妙解试题[ZW(*]基金项目:四川省〃西部卓越中学数学教师协同培养计划”项目(ZY16001).[ZW)][HT1.] [HT4F]一一以2018年圆锥曲线试题为例[HT][HT5K]四川省内江师范学院数学与信息科学学院641100EHT5H]余小芬彭玉灵[JZ)][HT][FL(K2]教材中结论主要以公式、定理、法则的形式直接呈现.事实上,教材中间接隐含了一些结论(这里称为“二手”结论)需要开发.“二手”结论往往是高考命题的重要取材、是解答高考试题的重要工具.本文以“二手结论”在2018年圆锥曲线试题中的应用举例说明.结论1双曲线焦点到渐近线的距离为b,其中b为虚半轴长.证明不妨设双曲线x2a2-y2b2=l(a>0,b>0),右焦点F(c,0),1:y=bax为双曲线的一条渐近线,即bx~ay=0.故F到1的距离d=bcb2+a2=bcc=b.例1(2018年高考全国III卷文科第10题)已知双曲线C:x2a2-y2b2=l(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为().A.2B.2C.322D.22解不妨设c=4,故点(4,0)为双曲线右焦点.由结论1,(4,0)到C的渐近线的距离为b.由e=2=ca,得a=22,所以b=c2~a2=22.故选D.评注本题通过特殊法假设c=4,巧妙将问题转化为双曲线焦点到渐近线的距离,从而利用结论快速求解,避免了繁琐计算,节约了求解时间.例2(2018年高考天津卷理科第7题)已知双曲线x2a2-y2b2=l(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点,设A、B到双曲线同一条渐近线的距离分别为dl和d2,且dl+d2=6,则双曲线的方程为()・A.x24-y212=lB.x212-y24=lC.x23-y29=lD.x29-y23=l图1解如图1,设右焦点为P,作AC±1(1为渐近线)于C,BD_L1于D,PM_L1于比易知PM为梯形ABDC的中位线,所以dl+d2=AC+BD=2PM=6,PM=3.又由结论1,b=PM=3.再由e=ca=2,c2=a2+b2,解得a2=3,故双曲线方程为x23-y29=l.评注本题结合梯形中位线性质,将dl+d2转化为焦点到准线的距离,进而利用结论1求解问题.例3(2018年高考全I卷理科第11题)已知双曲线C:x23-y2=l,0为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若AOMN为直角三角形,则MN=()・A. 32B.3C.23D.4图2解如图2,双曲线渐近线方程为疔±33x,故tanZM0F=33,所以ZM0F=30°,ZM0N=60°.故RtAOMN中,不妨设NOMN=90°(Z0NKf=90°同理可得),即FM±OM,故由结论1,FM=b.又OF=c,故M0=a=3.因此在RtAOMN中,MN=M0?tan60°=3M0=3.评注本题关键是通过渐近线方程求得RtAOMN中ZM0N=60o,以此确定AOMN中直角位置,从而利用结论1求得AOMN中一直角边,进而根据正切函数求得边长.例4(2018年高考全国III卷理科第11题)设Fl,F2是双曲线C:x2a2-y2b2=l(a>0,b>0)的左,右焦点,0是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若PF1=6OP,则C的离心率为()・A. 5B.2C.3D.2图3解如图3,过F1作渐近线1的垂线,垂足为P,.由结论1,F2P=F1P'=b.在RtAP0F2中,0P=0F22-PF22=c2-b2=a.同理, OP'=a.由巳知,PFl=60P=6a.又在RtAPP7Fl 中,PF1=F1P'2+PP'2=b2+4a2.故6a=b2+4a2,解得b2a2=2.故e=l+b2a2=3.评注在RtAP0F2中,利用结论1易求OP长,进而结合PF1=6OP求得PF1长.事实上,本题可在左PF1F2中利用余弦定理建立a,b的关系式,但计算较为复杂.因此,通过利用双曲线的对称性,在RtAPP7Fl中求得PF1的长,再利用等量替换求得a,b比例关系,减少了运算量,节约了求解时间.结论2巳知Fl,F2分别为椭圆x2a2+y2b2=l(a>b>0)的左、右焦点,P是C上的一点,若PF11PF2,且ZPF2F1=0,则离心率e=lsin0+cos0.证明在RtAPFlF2中,FlF2=2c,故PF2=FlF2?cos0=2ccos0,PFl=2csin0.所以PFl+PF2=2c(sin0+cos0)=2a,因此离心率e=ca=lsin0+cos0.例5(2018年高考全国II卷文科第11题)已知Fl,F2是椭圆C的两个焦点,P是C上的一点,若PF1J_PF2,且ZPF2F1=6O°,则C的离心率为().A.1-32B.2-3C.3-12D.3-1解由题意,利用结论2,e=lsin60°+cos60°=3~1.例6(2018年高考北京卷理科第14题)已知椭圆M:x2a2+y2b2=l(a>b>0),双曲线N:x2m2-y2n2=l,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为,双曲线N的离心率为.图4解如图4,不妨设椭圆M的左,右焦点分别为Fl,F2.由题意,ABF1CDF2为正六边形.连接AF1,易知ZF1AF2=9O°,且ZF1F2A=6O°.故由结论2,椭圆离心率e=lsin60°+cos60°=3-1.连接AO,易知ZA0F2=60°,即双曲线渐近线斜率nm=tan60°=3,故双曲线N的离心率e=l+n2m2=2.评注根据正六边形几何性质,不难得到题中焦点△F1AF2满足结论2的条件,故利用公式直接求解椭圆离心率;再由渐近线倾斜角表示斜率,从而获得in,n比例关系,再利用双曲线离心率公式求得答案.图5结论3若AB是过抛物线y2=2px(p>0)的焦点的弦,则以AB为直径的圆与抛物线的准线相切,且切点M与焦点F的连线垂直于弦AB.证明如图5,过点A,B分别向抛物线的准线1作垂线,垂足分别为Al,B1.过AB中点N向1作垂线,垂足为M.设以AB 为直径的圆的半径为r,因为2r=AB=AF+BF=AAl+BBl=2MN,故MN=r.因此,以AB为直径的圆与1相切.下面再证MF±AB.(1)当AB与x轴垂直时,结论显然成立;(2)当AB不与x轴垂直时,设M(-p2,t),又F(p2,0),故kMF=t-p.X kAB=yA-yBxA-xB=yA-yBy2A2p-y2B2p=2pyA+yB=2p2yN=pt,故kMF?kAB=T,即MF±AB.例7(2018年高考全国HI卷理科第16题)已知点M-1,1和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若ZAMB=90°,则k=[CD#4].解由题意,抛物线C的焦点为F(1,0),准线方程为:x=-1.即M(-1,1)恰在准线上,且满足ZAMB=90°,故由结论3,有MFXAB,所以kMF?kAB=-l.又kMF=0Tl-(-1)=-12,故kAB=2.评注由抛物线方程易知M在抛物线准线上,且ZAMB=90°,即M位于以AB为直径的圆上,且M恰为该圆与准线相切的切点,故由结论3,利用两直线垂直的斜率关系,快速求得直线AB的斜率.由此可见,利用结论求解避免了联立直线与曲线方程求解的繁琐.结论4设点P(x0,y0)是椭圆x2a2+y2b2=l(a>b>0)上的一点,Fl(-c,0),F2(c,0)分别为椭圆的左右焦点,则PFl=a+exO,PF2=a-exO,其中e为椭圆离心率.证明PF12=(xO+c)2+y20=(x20+2cx0+c2)+b2-b2a2x20=(I~b2a2)x20+2cx0+c2+b2=c2a2x20+2cx0+a2=(caxO+a)2,所以PFl=caxO+a=exO+a,又PFl+PF2=2a,所以PF2=a~exO.例8(2018年高考全国III卷文科第20题)已知斜率为k的直线1与椭圆C:x24+y23=l交于A,B两点.线段AB的中点为Ml,mm>0.(I)略;(II)F为C的右焦点,P为C上一点,且FP+FA+FB=[STHZ]O.证明:2FP=FA+FB.解由题意,a=2,b=3,所以c=l,故右焦点为F(1,0),离心率c=12.设A(xl,yl),B(x2,y2),P(x3,y3),故FP+FA+FB=(x3-l,y3)+(xl~l,yl)+(x2~l,y2)=(xl+x2+x3~3,yl+y2+y3).由FP+FA+FB=[STHZ]0,得xl+x2+x3=3.又线段AB的中点为Ml,m,所以xl+x2=2,x3=l.又由结论4,FA=a-exl=2-12x1,FB=a-ex2=2-12x2,FP=a-ex3=2-12x3=32.所以FA+FB=4-12(xl+x2)=3,故FA+FB=2FP,即2FP=FA+FB.口注解决本题的关键是利用结论4表示出FA,FB,FP,再结合条件:FP+FA+FB=[STHZ]0及M为线段AB中点,通过向量加法的坐标运算及中点坐标公式求得xl,x2,x3的关系,从而证得结论.由此可见,“二手结论”在解决高考试题中发挥着重要作用,利用“二手结论”解题也体现了近年高考“多考点想,少考点算”的基本命题理念.特别指出,上文的结论1一4并非“繁难偏怪”,而是完全依据教材中圆锥曲线的重要概念、性质以及领悟教材例题、习题设计意图,通过适当变式、拓展而来.这正如教育家叶圣陶先生所说:“教材无非是个例子,它只能作为教课的依据.要教得好,使学生受益,还要靠教师善于运用.”因此,基于《普通高中数学课程标准(2017年版)》、《普通高等学校招生全国统一考试大纲》,结合高考命题实际,对教材中的某些内容进行删减、拓展、补充、改进、增补、变式、整合等.通过二次开发,将学习形态的数学转化为应试形态的数学、将教材结构转化为应试结构,不仅可以弥补、完善数学知识结构,也能促进学生对知识灵活、综合的应用,拓宽学生数学思维的广度和深度,激发他们进一步学习的潜能.。
2018年高考真题理科数学(北京卷) Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.5. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6. 设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
高考全国甲卷:《理科数学》2018年考试真题与答案解析

高考精品文档高考全国甲卷理科数学·2018年考试真题与答案解析同卷地区贵州省、四川省、云南省西藏自治区、广西自治区高考全国甲卷:《理科数学》2018年考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则( )A .B .C .D .答案:C2.( )A .B .C .D .答案:D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ){}|10A x x =-≥{}012B =,,A B = {}0{}1{}12,{}012,,()()1i 2i +-=3i--3i-+3i-3i+A .B .C .D .答案:A4.若,则()A.B .C .D .答案:B 1sin 3α=cos 2α=897979-89-5.的展开式中的系数为( )A .10B .20C .40D .80答案:C6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( )A .B .C .D .答案:A7.函数的图像大致为( )A.B.522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++C.D.答案:D8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )。
A .0.7B .0.6C .0.4D .0.3答案:B9.的内角的对边分别为,,,若的面积为,则( )A .B .C .D .p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π610.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为则三棱锥体积的最大值为A .B .C .D .答案:B11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若的离心率为AB .2CD答案:C12.设,,则A .B .C .D .A B C D ,,,ABC △D ABC -12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C 0.2log 0.3a =2log 0.3b =0a b ab +<<0ab a b <+<0a b ab+<<0ab a b<<+二、填空题本题共4小题,每小题5分,共20分。
专题1.1 年全国1卷理科第16题-刷百题不如解透一题之高考真题数学小题大做

一、典例分析,融合贯通典例【2018年全国1卷理科第16题】已知函数f(x)=2sinx+sin2x ,则f(x)的最小值是______. 解法一:引导:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.点评:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值. 解法二:()=2sin +sin2=2sin (1+cos )f x x x x x22222()=4sin (1+cos )4(1-cos )(1+cos )f x x x x x ∴=4(3-3cos )(1+cos )(1+cos )(1+cos )3x x x x = 443-3cos +1+cos +1+cos +1+cos )34x x x x ⎛⎫≤ ⎪⎝⎭44327324⎛⎫=⨯= ⎪⎝⎭ ()f x 易知是奇函数1cos = 332(),23sin =2x f x x ⎧⎪⎪∴≥-⎨⎪-⎪⎩当时可以取等号,33().2f x ∴-的最小值是 点评:另辟蹊径,联系均值不等式求最值(和定积最小)。
解法三:解法3:公式搭桥,函数领路,导数建功。
解法四:()=2sin +sin2f x x x ,tan 2xt R =∈令则22234182sin(1cos)(1)1112t ty x xt t t tt-=+=+=++++,31t2,t ttϕ=++令()4222221321t32,0t tt tt tϕμ+-'=+-==≥()令,原式得;(1)(31),μμμ+-=显然13μ=时,取tϕ()到极值经检验当3t=-时,tϕ()有最大值,则y有最小值得:min833.1()3yϕ==--解法4:替换消元,导数建功。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
2018年高考真题——数学(江西)Word版

2018年普通高等学校招生全国统一考试<江西卷)文科数学本试卷分第I卷<选择题)和第II卷<非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
满分150分,考试时间120分钟。
b5E2RGbCAP考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
p1EanqFDPw2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II 卷用0.5毫M的黑色墨水签字笔在答题卡上书写作答,在试卷卷上作答,答题无效。
DXDiTa9E3d3.考试结束,务必将试卷和答题卡一并上交。
参考公式:锥体体积公式V=Sh,其中S为底面积,h为高。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 若复数z=1+i (i为虚数单位> 是z的共轭复数,则+²的虚部为A 0B -1C 1D -22 若全集U=|x∈R||x+1|≤1}的补集CuA为A |x∈R |0<x<2|B |x∈R |0≤x<2|C |x∈R |0<x≤2|D |x∈R |0≤x≤2|3.设函数,则f<f<3))=A. B.3 C. D.4.若,则tan2α=A.-B.C.-D.5.观察下列事实|x|+|y|=1的不同整数解<x,y)的个数为 4 ,|x|+|y|的不同整数解<x,y)的个数为8, |x|+|y|=3的不同整数解<x,y)的个数为12 ….则|x|+|y|=20的不同整数解<x,y)的个数为RTCrpUDGiTA.76B.80C.86D.926.小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为5PCzVD7HxAA.30%B.10%C.3%D.不能确定7.若一个几何体的三视图如图所示,则此几何体的体积为A. B.5 C.4 D.8.椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。
2018年高考全国一卷理科数学答案及解析

1、设z= ,则|z|=
A、0
B、
C、1
D、
【答案】C
【解析】由题可得 ,所以|z|=1
【考点定位】复数
2、已知集合A={x|x2-x-2>0},则 A=
A、{x|-1<x<2}
B、{x|-1 x 2}
D.[1,+∞)
【答案】C
【解析】
根据题意:f(x)+x+a=0有两个解。令M(x)=-a,
N(x)=f(x)+x =
分段求导:N‘(x)=f(x)+x = 说明分段是增函数。考虑极限位置,图形如下:
M(x)=-a在区间(-∞,+1]上有2个交点。
∴a的取值范围是C.[-1,+∞)
【考点定位】分段函数、函数的导数、分离参数法
【解析】
S1=2a1+1=a1∴a1=-1
n>1时,Sn=2an+1,Sn-1=2an-1+1 两式相减:Sn-Sn-1= an=2an-2an-1∴an=2an-1
an=a1×2n-1= (-1)×2n-1
则下面结论中不正确的是:
A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A
【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,
【考点定位】简单统计
M、N的坐标(1,2),(4,4)
则 · =(0,2)·(3,4)=0*3+2*4=8
2018年高考全国1卷理科数学试题与答案解析

WORD格式整理绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
x1.已知集合A={x|x<1},B={x|3 1},则A.A B{x|x0}B.A B RC.A B{x|x1}D.A B2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是1πA.B.48C.12D.π43.设有下面四个命题p:若复数z满足11zR,则z R;p:若复数z满足22z R,则z R;p:若复数z1,z2满足z1z2R,则z1z2;3专业技术参考资料WORD 格式整理p :若复数z R,则z R.4其中的真命题为A.p1, p3 B.p1, p4 C.p2 , p3 D.p2, p44.记S为等差数列{ a n} 的前n项和.若a4 a5 24 ,S6 48 ,则{ a n} 的公差为nA.1 B.2 C.4 D. 85.函数 f (x) 在( , ) 单调递减,且为奇函数.若 f (1) 1,则满足 1 f (x2) 1的x 的取值范围是A.[ 2,2] B.[ 1,1] C.[0,4] D.[1,3]6.16(1 )(1 x)2x展开式中 2x 的系数为A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足 3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A 1 000 和n=n+1D.A 1 000 和n=n+29.已知曲线C1:y=cos x,C2:y=sin (2 x+ 2π) ,则下面结论正确的是3专业技术参考资料WORD 格式整理A.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2B.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C2C.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2D.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C210.已知 F 为抛物线C:y2=4x 的焦点,过F作两条互相垂直的直线l2=4x 的焦点,过F作两条互相垂直的直线l 1,l 2,直线l 1 与C交于A、B两点,直线l 2 与C交于D、E两点,则|AB|+| DE| 的最小值为A.16 B.14 C.12 D.10x y z11.设x yz 为正数,且 2 3 5 ,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件. 为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100 且该数列的前N项和为 2 的整数幂.那么该款软件的激活码是A.440 B.330 C.220 D.110二、填空题:本题共 4 小题,每小题 5 分,共20 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的、号填写在试题卷和答题卡上,并将号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( ) A .0B .12C .1D .22.已知集合{}2|20A x x x =-->,则A =R( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
) (一)必考题:共60分。
17.(12分)在平面四边形ABCD 中,90ADC =︒∠,45A =︒∠,2AB =,5BD =. ⑴求cos ADB ∠;⑵若DC =,求BC .18.(12分)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. ⑴证明:平面PEF ⊥平面ABFD ; ⑵求DP 与平面ABFD 所成角的正弦值.19.(12分)设椭圆2212x C y +=:的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为()20,.⑴当l 与x 轴垂直时,求直线AM 的方程; ⑵设O 为坐标原点,证明:OMA OMB =∠∠.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.⑴记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ;⑵现对一箱产品检验了20件,结果恰有2件不合格品,以⑴中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(12分) 已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. ⑴求2C 的直角坐标方程;⑵若1C 与2C 有且仅有三个公共点,求1C 的方程.23.[选修4—5:不等式选讲](10分)已知()11=+--.f x x ax⑴当1a=时,求不等式()1f x>的解集;⑵若()>成立,求a的取值围.f x x01x∈,时不等式()2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理 数 答 案一、选择题 1.答案: C解答:121i z i i i -=+=+,∴1z =,∴选C. 2.答案: B解答:{|2A x x =>或1}x <-,则{|12}R C A x x =-≤≤.3.答案: A解答:假设建设前收入为a ,则建设后收入为2a ,所以种植收入在新农村建设前为60%a ,新农村建设后为37%2a ⋅;其他收入在新农村建设前为4%a ⋅,新农村建设后为5%2a ⋅,养殖收入在新农村建设前为30%a ⋅,新农村建设后为30%2a ⋅ 故不正确的是A. 4.答案: B解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-. 5.答案: D 解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D.6.答案: A解答:11131()22244EB AB AE AB AD AB AB AC AB AC =-=-=-⋅+=-. 7.答案: B解答:三视图还原几何体为一圆柱,如图,将侧面展开,最短路径为,M N 连线的距离,所以224225MN =+=,所以选B. 8.答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=. 9.答案: C 解答:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如下:要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,∴选C. 10.答案: A解答:取2AB AC ==,则22BC =,∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231(2)222S ππ=⋅-=-,区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.11.答案: B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NMk =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.12.答案:A解答:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN 的面积12233362S ==.二、填空题13.答案:6解答:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max32206z=⨯+⨯=.14.答案:63-解答:依题意,1121,21,n nn nS aS a++=+⎧⎨=+⎩作差得12n na a+=,所以{}na为公比为2的等比数列,又因为11121a S a==+,所以11a=-,所以12nna-=-,所以661(12)6312S-⋅-==--.15.答案:16解答:恰有1位女生,有122412C C =种;恰有2位女生,有21244C C =种,∴不同的选法共有12416+=种.16.答案:解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-. ∴当1cos 2=,为函数的极小值点,即3x π=或53x π=, 当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为. 三、解答题 17. 答案:(1)5;(2)5. 解答:(1)在ABD ∆中,由正弦定理得:52sin 45sin ADB =∠,∴2sin ADB ∠=, ∵90ADB ∠<,∴223cos 1sin 5ADB ADB ∠=-∠=. (2)2ADB BDC π∠+∠=,∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠,∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠,∴222cos 2DC BD BC BDC BD DC+-∠=⋅⋅,∴2252522=⋅⋅.∴5BC =. 18.答案: (1)略;(2)34. 解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF , BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD . (2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥, 设4AB =,则4EF =,2PF =,∴23PE =, 过P 作PH EF ⊥交EF 于H 点, 由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角, 由PE PF EF PH ⋅=⋅,∴2323PH ⋅==, 而4PD =,∴3sin 4PH PDH PD ∠==, ∴DP 与平面ABFD 所成角的正弦值34. 19. 答案: (1)2(2)2y x =±-;(2)略. 解答:(1)如图所示,将1x =代入椭圆方程得2112y +=,得2y =±,∴2(1,)A ±,∴22AM k =±,∴直线AM 的方程为:2(2)2y x =±-.(2)证明:当l 斜率不存在时,由(1)可知,结论成立;当l 斜率存在时,设其方程为(1)y k x =-,1122(,),(,)A x y B x y ,联立椭圆方程有22(1),12y k x x y =-⎧⎪⎨+=⎪⎩即2222(21)4220k x k x k +-+-=,∴2122421k x x k +=+,21222221k x x k -=+,1212121212[(23()4]22(2)(2)AM BMy y k x x x x k k x x x x -+++=+=----2222124412(4)21210(2)(2)k k k k k x x --+++==--,∴AM BM k k =-,∴OMA OMB ∠=∠.20. 答案: 略 解答:(1)由题可知221820()(1)f p C p p =-(01p <<).∴2182172172020()[2(1)18(1)(1)]2(1)(110)f p C p p p p C p p p =-+-⨯-=--∴当1(0,)10p ∈时,()0f p '>,即()f p 在1(0,)10上递增;当1(,1)10p ∈时,()0f p '<,即()f p 在1(,1)10上递减. ∴()f p 在点110p =处取得最大值,即0110p =.(2)(i )设余下产品中不合格品数量为Y ,则4025X Y =+,由题可知1(180,)10Y B ,∴11801810EY np ==⨯=.∴(4025)4025402518490EX E Y EY =+=+=+⨯=(元).(ii )由(i )可知一箱产品若全部检验只需花费400元,若余下的不检验则要490元,所以应该对余下的产品作检验. 21. 答案:(1)见解析;(2)见解析. 解答:(1)①∵1()ln f x x a x x =-+,∴221'()x ax f x x -+=-,∴当22a -≤≤时,0∆≤,'()0f x ≤,∴此时()f x 在(0,)+∞上为单调递增.②∵0∆>,即2a <-或2a >,此时方程210x ax -+=两根为1222a a x x -+==,当2a <-时,此时两根均为负,∴'()f x 在(0,)+∞上单调递减.当2a >时,0∆>,此时()f x在上单调递减,()f x在上单调递增,()f x在)+∞上单调递减.∴综上可得,2a ≤时,()f x 在(0,)+∞上单调递减;2a >时,()f x在,()2a +∞上单调递减,()f x在(,)22a a +上单调递增.(2)由(1)可得,210x ax -+=两根12,x x 得2a >,1212,1x x a x x +=⋅=,令120x x <<,∴121x x =,1211221211()()ln (ln )f x f x x a x x a x x x -=-+--+21122()(ln ln )x x a x x =-+-.∴12121212()()ln ln 2f x f x x x a x x x x --=-+⋅--,要证1212()()2f x f x a x x -<--成立,即要证1212ln ln 1x x x x -<-成立,∴1122212ln 0(1)x x x x x x x -+<>-,2221212ln 0x x x x x --+∴<-即要证22212ln 0x x x --+>(21x >) 令1()2ln (1)g x x x x x =--+>,可得()g x 在(1,)+∞上为增函数,∴()(1)0g x g >=,∴1212ln ln 1x x x x -<-成立,即1212()()2f x f x a x x -<--成立.22. 答案:(1)22(1)4x y ++=;(2)423y x =-+解答:(1)由22cos 30ρρθ+-=可得:22230x y x ++-=,化为22(1)4x y ++=. (2)1C 与2C 有且仅有三个公共点,说明直线2(0)y kx k =+<与圆2C 相切,圆2C 圆心为(1,0)-,半径为2,2=,解得43k =-,故1C 的方程为423y x =-+.23. 答案:(1)1{|}2x x >;(2)(0,2]. 解答:(1)当1a =时,21()|1||1|21121x f x x x xx x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩, ∴()1f x >的解集为1{|}2x x >.(2)当0a =时,()|1|1f x x =+-,当(0,1)x ∈时,()f x x >不成立. 当0a <时,(0,1)x ∈,∴()1(1)(1)f x x ax a x x =+--=+<,不符合题意. 当01a <≤时,(0,1)x ∈,()1(1)(1)f x x ax a x x =+--=+>成立.当1a >时,1(1),1()1(1)2,a x x af x a x x a ⎧+-<<⎪⎪=⎨⎪-+≥⎪⎩,∴(1)121a -⋅+≥,即2a ≤.综上所述,a 的取值围为(0,2].。