机械原理课程设计_—_牛头刨床的运动分析

合集下载

《机械原理》课程设计_牛头刨床

《机械原理》课程设计_牛头刨床

牛头刨床设计一、工作原理牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。

图1为其参考示意。

电动机经过减速传动装置(带和齿轮传动)带动执行机构(导杆机构和凸轮机构),完成刨刀的往复运动和间歇移动。

刨床工作时,刨头6由曲柄2带动右行,刨刀进行切削,称为工作行程。

在切削行程H中,前、后各有一段0.05H的空刀距离,工作阻力F为常数;刨刀左行时,即为空回行程,此行程无工作阻力。

在刨刀空回行程时,凸轮8通过四杆机构带动棘轮机构,棘轮机构带动螺旋机构使工作台连同工件在垂直纸面方向上做一次进给运动,以便刨刀继续切削。

图1 牛头刨床二、设计要求电动机轴与曲柄轴2平行,刨刀刀刃点E与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。

允许曲柄2转速偏差为土5%。

要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件9的升、回程运动规律均为等加速、等减速运动。

执行构件的传动效率按0.95计算,系统有过载保护。

按小批量生产规模设计。

三、设计数据表1 设计数据四、设计内容及工作量(1)根据牛头刨床的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。

(2)根据给定的数据确定机构的运动尺寸。

要求用图解法设计,并将设计结果和步骤写在设计说明书中。

(3)导杆机构的运动分析。

将导杆机构放在直角坐标系下,建立数学模型。

(4)凸轮机构设计。

根据给定的已知参数,确定凸轮的基本尺寸(基圆半径r o、机架l o2o9和滚子半径r r)和实际轮廓,并将运算结果写在说明书中(可选)。

(5)编写设计计算说明书。

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床

机械能变化曲线:
飞轮设计:

A4

A2 A4 A2
速度图解法:
V1A+V12=V 2A VF+VFB=V 2B V2B=βV 2A Β为常数比
加速度图解分析: a4An+a4Ar+a24Ar+ak24A =a2A 大小 方向
a4b+aF4Br=aF a4A=βV 4B
进给凸轮机构设计
主体机构设计
牛头刨床主体机构
主体结构设计
设计要求
(1)刨刀工作行程要求速度比较平稳,空回行程时 刨刀快速退回,机构行程速比系数在1.4左右。 (2)刨刀行程H=300mm或H=150mm。曲柄转速、 切削力、许用传动角等见表1,每人选取其中一组数据。 (3)切削力P大小及变化规律如图1所示,在切削行 程的两端留出一点空程。具体数据如下:
主体机构
电机转速n(r/mi n)
切削力P(N)
75
许用传动角[γ]
H=150mm
4500N
45°
刨刀行程:H=150 速比系数:K=1.4
主体机构(方案一)
方案一: 摆动导杆机构与摇杆滑块机构组合机构
机构简图:
计算机构的自由度 F=3×5-2×7=1
主体机构(方案一)
机构尺寸的计算:
在满足压力角条件确定基圆半径,摆杆中心间的中心距。
• 推程许用压力角为[α]= 38°; • 回程许用压力角为[α’]= 65°; • 试凑法:对照摆杆长度为L,赋值基圆半径, 中心距a=90,r0=50;经试验符合要求
滚子半径rf:rf<ρ mi n -3(mm)及rf<0.8ρ mi n(mm) 方法1用图解法确定凸轮理论廓线上某点A的曲率半径R: 以A点位圆心,任选较小的半径r 作圆交于廓线上,在圆A 两边分别以理论廓线上的B、C为圆心,以同样的半径r 画圆,三个小圆分别交于E、F、H、M四个点处。过E、 F H、M O点 O点近似为凸轮廓线上A OA。并且曲率中心肯定在曲线过A 点的法线上。可以通 过法线与直线EF或HM的交点求曲率中心。

牛头刨床的连杆机构运动分析

牛头刨床的连杆机构运动分析

牛头刨床的连杆机构运动分析0 前言机构运动分析的任务是关于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确信从动件或从动件上指定点的位置、速度和加速度。

许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,因此机构的运动分析是机械设计进程中必不可少的重要环节。

以运算机为手腕的解析方式,由于解算速度快,精准度高,程序有必然的通用性,已成为机构运动分析的要紧方式。

连杆机构作为在机械制造专门是在加工机械制造中要紧用作传动的机构型式,同其他型式机构专门是凸轮机构相较具有很多优势。

连杆机构采纳低副连接,结构简单,易于加工、安装并能保证精度要求。

连杆机构能够将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,知足给定的运动要求,完成机械的工艺操作。

牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。

工作台的纵向往复运动是机床的主运动,实现工件的切削。

工作台的横向运动即是进给运动,实现对切削精度的操纵。

本文中只分析纵向运动的运动特性。

牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。

刨床工作时,通过六杆机构驱动刨刀作往复移动。

刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。

当刨刀处于返回行程时,刨刀不工作,称为空行程,现在要求刨刀的速度较高以提高生产率。

由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的阻碍。

1 牛头刨床的六连杆机构牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。

图1所示的为一牛头刨床的六连杆机构。

杆1为原动件,刨刀装在C点上。

假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度和刨刀C点的位移、速度和加速度的转变情形。

机械原理课程设计 牛头刨床连杆机构

机械原理课程设计 牛头刨床连杆机构

机械原理课程设计编程说明书设计题目: 牛头刨床的设计及运动分析(1)指导老师: 席本强, 郝志勇设计者: 迟宇学号: **********班级: 液压09-1班2011年6月30号辽宁工程技术大学机械原理课程设计任务书五、要求:1)作机构的运动简图(A4或A3图纸)。

2)用C语言编写主程序调用子程序, 对机构进行运动分析, 并打印出程序及计算结果。

3)画出导轨4的角位移, 角速度, 角加速度的曲线。

4)编写设计计算说明书。

指导教师:开始日期: 2010年6月26日完成日期: 2010年6月30日目录1.设计要求及参数 (1)2.数学模型 (2)3.程序框图 (4)4.程序清单及运行结果 (5)5.设计总结 (14)6.参考文献 (14)一、设计要求及参数已知: 曲柄每分钟转数n2, 各构件尺寸及重心位置, 且刨头导路X-X位于导杆端点B所作圆弧的平分线上, 数据见下表要求:(1)作机构的运动简图(2)用C语言编写主程序调用子程序, 对机构进行运动分析, 动态显示, 并打印程序及运算结果。

(3)画出导轨4的角位移Ψ, 角速度Ψ’, 角加速度Ψ”。

(4)编写设计计算说明书二、数学模型如图四个向量组成封闭四边形, 于是有0321=+-Z Z Z按复数式可以写成a (cos α+isin α)-b(cos β+isin β)+d(cos θ3+isin θ3)=0(1)由于θ3=90º, 上式可化简为a (cos α+isin α)-b(cos β+isin β)+id=0(2)根据(2)式中实部、虚部分别相等得acos α-bcos β=0(3)asin α-bsin β+d=0(4)(3)(4)联立解得 β=arctan acosaasinad + (5)b=2adsina d2a 2++ (6)将(2)对时间求一阶导数得ω2=β’=baω1cos(α-β)(7)υc =b ’=-a ω1sin(α-β)(8)将(2)对时间求二阶导数得ε3=β”=b1[a ε1cos(α-β)- a ω21sin(α-β)-2υc ω2] (9)a c =b ”=-a ε1sin(α-β)-a ω21cos(α-β)+b ω22(10)ac 即滑块沿杆方向的加速度, 通常曲柄可近似看作均角速转动, 则ε1=0。

机械原理 课程设计---牛头刨床设计

机械原理 课程设计---牛头刨床设计

机械原理课程设计---牛头刨床设计1.设计目的本设计旨在设计一台能够切削各种金属材料的牛头刨床。

该牛头刨床应具备高效率、高稳定性、切削精度高的特点,便于操作和维护。

2.设计原理牛头刨床是一种高速旋转的加工设备。

其主要原理是通过旋转锯齿式的切削工具,将工件表面上的金属材料逐渐削除,使得工件表面变得更加平整,并且加工出所需的形状和尺寸。

牛头刨床是一种中等负荷,高精度的机床。

牛头刨床通常由牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。

牛头刨床的加工过程是由电机驱动削刀旋转,刀架在滑轨的带动下来回作直线摆动,使牛头刨床作工件表面直线切削运动,从而切出工件所需的形状和尺寸。

3.设计要求3.1工件加工精度应达到5μm。

3.2牛头刨床的加工速度应达到1000mm/min。

3.3牛头刨床的集成度要高,结构紧凑,使用方便,易于维护。

3.4牛头刨床应能满足加工各种金属材料的需求。

3.5牛头刨床应具有高稳定性,能够保证工件加工的精度和表面质量。

4.设计方案4.1结构设计根据以上的设计要求,本设计方案选择使用牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。

牛头床身是整个牛头刨床的主要支撑结构,可以承受切削力和副作用力,保持机床的稳定性。

床身导轨主要用于支撑剪刀架和平台,保证刀架的平直移动。

剪刀手柄和剪刀架负责牛头刨床的切削过程,加工刀具可根据需要更换。

4.2电气控制设计本设计方案使用单片机控制系统,实现对牛头刨床的控制。

单片机通过输入脉冲信号,控制螺旋传动装置,从而改变刀具的进给量,达到精确控制切削深度和速度的目的。

4.3软件设计本设计方案采用Unigraphics NX软件进行电脑辅助设计。

对机床各零件进行三维建模,并进行机床的装配和结构分析。

5.结论通过本次牛头刨床的设计,可以使得产生出一款结构紧凑、使用便捷、高效率和高精度的机床。

在未来的制造业中,牛头刨床的应用前景非常广阔。

(完整版)牛头刨床运动分析实例

(完整版)牛头刨床运动分析实例

例: 如图所示为一牛头刨床的机构运动简图。

设已知各构件尺寸为:1125mm l =,3600mm l =,4150mm l =,原动件1的方位角1=0~360θ︒︒和等角速度1=1rad/s w 。

试用矩阵法求该机构中各从动件的方位角、角速度和角加速度以及E 点的位移、速度和家速度的运动线图。

解:先建立一直角坐标系,并标出各杆矢量及方位角。

其中共有四个未知量3θ、4θ、3s 及E s 。

为求解需建立两个封闭矢量方程,为此需利用两个封闭图形ABCA 及CDEGC ,由此可得,613346,'E l l s l l l s +=+=+(1-1)写成投影方程为: 331133611334433446cos cos sin sin cos cos 0sin sin 'E s l s l l l l s l l l θθθθθθθθ==++-=+= (1-2)解上面方程组,即可求得3θ、4θ、3s 及E s 四个位置参数,其中23θθ=。

将上列各式对时间取一次、二次导数,并写成矩阵形式,即可得以下速度和加速度方程式。

速度方程式:3331133331131334443344cos sin 00sin sin cos 00cos 0sin sin 1000cos cos 0E s l s s l w w l l w l l v θθθθθθθθθθ⎡⎤--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (1-3)机构从动件的位置参数矩阵:33333333443344cos sin 00sin cos 000sin sin 10cos cos 0s s l l l l θθθθθθθθ-⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦机构从动件的的速度列阵:334E s w w v ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦机构原动件的位置参数矩阵:1111sin cos 00l l θθ-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1w :机构原动件的角速度加速度方程式:333333333344433443333333333333333344433344cos sin 00sin cos 000sin sin 10cos cos 0sin sin cos 00cos cos sin 000cos cos 00sin sin E s s s l l l l w s s w w s s w l w l w l w l w θθθθαθθαθθαθθθθθθθθθθ⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦----=-----11131113144cos sin 000E l w s l w w w w v θθ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦(1-4)机构从动件的位置参数矩阵求导:33333333333333333444333444sin sin cos 00cos cos sin 000cos cos 00sin sin 0w s s w w s s w l w l w l w l w θθθθθθθθθθ⎡⎤---⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥--⎢⎥⎣⎦机构从动件的的加速度列阵:334E s ααα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦机构原动件的位置参数矩阵求导:111111cossinl wl wθθ-⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦主程序(matlab):%牛头刨床运动分析主程序s;%x(1)——代表3θ;%x(2)——代表构件3的转角3θ;%x(3)——代表构件4的转角4s;%x(4)——代表E点的线位移El;%x(5)——代表1l;%x(6)——代表3l;%x(7)——代表4l;%x(8)——代表6l;%x(9)——代表'6w。

牛头刨床主传动机构运动方案分析

牛头刨床主传动机构运动方案分析

三、机构选型、方案分析及方案的确定方案一的运动分析及评价(1)运动是否具有确定的运动该机构中构件n=5。

在各个构件构成的的运动副中Pl=6,Ph=1.凸轮和转子、2杆组成运动副中有一个局部自由度,即F'=1。

机构中不存在虚约束。

.由以上条件可知:机构的自由度 F=3n-(2Pl+Ph-p')-F'=1机构的原动件是凸轮机构,原动件的个数等于机构的自由度,所以机构具有确定的运动。

(2)机构传动功能的实现在原动件凸轮1带动杆2会在一定的角度范围内摇动。

通过连杆3推动滑块4运动,从而实现滑块(刨刀)的往复运动。

(3)主传动机构的工作性能凸轮1的角速度恒定,推动2杆摇摆,在凸轮1随着角速度转动时,连杆3也随着杆2的摇动不断的改变角度,使滑块4的速度变化减缓,即滑块4的速度变化在切削时不是很快,速度趋于匀速;在凸轮的回程时,只有惯性力和摩擦力,两者的作用都比较小,因此,机构在传动时可以实现刨头的工作行程速度较低,而返程的速度较高的急回运动。

传动过程中会出现最小传动角的位置,设计过程中应注意增大基圆半径,以增大最小传动角。

机构中存在高副的传动,降低了传动的稳定性。

(4)机构的传力性能要实现机构的往返运动,必须在凸轮1和转子间增加一个力,使其在回转时能够顺利的返回,方法可以是几何封闭或者是力封闭。

几何封闭为在凸轮和转子设计成齿轮形状,如共扼齿轮,这样就可以实现其自由的返回。

机构在连杆的作用下可以有效的将凸轮1的作用力作用于滑块4。

但是在切削过程中连杆3和杆2也受到滑块4的作用反力。

杆2回受到弯力,因此对于杆2的弯曲强度有较高的要求。

同时,转子与凸轮1的运动副为高副,受到的压强较大。

所以该机构不适于承受较大的载荷,只使用于切削一些硬度不高的高的小型工件。

该机构在设计上不存在影响机构运转的死角,机构在运转过程中不会因为机构本身的问题而突然停下。

(5)机构的动力性能分析。

由于凸轮的不平衡,在运转过程中,会引起整个机构的震动,会影响整个机构的寿命。

机械原理课程设计牛头刨床

机械原理课程设计牛头刨床

《机械原理》课程设计计算说明书设计题目:牛头刨床学院:机械工程学院专业班级:机自1421班学生姓名:郭文超学号: 03320142108指导教师:赵楠2016年07月04日——2016年07月07日目录工作原理 (3)一.设计任务 (4)二.设计数据 (4)三.设计要求 (5)1、运动方案设计 (5)2、确定执行机构的运动尺寸 (5)3、进行导杆机构的运动分析四.设计方案选定五.1.32.381111 (12)13工作原理.牛头刨床是一种用于平面切削加工的机床,如图a)所示。

电动机经过皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。

刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。

刨头左行时,刨刀不切削,称为空回行程,此时要求速度较高,以提高生产率。

为此刨床采用有急回运动的导杆10-11各有一段0.05H(a)(b)图d表2求出刨头3的速度、加速度,将过程详细地写在说明书中。

四.设计方案选定如图所示,牛头刨床的主传动机构采用导杆机构、连杆滑块机构组成的5杆机构。

采用导杆机构,滑块与导杆之间的传动角r始终为90o,且适当确定构件尺寸,可以保证机构工作行程速度较低并且均匀,而空回行程速度较高,满足急回特性要求。

适当确定刨头的导路位置,可以使压力角 尽量小。

五.机构的运动分析1.3点速度分析当曲柄位于3点时如上图已知:ω04=2πn/60=7.536rad/sV A4 = V A3A4 + V A3方向:⊥杆4 ∥杆4 ⊥杆2大小:??√已知:V A3=ω04×L2 =7.536×110=828.96mm/s 作图得:V A4=670.05MM/Sω04=V A4/L AO4=670.05/513.91=1.306rad/s V B=ω04×L4=1.306 ×810=1057.86mm/sVc= V B + V CB方向:∥X-X √⊥杆BC大小:?√?由作图法得::V C2和3在A点处的转其大小等于ω22lO2A,方向由A指向O2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、概述§1.1、课程设计的任务和目的————————————— 1 §1.2、课程设计的要求———————————————— 1 §1.3、课程设计的数据———————————————— 1二、牛头刨床主传动机构的结构设计与分析§2.1、机构选型、方案分析及方案的确定———————— 2 §2.2、主传动机构尺寸的综合与确定—————————— 2 §2.3、杆组拆分——————————————————— 3 §2.4、绘制机构运动简图——————————————— 3 §2.5、绘制刀头位移曲线图—————————————— 3三、牛头刨床主传动机构的运动分析及程序§3.1、解析法进行运动分析—————————————— 3 §3.2、程序编写过程(计算机C语言程序)——————— 5 §3.3、计算数据结果————————————————— 6 §3.4、位移、速度和加速度运动曲线图与分析—————— 7四、小结心得体会—————————————————————— 8五、参考文献参考文献—————————————————————— 8一、概述§1.1、课程设计的任务和目的课程设计的任务:(一)执行机构结构设计及分析1.牛头刨床的机构选型、运动方案拟定;2.主传动机构尺度综合及确定;3.机构的杆组拆分和机构简图的绘制;4.绘制刀头位移曲线图;(二)执行机构运动分析1.建立数学模型,解析法进行运动分析;2.程序编写;3.上机调试程序;4.位移、速度和加速度运动曲线图与分析;(三)撰写设计说明书(四)考核课程设计的目的:机械原理课程设计是培养学生机械系统方案设计能力的技术基础课程,他是机械原理课程学习过程中的一个重要实践环节。

其目的是以机械原理课程的学习为基础,记忆不巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析、计算机辅助设计、绘图以及查阅和使用文献的综合能力。

§1.2、课程设计的要求(1)根据牛头刨床的机构简图及必要的数据,进行机构的结构设计、结构分析和运动动力学分析;(2)为了提高生产效率,要求刨刀的往复切削运动具有急回特性(切削时刨刀的移动速度低于空行程速度);(3)刨刀且学运动速度平稳;(4)要求机构具有良好的传力特性(在整个行程中推动牛头刨床应有较小的压力角)。

§1.3、课程设计的数据曲柄转速 n=48r/min 机架 LAC=380mm 工作行程 H=310mm 行程速比系数 K=1.46连杆与导杆之比 LDE/LCD=0.25 曲柄与水平线的夹角 120°二、牛头刨床主传动机构的结构设计与分析§2.1、机构选型、方案分析及方案的确定 主执行机构设计参考方案:方案分析: 方案一、1. 机构具有确定运动,自由度为F=3n-(2Pl+Ph )=3×5-(2×7+0)=1,曲柄为机构原动件;2. 通过曲柄带动摆动导杆机构和滑块机构使刨刀往复移动,实现切削功能,能满足功能要求3. 工作性能,工作行程中,刨刀速度较慢,变化平缓符合切削要求,摆动导杆机构使其具有急回作用,可满足任意行程速比系数K 的要求;4. 传递性能,机构传动角恒为90°,传动性能好,能承受较大的载荷,机构运动链较长,传动间隙较大;5. 动力性能,传动平稳,冲击震动较小;6. 结构和理性,结构简单合理,尺寸和质量也较小,制造和维修也较容易;7. 经济性,无特殊工艺和设备要求,成本较低。

方案确定:综上所述,所以选择方案一。

§2.2、主传动机构尺寸的综合与确定 由已知数据经过计算得由θθ-180180︒+︒=K 得出θ=33.66°)(mm 110266.33sin 3802sin =︒⨯==θAC AB )(5352sin2mm HCD ==θ)(13425.0535mm L L CD DE CDDE=⨯=⨯=方案1 方案2 方案3)(52322mm CDCOSCD CD H =--=θ§2.3、杆组拆分§2.4、绘制机构运动简图(见图纸) §2.5、绘制刀头位移曲线图θ1Se 120°-0.230150°-0.246197°-0.298343°0.020三、牛头刨床主传动机构的运动分析及程序§3.1、解析法进行运动分析如右图,建立直角坐标系,并标出各杆矢量及方位角。

利用两个封闭图形ABCA 及CDEGC 。

投影方程式为1133cos cos θθl s = (1) 11633sin sin θθl l s += (2)0cos cos 4433=-+E S l l θθ (3)'64433sin sin l l l =+θθ (4) ① 求333αωθ、、、 由公式(1)和(2)得:163cos sin arctan 111θθθl l l += 221πθπ<≤- (5)163cos sin arctan 111θθπθl l l ++= 2321πθπ<≤ (6)上式等价于 116113sin cos cot θθθl l l arc += (7)对3θ求导得:1162126161113sin 2sin θθωωl l l l l l l +++=)( (8) 同理得:211621261211621263)sin 2(cos )(θθωαl l l l l l l l ++-= (9) ② 求滑块E 的E E E S αν、、 由(3)、(4)式得:4433cos cos θθl l S E += (10)433sin arcsin4l l H θθ-= (11) 求导得:443334cos cos θθωωl l -= (12)44333cos )sin(θθθων--=l E (13)再求导得:44333442433234cos cos sin sin θθαθωθωαl l l l -+=(14) 4424433234333cos )cos()sin(θωθθωθθααl l l E --+--= (15) §3.2、程序编写过程(计算机C 语言程序)#include<stdio.h> #include<math.h>#define PI 3.1415926void main() {double a=0.110,b=0.535,c=0.134,d=0.380,e=0.523,f=5; /*a=AB,b=CD,c=DE,d=AC,e=H,f=ω1 */double B,C,E,F,G,I,L,M,O; /*B=θ3,C=θ4, E=Se ,F =ω3,G=ω4, I= Ve ,L=а3,M=а4, O=аe */double x=0;printf(" @1 @3 @4 Se W3 W4 Ve A3 A4 Ae \n");while(x<6.3) {B=atan((d+a*sin(x))/(a*cos(x))); /*求θ3*/ if(B<0)B=PI+B;C=PI-asin((e-b*sin(B))/c); /*求θ4*/ if(C<0)C=PI+C;E=b*cos(B)+c*cos(C); /*求 Se */F=(a*f*(a+d*sin(x)))/(d*d+a*a+2*d*a*sin(x)); /*求 ω3*/ G=-(F*b*cos(B))/(c*cos(C)); /*求 ω4*/ I=-(F*b*sin(B-C))/cos(C); /*求 Ve */L=((d*d-a*a)*d*a*f*f*cos(x))/((d*d+a*a+2*d*a*sin(x))*(d*d+a*a+2*d*a*sin(x))); /*求а3*/M=(F*F*b*sin(B)+G*G*c*sin(C)-L*b*cos(B))/(c*cos(C)); /*求а4*/ O=-(L*b*sin(B-C)+F*F*b*cos(B-C)-G*G*c)/cos(C); /*求аe */printf("%3.0f %3.3f %3.3f %3.3f %3.3f %3.3f %3.3f %3.3f %3.3f%3.3f\n",x*180/PI,(B*180)/PI,(C*180)/PI,E,F,G,I,L,M,O); x=x+PI*10/180;}}§3.3、计算数据结果各构件的位置、速度和加速度θ1θ3θ4Seω3ω4νeа3а4аe / (°)/ (rad/s)/ (rad/s²)/ m/ (m/s)/ (m/s) 073.856176.1070.0150.3870.430-0.203 5.645 5.694-3.000 1074.814177.1420.0060.5660.593-0.296 4.655 3.622-2.520 2076.098178.430-0.0050.7130.684-0.373 3.792 1.655-2.104 3077.648179.835-0.0200.8320.711-0.435 3.045-0.101-1.738 4079.410181.235-0.0360.9270.680-0.485 2.396-1.603-1.411 5081.341182.524-0.053 1.0000.602-0.525 1.827-2.838-1.112 6083.399183.617-0.072 1.0550.485-0.557 1.319-3.802-0.833 7085.549184.446-0.092 1.0930.340-0.5790.856-4.494-0.568 8087.760184.962-0.113 1.1150.175-0.5940.421-4.911-0.312 9090.000185.138-0.133 1.1220.000-0.6010.000-5.050-0.061 10092.240184.962-0.154 1.115-0.175-0.598-0.421-4.9110.190 11094.451184.446-0.175 1.093-0.340-0.586-0.856-4.4940.444 12096.601183.617-0.195 1.055-0.485-0.565-1.319-3.8020.706 13098.659182.524-0.214 1.000-0.602-0.533-1.827-2.8380.982 140100.590181.235-0.2320.927-0.680-0.489-2.396-1.603 1.278 150102.352179.835-0.2480.832-0.711-0.435-3.045-0.101 1.603 160103.902178.430-0.2620.713-0.684-0.368-3.792 1.655 1.966 170105.186177.142-0.2740.566-0.593-0.288-4.655 3.622 2.377 180106.144176.107-0.2820.387-0.430-0.195-5.645 5.694 2.846 190106.708175.469-0.2870.170-0.196-0.085-6.7547.662 3.379 200106.799175.363-0.288-0.0860.0990.043-7.9419.164 3.968 210106.337175.891-0.284-0.3840.4320.193-9.1019.668 4.576 220105.240177.085-0.274-0.7190.7550.366-10.0298.518 5.115 230103.446178.860-0.258-1.077 1.0000.558-10.396 5.126 5.406 240100.933180.979-0.235-1.433 1.0850.755-9.774-0.627 5.183 25097.745183.046-0.206-1.7440.9390.931-7.784-7.803 4.171 26094.022184.572-0.171-1.9590.550 1.052-4.364-14.088 2.282 27090.000185.138-0.133-2.0370.000 1.0900.000-16.634-0.200 28085.978184.572-0.096-1.959-0.550 1.040 4.364-14.088-2.665 29082.255183.046-0.062-1.744-0.9390.9187.784-7.803-4.520 30079.067180.979-0.033-1.433-1.0850.7509.774-0.627-5.502 31076.554178.860-0.010-1.077-1.0000.56310.396 5.126-5.701 32074.760177.0850.007-0.719-0.7550.37610.0298.518-5.384 33073.663175.8910.017-0.384-0.4320.2019.1019.668-4.813 34073.201175.3630.021-0.086-0.0990.0457.9419.164-4.169 35073.292175.4690.0200.1700.196-0.089 6.7547.662-3.552 36073.856176.1070.0150.3870.430-0.203 5.645 5.694-3.000§3.4、位移、速度和加速度的运动曲线图与分析四、小结心得体会:通过这次课程设计我有了很多收获。

相关文档
最新文档