牛头刨床的运动和动力分析

合集下载

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床(1)待续2008-11-21 02:13目录一、概述§1.1、课程设计的题目---------------------------------------2§1.2.、课程设计的任务和目的-----------------------------2§1.3、课程设计的要求---------------------------------------3§1.4、课程设计的数据---------------------------------------3二、运动分析及程序§2.1、拆分杆组------------------------------------------------4§2.2、方案分析------------------------------------------------4§2.3、程序编写过程------------------------------------------5§2.4、程序说明------------------------------------------------6§2.5、C语言编程及结果------------------------------------6§2.6、位移,速度,加速度图------------------------------10三、各运动方案的分析与评价§3.1 方案一的运动分析和评价--------------------------12§3.2 方案二的运动分析和评价--------------------------13§3.3 方案三的运动分析和评价--------------------------15§3.4 方案四的运动分析和评价--------------------------16四、小结--------------------------------------- 19五、参考文献---------------------------------20一、概述§1.1.课程设计的题目此次课程设计的题目是:牛头刨床的主传动结构的设计.§1.2.课程设计的任务和目的1)任务:1 牛头刨床的机构选型、运动方案的确定;2 导杆机构进行运动分析;3 导杆机构进行动态静力分析;根据要求发挥自己的创新能力,设计4到5种牛头刨床的主传动机构,使其可以满足牛头刨床的传动需要。

牛头刨床刨刀往复运动机构的分析与设计

牛头刨床刨刀往复运动机构的分析与设计

机械工程学院机械原理课程设计说明书设计题目:牛头刨床刨刀往复运动机构的分析与设计专业:机械设计制造及其自动化班级:13级姓名:学号指导教师:侍红岩2016年 1 月 4 日目录1 设计任务 (1)1.1 设计题目 (1)1.2 工作原理及工艺动作过程 (1)1.3 原始数据及设计要求 (1)1.4 设计任务 (2)2 系统传动方案设计 (3)2.1 曲柄滑块机构与摆动导杆机构 (3)2.2 齿轮和摆动导杆机构 (4)2.3 执行机构方案的比较 (5)2.4 执行机构方案的确定 (5)3 机构运动简图及数据分析 (7)3.1 机械结构简图 (7)3.2 牛头刨床数据分析 (8)4 机构运动分解 (10)5 主机构受力分析 (11)5.1 各运动副反力 (11)5.2 曲柄机构平衡力矩 (14)参考文献 (16)1 设计任务1.1 设计题目牛头刨床刨刀往复运动机构的分析与设计。

1.2 工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床,整个机构的运转是由原动件1带动杆2的,通过连杆3推动滑块4运动;从而实现刨刀的往复运动。

刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。

1.3 原始数据及设计要求图1-1已知行程比系数K=1.4原动件曲柄1转速n1=60r/min,刨刀5行程H=400mm,其它参数为,L4=220mm,L5=180mm,L6=350mm,L |3=L3/2,H1=100mm,H2尺寸应满足传动角尽可能大;故刨刀5移动导路位于D点圆弧轨迹弦高一半处;构件重量分别为G2=200N,G5=700N,质心位于S3、S5处;构件3绕质心转动惯量J S3=1.1kg.m2,回程阻力为零,其它忽略不计。

刨刀工作阻力如图1-1所示,回程阻力为零,其它条件忽略不计。

表 11.4 设计任务(1)绘制机构运动简图。

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床

机械能变化曲线:
飞轮设计:

A4

A2 A4 A2
速度图解法:
V1A+V12=V 2A VF+VFB=V 2B V2B=βV 2A Β为常数比
加速度图解分析: a4An+a4Ar+a24Ar+ak24A =a2A 大小 方向
a4b+aF4Br=aF a4A=βV 4B
进给凸轮机构设计
主体机构设计
牛头刨床主体机构
主体结构设计
设计要求
(1)刨刀工作行程要求速度比较平稳,空回行程时 刨刀快速退回,机构行程速比系数在1.4左右。 (2)刨刀行程H=300mm或H=150mm。曲柄转速、 切削力、许用传动角等见表1,每人选取其中一组数据。 (3)切削力P大小及变化规律如图1所示,在切削行 程的两端留出一点空程。具体数据如下:
主体机构
电机转速n(r/mi n)
切削力P(N)
75
许用传动角[γ]
H=150mm
4500N
45°
刨刀行程:H=150 速比系数:K=1.4
主体机构(方案一)
方案一: 摆动导杆机构与摇杆滑块机构组合机构
机构简图:
计算机构的自由度 F=3×5-2×7=1
主体机构(方案一)
机构尺寸的计算:
在满足压力角条件确定基圆半径,摆杆中心间的中心距。
• 推程许用压力角为[α]= 38°; • 回程许用压力角为[α’]= 65°; • 试凑法:对照摆杆长度为L,赋值基圆半径, 中心距a=90,r0=50;经试验符合要求
滚子半径rf:rf<ρ mi n -3(mm)及rf<0.8ρ mi n(mm) 方法1用图解法确定凸轮理论廓线上某点A的曲率半径R: 以A点位圆心,任选较小的半径r 作圆交于廓线上,在圆A 两边分别以理论廓线上的B、C为圆心,以同样的半径r 画圆,三个小圆分别交于E、F、H、M四个点处。过E、 F H、M O点 O点近似为凸轮廓线上A OA。并且曲率中心肯定在曲线过A 点的法线上。可以通 过法线与直线EF或HM的交点求曲率中心。

牛头刨床原理

牛头刨床原理

牛头刨床原理
牛头刨床是一种用于木材加工的机械设备,它主要用于对木材进行刨削和修整,使得木材表面更加光滑平整。

牛头刨床的工作原理主要包括送料系统、刨削系统和送料系统。

下面将详细介绍牛头刨床的工作原理。

1.送料系统。

牛头刨床的送料系统主要由送料辊和送料链条组成。

当木材被送入牛头刨床时,送料辊会将木材固定在机器的工作台上,防止木材在刨削过程中移动。

同时,送料链条会将木材沿着工作台送入刨削系统,确保木材能够顺利进行刨削操作。

2.刨削系统。

刨削系统是牛头刨床的核心部件,它主要由刨刀和刨床主轴组成。

当木材被送
入刨削系统后,刨床主轴会带动刨刀旋转,刨刀与木材表面接触,对木材进行刨削。

刨刀的旋转速度和刨床主轴的进给速度会影响刨削的效果,通常需要根据木材的硬度和刨削的要求进行调节。

3.送料系统。

刨削后的木材会被送料链条送出牛头刨床,完成整个刨削过程。

在刨削过程中,送料系统需要确保木材能够顺利送出,同时也需要对木材进行支撑,防止出现倾斜和晃动的情况,保证刨削后的木材表面平整。

总结。

牛头刨床通过送料系统将木材固定和送入刨削系统,刨削系统对木材进行刨削
操作,最后通过送料系统将刨削后的木材送出。

这就是牛头刨床的工作原理。

牛头刨床在木材加工中起着重要作用,能够有效提高木材的加工效率和加工质量,广泛应用于家具制造、建筑装饰等行业。

希望本文对牛头刨床的工作原理有所帮助,感谢阅读!。

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床
对7号位置受力 分析
对于滑块中心D 点分析
Page 15
对摇杆进行分析
十二、飞轮转动惯量的计算
计算阻力距 确定等效力矩 确定最大盈亏功 估算飞轮转动惯量
Wmax 900 Wmax JF 2 2 2 213.7kg m2 (1 [ ]) π n1 [ ]
Page 16
Page
12
九、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page
13
十、电动机功率与型号的确定
电动机的选择 传动比分配与 减速机构设计 工作台进给方案
Page 14
确定电动机功率
总传动比 采用展开式二级圆柱齿轮减速器
工作台横向进给运动 工作台垂直进给运动
十一、主机构受力分析
Page
3
三、三维模型示意图
ቤተ መጻሕፍቲ ባይዱ三维模型示意图
Page 4
四、设计内容
课题:牛头刨床
1.对导杆机构进行运动分析 设 计 内 容 2.对导杆机构进行动态静力分析
3. 用UG模拟仿真运动校核机构运动分析和动态静 力分析结果
4. 确定电动机功率与型号 5. 减速装置的设计
Page 5
五、机构方案的初步确定
方案一
方案三
方案二
Page 6
五、机构方案的初步确定
功能要求
方 案 对 比
可动性
传递性能 动力性能 制造工艺及经济性
Page
7
六、对方案二的性能分析
(1)机械功能分析
杆1、2、3、6为曲柄摇杆,曲柄1为原动件,作 周期往复运动,使滑块同时周期往复运动,带动导 杆摆动,从而使得滑块4上下往复运动带动刨刀在 水平轨道上来回运动。 其中,刨刀向左为工作行程,速度平稳,运动行 程大;向右为工作回程,速度快,具有快速返回的 特性。

牛头刨床的连杆机构运动分析

牛头刨床的连杆机构运动分析

牛头刨床的连杆机构运动分析0 前言机构运动分析的任务是关于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确信从动件或从动件上指定点的位置、速度和加速度。

许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,因此机构的运动分析是机械设计进程中必不可少的重要环节。

以运算机为手腕的解析方式,由于解算速度快,精准度高,程序有必然的通用性,已成为机构运动分析的要紧方式。

连杆机构作为在机械制造专门是在加工机械制造中要紧用作传动的机构型式,同其他型式机构专门是凸轮机构相较具有很多优势。

连杆机构采纳低副连接,结构简单,易于加工、安装并能保证精度要求。

连杆机构能够将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,知足给定的运动要求,完成机械的工艺操作。

牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。

工作台的纵向往复运动是机床的主运动,实现工件的切削。

工作台的横向运动即是进给运动,实现对切削精度的操纵。

本文中只分析纵向运动的运动特性。

牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。

刨床工作时,通过六杆机构驱动刨刀作往复移动。

刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。

当刨刀处于返回行程时,刨刀不工作,称为空行程,现在要求刨刀的速度较高以提高生产率。

由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的阻碍。

1 牛头刨床的六连杆机构牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。

图1所示的为一牛头刨床的六连杆机构。

杆1为原动件,刨刀装在C点上。

假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度和刨刀C点的位移、速度和加速度的转变情形。

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床

项目
刨刀冲程 H( mm)
刨刀越程量 ΔS( mm)
刨削平均速度 Vm( mm/s)
极位夹角 θ( ° )
行程速比系数 K
机器运转速度许用不均匀系
数[δ]
参数
320 16
1211.4
30
1.4
0.05
Page 11
八 、机构运动循环图
机构工艺动作分解
牛头刨床的主运动为: 电动机 →变速机构→摇杆机构 →滑枕往复运动; 牛头刨床的进给运动为: 电动机 →变速机构→棘轮进给 机构 →工作台横向进给运动。
Page 12
九 、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page 13
十 、 电动机功率与型号的确定
电动机的选择
传动比分配与 减速机构设计
确定电动机功率 总传动比
采用展开式二级圆柱齿轮减速器
工作台进给方案
Page 14
工作台横向进给运动 工作台垂直进给运动
其中 ,刨刀向左为工作行程 ,速度平稳 ,运动行 程大; 向右为工作回程,速度快,具有快速返回的 特性。
Page 8
六 、对方案二的பைடு நூலகம்能分析
(2)传递性能和动力性能分析
杆 1、2、3、6 所组成的曲柄摇杆机构中 ,传动 角是不断变化传动性能最好的时候出现在 A ,B, C ,D 四点共线与机构处于极位时两者传动角相等 该机构中不存在高副 , 只有回转副和滑动副 ,故能 承受较大的载荷 , 有较强的承载能力 , 可以传动 较大的载荷 。当其最小传动角和最大传动角相差不 大时 ,该机构的运转就很平稳 ,不论是震动还是冲 击都不会很大 。从而使机械又一定的稳定性和精确 度。

牛头刨床平面机构的设计与分析

牛头刨床平面机构的设计与分析

牛头刨床平面机构的设计与分析引言:牛头刨床平面机构是一种常见的木工加工设备,用于对木材表面进行刨削加工。

在牛头刨床平面机构中,刀具通过机构运动,将工件表面的不平整部分削平,使其具有更加光滑的表面质量。

牛头刨床平面机构的设计与分析对于提高机械加工效率、确保加工质量以及降低设备故障率具有重要意义。

一、牛头刨床平面机构的设计要素1.刀具部分设计:刀具部分是牛头刨床平面机构的关键部分,设计合理与否直接影响到加工质量和效率。

刀具部分包括刨刀和刨刀架。

刨刀的选择要考虑到刨削材料的硬度和机床的工作状态。

刨刀架则需要具备刀具安装方便、切削力平稳传递等特点。

2.主动件设计:主动件主要是传动装置,包括电机、减速器、皮带等。

电机要选择合适的功率和转速,确保机床的正常运转。

减速器可以通过传动比选择来调整机床的切削速度。

皮带的选择要考虑到传动效率和寿命,以及对机床的振动和噪音影响。

3.机构设计:牛头刨床平面机构的机构设计要考虑到机床运动的稳定性和刨削质量。

机构设计的关键是选择合适的导轨和导向方式,确保刨削过程中的工作台和刀具的稳定性。

同时,机构设计还需要考虑到切削力和振动等因素的影响,以减小机床的故障率。

二、牛头刨床平面机构的分析方法1.动力学分析:动力学分析可以通过建立相应的运动学方程和动力学方程,研究机械零件的运动状态和力学特性。

动力学分析可以帮助我们评估机床的运动稳定性和工作状态,以及切削力和振动等因素的影响。

2.有限元分析:有限元分析是一种基于计算机模拟的工程分析方法,可以对机床的结构进行力学和热力学分析。

有限元分析可以评估机床在工作过程中的受力情况和变形程度,为机床结构的优化设计提供参考。

3.模态分析:模态分析是一种研究机械结构动态特性的方法,可以分析机床的固有频率和振型。

模态分析可以帮助我们评估机床的动态性能,以及对切削力和振动等外界扰动的响应能力。

4.可靠性分析:可靠性分析可以通过统计学的方法,评估机床的故障率和寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、牛头刨床的运动、动力分析[H,L1]=solve('H=300','L1=(270*H)/(2*550)',' H','L1')H =300L1 =810/11>> [N1,W1]=solve('N1=23',' W1=(N1*2*PI)/60','N1','W1')N1 =23W1 =23/30*PI一、任务根据牛头刨床的机构简图及必要的数据,进行机构的运动学和动力学分析,并给出刨头的位移、速度、加速度和曲柄平衡力矩的曲线。

二、已知条件1、机构运动简图2、机构尺寸mm a 270=, mm b 520=, mm l 5503=, mm l 1004=3、刨头行程和曲柄转速行程mm H 420=, 转速min /891r n =4、刨头的切削阻力工作行程始终为1000N ,空程为0N 。

三、 表达式推导如图所示以A 点为坐标原点,平行刨头运动方向为x 轴,建立直角坐标系,标出各杆矢量及方位角。

由机构的结构分析有:过D 和D '做刨头所在导轨的垂线DG 和D 'G ',从图形中的角度关系易证明GE= G 'E ',所以有EE '=DD '及EE '=θsin 23l =H al l =132,因而我们可以得到312l aHl =1、推导出刨头()1ϕE E x x =,()1ϕE E v v =,()1ϕE E a a =的数学表达式。

(1) 位置分析由矢量封闭三角形ABC 可得封闭矢量方程为CB AB l l a=+即: 312ii i AB ae l e Se πϕϕ+= (1)应用欧拉公式θθθsin cos i e i +=,将(1)的虚部和实部分离得: 31sin sin ϕϕS l a AB =+ (2)31cos cos ϕϕS l AB = (3) 由上面两式求解可得: 当0cos 1=ϕ即21πϕ=或231πϕ=时,由(3)得 0cos 3=ϕ 及 23πϕ=当0cos 1≠ϕ时:113cos sin tan ϕϕϕAB AB l l a +=(4)此时按照机构结构简图及反正切的定义范围易得: 当0tan 3<ϕ时: 113c o s s i n a r c t a n ϕϕπϕAB AB l l a ++=当0tan 3>ϕ时: 113c o s s i n a r c t a nϕϕϕAB AB l l a +=由矢量封闭图形CFED 可得封闭矢量方程为D E CD FE CF l l l l+=+即: 43432ϕϕπi i iE e l e l be x +=+ (5)应用欧拉公式将(4)的虚部和实部分离得:4433cos cos ϕϕl l x E += (6) 4433sin sin ϕϕl l b += (7)由式(7)可得 4334sin sin l l b ϕϕ-=此时按照机构结构简图及反正弦函数的定义范围易得: 4334sin arcsinl l b ϕπϕ--= (8) 由这两个式子可以消去4ϕ,得到由1ϕ确定的E x 的公式:()()23323324sin cos ϕϕl b l x l E -+-= (9) 显然式(9)作为计算式时难以确定E x 的符号,因此在编程时我选择式(6)作为计算式。

(2) 速度分析将式(5)对时间t 求导可得:)2(44)2(3343πϕπϕϕϕ+++=i i E e l e l x(10)应用欧拉公式将(7)的虚部和实部分离得:444333c o s c o s 0ϕϕϕϕ l l --= (11) 444333s i n s i n ϕϕϕϕ l l x E --= (12)由式(11)可得:444333cos cos ϕϕϕϕl l =- 对设计方案进行分析可知0cos 4≠ϕ,否则无法完成行程所以 443334cos cos ϕϕϕϕl l -= (13)又由式(4)可得:()Sl AB 3113cos ϕϕωϕ-= (14)其中的S 的表达式可由(2)求得:31sin sin ϕϕAB l a S +=(由设计方案显然3sin ϕ不为零) (15)由式(12)、(1)可得到由1ϕ确定的E v 的公式:()44333cos sin ϕϕϕϕ--== l xv E E (16)(3) 加速度分析将式(9)对时间t 求导可得:()()⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+++++=2442442332334433πϕπϕπϕπϕϕϕϕϕi i i i E e l e l e l e l x(17)应用欧拉公式将(15)的虚部和实部分离得:34432443333233sin cos sin cos ϕϕϕϕϕϕϕϕ l l l l x E ----= (18) 44442443333233cos sin cos sin 0ϕϕϕϕϕϕϕϕ l l l l +-+-= (19) 由式(16)可得:44424433332334cos sin cos sin ϕϕϕϕϕϕϕϕl l l l +-= (20) 由式(15)、(17)可得到由1ϕ确定的E a 的公式:()()4424343233433cos cos sin ϕϕϕϕϕϕϕϕl l l xa E E +---== (21) 其中由式(14)可求得()SS l 31312132sin ϕϕϕωϕ--=由式(15)可求得()3111sin ϕϕω--=l S 2、推导出曲柄所加平衡力矩111()M M ϕ=的数学式。

对机构进行受力分析可知,假设在整个力的传递过程中损耗为零,则驱动力矩做的功应当与阻力所做的功相等,若曲柄沿逆时针旋转,令当刨头到达极限位移时杆3与y 轴夹角为θ 则有:3322sin l Hl H==θ即:32arcsinl H=θ 所以当[)[]πθπθπϕ2,2,01-⋃+∈时,阻抗力1000-=r F ;当[)θπθπϕ-+∈2,1时,阻抗力0=r F ; 由受力分析可得:E r vF M =11ϕ所以可得:()41433311cos sin ϕωϕϕϕω--==l F v F M r Er四、打印源程序代码 运用的语言种类:C 语言程序名称:牛头刨床的运动、动力分析#include<stdlib.h> #include<stdio.h> #include<math.h> #define NUM 37main() {float XE[NUM]; float VE[NUM]; float AE[NUM]; float M1[NUM];float a=270, b=520,L3=550,L4=100,H=420,N1=27,PI=3.14159;double PQ0,Q1,PQ1,PQ3,PQ4,S,L1,D1PQ3,D2PQ3,D1PQ4,D1S,W1,FR; int i,j;/* 计算曲柄长度L1和角速度W1*/ L1=(a*H)/(2*L3); W1=(N1*2*PI)/60;printf("\n Q1 XE VE AE M1 ");for(i=0;i<=36;i++){ Q1=10*i;PQ1=(Q1*PI)/180;/*分情况讨论PQ3的取值*/if(Q1==90||Q1==270) PQ3=PI/2; else{ if(atan((a+L1*sin(PQ1))/(L1*cos(PQ1)))<0)PQ3=atan((a+L1*sin(PQ1))/(L1*cos(PQ1)))+PI;elsePQ3=atan((a+L1*sin(PQ1))/(L1*cos(PQ1)));}PQ4=PI-asin((b-L3*sin(PQ3))/ L4);/*计算XE*/XE[i]=L3*cos(PQ3)+ L4*cos(PQ4);/*分情况讨论S的取值*/if(Q1==90)S=a+L1;else{if(Q1==270)S=a-L1;elseS=(L1*cos(PQ1))/cos(PQ3);}D1PQ3=(L1*W1*cos(PQ1-PQ3))/S;/*计算VE的值并将其值存放在VE[i]中*/VE[i]=(-D1PQ3*L3*sin(PQ3-PQ4))/cos(PQ4);/*计算AE的值并将其值存放在AE[i]中*/D1PQ4=(-L3*D1PQ3*cos(PQ3))/(L4*cos(PQ4));D1S=-W1*L1*sin(PQ1-PQ3);D2PQ3=(W1*W1*L1*sin(PQ3-PQ1)-2*D1PQ3*D1S)/S;AE[i]=(L3*D2PQ3*sin(PQ4-PQ3)-L3*D1PQ3*D1PQ3*cos(PQ4-PQ3)+L4*D1PQ4*D1PQ4)/cos(PQ4);/*计算并分区间讨论FR的值*/PQ0=asin(H/(2*L3));if(PQ1>=(PI+PQ0)&& PQ1<=(2*PI-PQ0)) FR=0;else FR=-1000;/*计算M的值并将其值存放在M[i]中*/M1[i]=(-FR*D1PQ3*L3*sin(PQ3-PQ4))/(W1*cos(PQ4));/*输出计算结果*/printf("\n%8.0f",Q1);printf("\t%8.2f",XE[i]);printf("\t%8.2f",VE[i]);printf("\t%8.2f",AE[i]);printf("\t%10.2f",M1[i]);}printf("\n Please enter the option to exit(1):");scanf("%d",&j);if(j==1) exit;return 0;} 程序运行结果:Q1(°) XE(mm)VE(mm/s) AE(mm/s*s) M(N*mm)0 96.38 -189.22 -1116 66922.05 10 82.92 -244.43 -931.12 86448.69 20 66.46 -287.24 -783.92 101592.03 30 47.64 -321.09 -661.65 113561.47 40 26.94 -348.6 -555.14 123291.81 50 4.7 -371.61 -458.05 131430.81 60 -18.86 -391.18 -366.28 138351.81 70 -43.53 -407.65 -277.56 144178.36 80 -69.12 -420.75 -190.86 148810.81 90 -95.39 -429.69 -105.57 151973.62 100 -122.06 -433.37 -20.74 153273.72 110 -148.77 -430.67 65.36 152317.5 120 -175.08 -420.5 155.22 148723.31 130 -200.51 -402.13 251.79 142226.23140 -224.55 -375.14 358.26 132679.95 150 -246.65 -339.43 478.26 120047.27 160 -266.27 -295.08 616.45 104361.7 170 -282.9 -242.18 779.33 85655.47 180 -295.99 -180.48 975.78 63830.48 190 -304.98 -108.67 1216.98 38433.07 200 -309.14 -23.5 1514.77 8312.74 210 -307.48 81.22 1876.72 0 220 -298.52 214.45 2291.31 0 230 -280.25 383.83 2687.4 0 240 -250.46 585.24 2865.3 0 250 -207.95 787.77 2483.9 0 260 -154.42 931.03 1282.27 0 270 -95.39 960.49 -527.49 0 280 -38.2 877.34 -2229.77 0 290 11.57 728.24 -3192.72 0 300 51.25 556.14 -3361.88 0 310 80.25 384.84 -3048.03 0 320 99.04 226.76 -2558.31 0 330 108.66 88.83 -2074.39 0 340 110.49 -25.88 -1669.96 9152.98 350 105.94 -117.66 -1355.59 41612.64 360 96.38 -189.22 -1116 66921.41刨头位置曲线图-350-300-250-200-150-100-5005010015015913172125293337Q1(10度)X E (m m )刨头速度变化曲线图-600-400-20002004006008001000120014710131619222528313437Q1(10度)V E (m m /s )刨头加速度变化曲线图-4000-3000-2000-100001000200030004000135791113151719212325272931333537Q1(10度)A E (m m /(s *s ))曲柄所加平衡力矩变化曲线图020000400006000080000100000120000140000160000180000135791113151719212325272931333537Q1(10度)M 1(N *m m )。

相关文档
最新文档