共发射极放大电路的图解分析法

合集下载

共射极放大电路 ppt课件

共射极放大电路 ppt课件

2020/12/12
9
例2-4 在共射极基本放大电路中,己知UCC=12V,RB=40kΩ , RC=3kΩ,三极管的输出特性曲线试利用图解法求电路静态工作点。
2020/12/12
10
解:求静态基极电流
IBQ=UCC/RB=12/(40χ103)=0.3mA=30μA 在输出特性曲线簇中找到IBQ=30μA对应的曲线。 列出关于IC与UCE的线性方程式UCE=UCC-ICRC=12-3IC。 画出直流负载线MN。 确定静态工作点Q 直流负载线MN与IBQ所在的输出特性曲 线的交点Q即为静态工作点 IBQ=30μA, ICQ≈2mA,UCEQ ≈ 6V。
交流负载线。
交流通路
17
总结
对于直流负载线,无论输出端接否RL, VCE=VCC-ICRc ,斜率为 -1/RC
共射极放大电路
对于交流负载线, 输出端接有RL ,交流负载线斜率为 -1╱(Rc ‖ RL),且经过Q点; 输出端没接RL ,交流负载线斜率为 -1╱Rc ,为直流负载线。
2020/12/12
18
(1)根据 vi 在输入特性曲线上求 iB
iB /u A
iB /u A
60 40
20 IBQ
Q` Q Q ``
t
v B E/V
v B E/V
(2)根据 iB 在输出特性曲线上求 iC和vCE
iC /m A 交 流 负 载 线
iC /m A
Q`
60uA
Q
40uA
ICQ
Q `` 20uA
t
v C E/V
2020/12/12
16
2. 动态工作情况的图解分析
1) 令交流R'通L=路RL及∥交R流c,负载线 由交交流流通负路得载纯电交阻流。负载线:

15共发射极放大电路的分析

15共发射极放大电路的分析

15共发射极放大电路的分析15共发射极放大电路是一种常见的电子放大电路,它由一个共发射极的三极管构成。

在这种电路中,输入信号通过输入电容耦合到基极,经过放大后,输出信号能够通过输出电容耦合到负载上。

本文将对15共发射极放大电路的分析进行详细阐述。

```+Vcc│RCRL││Vin ─►┌───┤ CE ├───┐ Vout││RE│││└─○┘└───○┘┌─▽┐┌──△┐RB│└─○┘└───○┘┌─△┐│C Vce│┌─○┘GND```该电路的工作原理如下:当输入信号Vin经过电容耦合到CE时,基极电流将发生变化,进而改变了发射极电流。

发射极电流的变化导致集电极电流的变化,从而将放大的信号输出到负载上。

为了进一步分析15共发射极放大电路,我们可以通过小信号模型来进行计算和分析。

小信号模型假设输入信号接近于零,并且电路的工作频率处于中等频率范围。

接下来,我们将通过以下步骤对15共发射极放大电路进行分析:1.小信号模型转换:根据给定的电路图,我们可以通过查表或计算得到三极管的小信号模型。

小信号模型包括输入电阻、输出电阻和增益三个重要参数。

2.直流偏置:为了确保三极管处于放大状态,需要对电路进行直流偏置。

偏置电路可以由电阻、电容和电流源组成。

通过适当的选择,可以使得三极管工作在线性区域。

3.参数计算:根据电路的小信号模型和直流偏置值,可以计算出电路的输入电阻、输出电阻和增益。

输入电阻可以通过求导得到,输出电阻可以通过开路电压法或短路电流法进行计算。

4.频率响应:在频率响应分析中,我们可以根据电路的小信号模型计算电路的增益-频率特性。

这可以通过对小信号模型进行频率响应分析来实现。

通过以上步骤分析15共发射极放大电路,可以获得该电路的各种参数和特性。

这些参数和特性对于电路设计和优化非常重要,可以帮助我们选择合适的元器件并进行电路性能的优化。

综上所述,我们对15共发射极放大电路进行了详细的分析。

通过对电路结构和工作原理的理解,以及对小信号模型和频率响应的分析,可以获得该电路的各种参数和特性,从而为电路的设计和优化提供重要的参考。

从电路原理分析共发射极放大电路的反相原理

从电路原理分析共发射极放大电路的反相原理

从电路原理分析共发射极放大电路的反相原理当我们在学习三极管的共发射极放大电路时,会知道该电路又叫反相器。

在做实验时,我们给共发射极电路的输入端ui输入一个左正右负的正弦波时,在电路的输出端uo用示波器可以很清楚的看到这个正弦波的幅度增大了,并且由原来的左正右负变成了现在的左负右正,也就是说输出信号与输入信号反相了。

如下图所示:那么我就来从电路的原理分析反相的真正原因。

我们知道三极管是一种电流控制型器件,也就是说三极管的基极电流微小的变化会引起集电极电流巨大的变化。

在上面的共发射极电路中,①当输入端为正弦波的正半周上升过程时,三极管的基极电流是在随着这个过程上升的,根据公式Ic=βIb可以知道,此时的集电极电流也是在上升的,那么根据欧姆定律Ur2=IcR2,Ic在上升,Rc固定不变,那么Ur2就上升了,即:电源在集电极电阻R2上的压降就增大了,这一增大的后果就使得输出电压Uc下降,根据Uc=Vcc-Ur2得出。

从波形上看就是输出电压负半周下降的那一段。

如下图所示②当电路的输入端为正弦波正半周的下降过程时,三极管的基极电流是在随着这个过程下降的,那么根据Ic=βIb可以知道,三极管的集电极电流也在下降,根据欧姆定律Ur2=IcR2,Ic在下降,R2不变,那么Ur2就下降了。

即:电源在集电极电阻上的压降就减小了,这一减小的后果就使得输出电压Uc增大,根据Uc=Vcc-Ur2得出。

从波形上看就是输出电压负半周上升的那一段。

如下图所示:同理我们根据这种方法分析出后面两种情况:③输入为正弦波负半周下降的那段过程,如图所示④输入为正弦波负半周下降的那段过程,如图所示这就是共发射极放大电路对输入信号反相的全过程,从电流转接关系上可以得出:当输入信号为负的最大值时,输出信号才为正的最大值。

基本放大电路_共发射极放大电路的静态分析和动态分析

基本放大电路_共发射极放大电路的静态分析和动态分析

300
(1
)
26(mV) IE (mA )
第五章 基本放大电路
输出回路
IB
iC +
uCE

ic +c
βib
uce
−e
iC
IC IC
Q
共发射极放大电路
IB
UCE
uCE
ic ib 集电极和发射极之间可等效为
一个受ib控制的电流源。
第五章 基本放大电路
共发射极放大电路
ib +b ube

ic
c
+
e
三极管的小信号模型 放大电路的小信号模型 计算放大电路的性能指标
第五章 基本放大电路
共发射极放大电路
三极管的小信号模型 输入回路
iB
UCE
iB
+
+UCE
rbe
U BE IB
ube ib
IB
Q IB
u−BE
− 动态输入电阻
0
UBE uBE
b
ib +
ube
e−
rbe
低频小功率管输入电阻的估算公式
rbe
第五章 基本放大电路
共发射极放大电路
2. 用图解法确定静态工作点Q
图解步骤:
用估算法求出基极电流IB。 根据IB在输出特性曲线中找到对应曲线。
作直流负载线。
UCE=VCC – ICRC
M(VCC,0)
N(0,VCC) RC
MN称放大电路的直流负载
iC
N VCC
RC
IC
线,斜率为−1/RC。
0
确定静态工作点Q。
uce

单管放大器总结 共射、共集、共基放大电路

单管放大器总结 共射、共集、共基放大电路

晶体管共射极单管放大器单管放大电路的三种基本结构单管放大电路有共发射极、共基极和共集电极三种解法(组态),他们的输入和输出变量不同,因而电路的性能也不太一样。

共发射极单管放大电路.共集电极单管放大电路.共基极单管放大电路图一为电阻分压式工作点稳定单管放大器实验电路图。

他的偏置电路采用Rb1组成的分压式电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。

在放大器的输入端加入输入信号Ui后,在放大器的输入端可得到一个与Ui相位相反,幅值被放大的输出信号U0,从而实现放大。

图一共射极单管放大器实验电路图当流过电阻Rb1和Rb2的电流远大于晶体管T的基极电流Ib时,则他的静态工作点Ub可以以以下式估算Ub=Rb1*U/Rb1+Rb2 Ie=Ub-Ube/Re≈Ic Uce=Ucc-Ic(Rc+Re)放大倍数Av=-β(Rc∥Rc)/rbe+(1+β)Re输出电阻:R=Rb1∥Rb2∥[rbe+(1+β)Re]输入电阻;R0≈Rc放大器的测量与调试一般包括:放大器静态工作点的测量与调试。

消除干扰与自激振荡机放大器各项动态参数的测量与调试。

1.放大器静态工作点的测量与调试(1)放大器静态工作点的测量测量放大器静态工作点的条件:输入信号Vi=0即将输入端与地短接,选用量程合适的直流毫安表和直流电压表分别测出所需参数:Ic,Ub,Uc,Ue.(2)静态工作点的调试放大器静态工作点的调试是指对管子集电极电流Ic(或Uce)的调试与测量。

静态工作点对放大器的性能和输出波形都有很大影响。

工作点偏高会导致饱和失真如图(2)所示;反之则导致截止失真如图(3).图二图三改变电路参数Ucc,Rc,Rb(Rb1,Rb2)都会引起静态工作点的改变如图四所示:图四2.放大器的动态指标测试放大器的动态指标包括:电压放大倍数,输入电阻,输出电阻,最大不失真输出电压(动态范围)和通频带等。

(1)电压放大倍数Av的测量调整放大器到合适的静态工作点,再加入输入电压Ui ,在输出电压不是真的情况下,用交流豪伏表测出Ui和Uo的有效值,则Av=Uo/Ui。

共发射极放大电路分析

共发射极放大电路分析

共发射极放大电路分析一、共发射极组态基本放大电路的组成共射组态基本放大电路如图所示。

共射组态交流基本放大电路(1)基本组成三极管T--起放大作用。

负载电阻RC,RL--将变化的集电极电流转换为电压输出。

偏置电路UCC(Vcc),RB--使三极管工作在线性区。

耦合电容C1,C2—起隔直作用,输入电容C1保证信号加到发射结,不影响发射结偏置。

输出电容C2保证信号输送到负载,不影响集电结偏置。

(2)静态和动态静态—ui=0时,放大电路的工作状态,也称直流工作状态。

动态—ui≠0时,放大电路的工作状态,也称交流工作状态。

放大电路建立正确的静态,是保证动态工作的前提。

分析放大电路必须要正确地区分静态和动态,正确地区分直流通路和交流通路。

(3)直流通路和交流通路放大电路的直流通路和交流通路如下图中(a),(b)所示。

直流通路,即能通过直流的通路。

从C、B、E向外看,有直流负载电阻、Rc、RB。

交流通路,即能通过交流的电路通路。

如从C、B、E向外看,有等效的交流负载电阻、Rc//RL、RB。

直流电源和耦合电容对交流相当于短路。

因为按迭加原理,交流电流流过直流电源时,没有压降。

设C1、C2足够大,对信号而言,其上的交流压降近似为零,在交流通路中,可将耦合电容短路。

(a)直流通路(b)交流通路基本放大电路的直流通路和交流通路二.静态分析1、静态工作状态的计算分析法根据直流通路图5-2(a)可对放大电路的静态进行计算IB、IC和UCE这些量代表的工作状态称为静态工作点,用Q表示。

2、用图解法求静态工作点放大电路静态工作状态的图解分析如下图所示。

(1)在输出特性曲线X轴及Y轴上确定两个特殊点—UCC和UCC/Rc,即可画出直流负载线。

(2)由式UBE=UCC-IBRb在输入特性曲线上,作出输入负载线,两线的交点即是Q。

(3)得到Q点的参数IB、IC和UCE。

放大电路静态工作状态的图解分析3.动态分析微变等效电路法和图解法是动态分析的基本方法。

共发射极放大电路

共发射极放大电路

7.1.3 动态分析
1. 图解法
(1) 负载开路时输入和输出电压、电流波形 的分析
的波形
根据ui波形,在输入特性曲线上求iB和uBE
根据iB波形,在输出特性曲线和直流负载 线上求iC、 uRC和uCE的变化 ,如图7.5所示。
第12页/共49页
第13页/共49页
(2) 带负载时输入和输出电压、电流波形分 析
Ro/
U I
RC
,所以
第42页/共49页
将有关数据分别代入上式得
A
/ u
=
-
0.36
R
/ i
=103.25

R
/ o
=3

由此可见,电压放大倍数下降了很多,但输入 电阻得到了提高。
第43页/共49页
40 当改用β=100的三极管后,其静态工作点为
IUE =B REU BE
3.5 0.7 2
为了减小和避免非线性失真,必须合理地选
择静态工作点Q的位置,并适当限制输入信号ui 的
幅度。一般情况下,Q点应大致选在交流负载线的
中点,当输入信号ui 的幅度较小时,为了减小管子
的功耗,Q点可适当选低些。若出现了截止失真, 通常采用提高静态工作点的办法来消除,即通过减
小基极偏置电阻RB的阻值来实现;若出现了饱和失 真,则反向操作,即增大RB。
作交流负载线:
10 先作出直流负载线MN,确定Q点。
20 在uCE坐标轴上,以UCE为起点向正方向取
一段IC
R
/ L
的电压值,得到C点。
30 过CQ作直线CD,即为交流负载线,如
图7. 5所示。
(3) 放大电路的非线性失真

放大电路分析方法、图解法分析放大电路

放大电路分析方法、图解法分析放大电路

放⼤电路分析⽅法、图解法分析放⼤电路放⼤电路分析⽅法、图解法分析放⼤电路⼀、本⽂介绍的定义⼆、放⼤电路分析⽅法三、图解法⼀、本⽂介绍的定义放⼤电路分析、图解法、微变等效电路法、静态分析、动态分析、直流通路、交流通路、单管共射放⼤电路的直流和交流通路、静态⼯作点、图解法分析静态、直流负载线、交流负载线、电压放⼤倍数公式、交直流并存状态、电压放⼤作⽤、倒相作⽤、⾮线性失真、截⽌失真、饱和失真、最⼤输出幅度、电路参数对静态⼯作点的影响、⼆、放⼤电路分析⽅法放⼤电路分析:放⼤电路主要器件如双极型三极管、场效应管,特性曲线是⾮线性的,对放⼤电路定量分析,需要处理⾮线性问题,常⽤⽅法,图解法和微变等效电路法。

图解法:在放⼤管特性曲线上⽤作图的⽅法对放⼤电路求解。

微变等效电路法:将⾮线性问题转化成线性问题,也就是,在较⼩变化范围内,近似认为特性曲线是线性的,导出放⼤器件等效电路和微变等效参数,利⽤线性电路适⽤的定律定理对放⼤电路求解。

静态分析:讨论对象是直流成分,分析未加输⼊信号时,电路中各处的直流电压、直流电流。

动态分析:讨论对象是交流成分,加上交流输⼊信号,估算动态技术指标,电压放⼤倍数、输⼊电阻、输出电阻、通频带、最⼤输出功率。

直流通路:电容所在路视为开路;电感所在路视为短路。

交流通路:电容容抗为1/(wC),电容值⾜够⼤,电容所在路视为短路;电感感抗为wL;理想直流电压源Vcc视为短路(因为电压恒定不变);理想电流源,视为开路(因为电流变化量为0) 。

单管共射放⼤电路的直流和交流通路:如下图,直流通路,将隔直电容开路;交流通路,将隔直电容短路,直流电源Vcc短路。

静态⼯作点:三极管基极回路和集电极回路存在着直流电流和直流电压,这些电流电压在三极管输⼊输出特性曲线上对应⼀个点,称为静态⼯作点,静态⼯作点的基极电流Ibq、基极与发射极之间的电压Ubeq、集电极电流Icq、集电极与发射极电压Uceq。

三、图解法图解法分析静态:⽤作图的⽅法分析放⼤电路静态⼯作点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I 、组织教学:
示意学生安静,准备开始上课。

II 、复习旧课,引入新课:
1、 直流通路与交流通路;
2、 图解分析法。

III 、讲授新课:
2.3共发射极放大电路的图解分析法
一、交流分析法
首先,画出交流通路
由交流通路得纯交流负载线: v ce = -i c ⋅ (R c //R
R 'L= R L ∥R c , 是交流负载电阻。

因为交流负载线必过Q 点,即 V CEQ =-I CQ R 'L 则交流负载线为: v CE - V CEQ= -(i C - I CQ )⋅ R 'L 即 i C -I CQ = (-1/R 'L)⋅( v CE – V CEQ)
过输出特性曲线上的Q 点做一条斜率为-1/R 'L 该直线即为交流负载线。

如图所示 动态工作情况如图所示。

二、非线性失真分析和最大不失真输出电压
1、波形的失真
⑴饱和失真:由于放大电路的工作点达到了三极管的饱和区而引起的非线性失真。

对于NPN 管,输出电压表现为底部失真。

⑵截止失真:由于放大电路的工作点达到了三极管的截止区而引起的非线性失真。

对于NPN 管,输出电压表现为顶部失真。

/V
/V /V
注意:对于PNP 管,由于是负电源供电,失真的表现形式,与NPN 管正好相反。

2、放大电路动态范围
放大电路要想获得大的不失真输出幅度,要求: ⑴工作点Q 要设置在输出特性曲线放大区的中间部位;⑵要有合适的交流负载线。

V om=min{V om1, V om2}
三、图解法适用的范围
图解法的特点是直观、形象,但要求实测晶体管的输入、输出曲线,而且用图解法进行定量分析的误差较大。

图解法适于分析输出幅值较大、频率较低的情况。

实际应用中,常用于静态工作点位置、最大不失真输出电压和失真情况分析,另外在大信号工作时,往往也采用图解法。

IV 、巩固新课:
静态分析就是求解静态工作点Q ,动态分析就是求解放大电路的动态参数和进行波形分析。

V 、布置作业:
补充习题。

相关文档
最新文档