变频器调速工作原理
变频器调速的基本原理

变频器调速的基本原理变频器调速是一种常见的电力调节设备,它通过改变电机的供电频率来实现调速的目的。
变频器调速的基本原理是将交流电源输入变频器中,经过整流、滤波、逆变等电路处理后,得到一个可调的直流电压,然后再通过逆变器将直流电压转换成可调的交流电源,供给电机使用。
根据电机的负载情况和工作要求,调节变频器输出电压和频率的大小,从而实现对电机转速的精确控制。
变频器调速的基本原理可以简单概括为以下几个步骤:1. 交流电源输入:将交流电源输入变频器中,一般为三相交流电源。
这些交流电源经过变频器内部的整流和滤波电路,将其转换为稳定的直流电压。
2. 逆变器输出:经过整流和滤波后的直流电压,再经过逆变器的处理,转变为可调的交流电源。
逆变器通过控制输出电压和频率的大小,实现对电机的精确控制。
3. 控制信号输入:通过控制器或编程器,向变频器输入控制信号,包括所需的转速、负载变化等参数。
控制器根据这些输入信号,计算出逆变器应输出的电压和频率值,并将其发送到逆变器中控制输出。
4. 电机驱动:逆变器输出的交流电源供给电机进行驱动,根据逆变器输出的电压和频率值,电机转速得到控制和调节。
变频器调速的基本原理可以通过以下几个方面来解释:1. 频率控制:变频器通过调节输出电压的频率来控制电机的转速。
一般情况下,电机的转速与输入电源的频率成正比,即频率越高,电机转速越快。
通过调节变频器的输出频率,可以实现对电机转速的精确控制。
2. 电压控制:变频器还可以通过调节输出电压的大小来控制电机的转速。
一般情况下,电机的转速与输入电压成正比,即电压越高,电机转速越快。
通过调节变频器的输出电压,可以实现对电机转速的精确调节。
3. 软启动:变频器调速还具有软启动功能,即在启动电机时,逐渐增加输出频率和电压,使电机平稳启动,避免了突然启动对电机和负载的冲击。
4. 负载适应:变频器调速可以根据电机的负载情况实时调节输出频率和电压,以适应负载的变化。
变频调速控制柜的原理

变频调速控制柜的基本原理1. 变频调速控制柜的概述变频调速控制柜是一种用于电机调速的设备,通过改变电机输入的电压和频率来实现对电机转速的调节。
它由变频器、控制器、电源、保护装置等组成,广泛应用于工业生产中。
2. 变频器的工作原理变频器是变频调速控制柜中的核心部件,它将输入的交流电源转换为可调节的直流电源,并通过逆变器将直流电源转换为可调节的交流电源供给电机。
其主要工作原理如下:•整流:将输入的交流电源通过整流桥变换为直流电压。
•滤波:对整流后的直流电压进行滤波处理,去除其中的脉动。
•逆变:将滤波后的直流电压通过逆变桥转换为可调节的交流输出。
•PWM调制:通过对逆变桥输出进行脉宽调制(PWM),实现对输出交流电压幅值和频率的精确控制。
3. 控制器及其工作原理控制器是变频调速控制柜中的另一个重要组成部分,它对变频器进行控制和调节,实现对电机转速的精确控制。
其主要工作原理如下:•信号采集:通过传感器采集与电机运行状态相关的参数,如转速、温度、压力等。
•信号处理:对采集到的信号进行放大、滤波、线性化等处理,得到可用于控制的信号。
•控制算法:根据设定的转速要求和实际运行状态,通过控制算法计算出合适的输出信号。
•输出控制:将计算得到的输出信号发送给变频器,调节变频器输出的电压和频率,实现对电机转速的控制。
4. 电源及其工作原理电源是为变频调速控制柜提供工作所需的电能来源,其主要工作原理如下:•稳压稳流:通过稳压稳流装置对输入电源进行稳定处理,保证供给整个系统的电能稳定可靠。
•滤波:对输入电源进行滤波处理,去除其中的高频噪声和干扰。
•分配供电:将经过稳压稳流和滤波处理后的电能分配给变频器、控制器、保护装置等各个部件,满足其正常工作的电能需求。
5. 保护装置及其工作原理保护装置是为了确保变频调速控制柜及相关设备的安全运行而设置的,其主要工作原理如下:•过电流保护:通过电流传感器对电路中的电流进行监测,当电流超过设定值时,触发保护装置切断电源,防止设备损坏。
变频电机工作原理

变频电机工作原理变频电机是一种通过变频器控制电机转速的电机,也被称为变频调速电机。
它利用变频器将恒定频率的电源交流电转换为可调频率的交流电,从而实现对电机转速的精确控制。
下面将详细介绍变频电机的工作原理。
1.变频器的作用:变频器是控制变频电机转速的核心设备。
它包含了整流器、滤波器、逆变器、控制电路等组成部分。
变频器的功能是将输入的交流电转变为可调频率和可调幅度的交流电输出给电机。
它通过调整输出电压的频率和幅度来改变电机的转速和输出功率。
2.变频器的工作原理:变频器的工作原理可以分为以下几个步骤:(1)整流:变频器将输入的交流电转换为直流电。
整流器通常采用整流桥电路,将交流电的正负半周分别整流为正流和负流,然后通过滤波电路将直流电压滤波平稳。
(2)逆变:通过逆变器将直流电转换为可调频率和可调幅度的交流电。
逆变器通过高频开关管按照特定的节奏将直流电转换为交流电,并通过调整开关管的开关时序和占空比来控制输出电压的频率和幅度。
(3)PWM控制:变频器通过脉宽调制(PWM)控制方式调整输出电压的幅度和频率。
PWM控制是通过不同占空比的高频脉冲信号来模拟出不同的电压和频率,控制电机的转速。
PWM控制可以实现电机的精准控制,提高工作效率。
(4)控制电路:变频器的控制电路负责接收来自外部的控制信号,通过处理和传递给逆变器,从而实现对电机转速的精确控制。
控制电路通常由微处理器、传感器和控制芯片等组成,能够通过编程和参数设定来满足不同的运行要求。
3.变频电机的工作原理:变频电机与普通电机的区别在于其供电方式。
变频电机的输入电源是通过变频器输出的可调频率交流电,而普通电机则是直接接入固定频率的交流电源。
变频电机的工作原理与普通电机基本相同,主要包括定子和转子两部分。
(1)定子部分:定子是电机的固定部分,通常由电机外壳和定子绕组组成。
定子绕组通过变频器提供的交流电产生旋转磁场,从而激励转子。
(2)转子部分:转子是电机的旋转部分,通常由转子芯和转子绕组组成。
变频器调速的基本工作原理

变频器调速的基本工作原理根据电机转速的公式 n=n1(1-s)(1) N1=60f/p(2)式中:n-电机转速;n1-电机的同步转速;s-滑差;f-旋转磁场频率;P-电机极对数可知改变电机转速的方法有改变滑差s、改变旋转磁场频率f、改变电机极对数p三种。
变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
是由由主电路和控制带电路组成的。
主电路是给异步电动机提供可控电源的电力转换部分,变频器的主电路分为两类,其中电压型是将电压源的直流变换为交流的变频器,直流回路的滤波部分是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波部分是电感。
它由三部分构成,将工频电源变换为直流功率的整流部分,吸收在转变中产生的电压脉动的平波回路部分,将直流功率变换为交流功率的逆变部分。
控制电路是给主电路提供控制信号的回路,它有决定频率和电压的运算电路,检测主电路数值的电压、电流检测电路,检测电动机速度的的速度检测电路,将运算电路的控制信号放大的驱动电路,以及对逆变器和电动机进行保护的保护电路组成。
现在大多数的变频器基本都采用交直交方式(VVVF变频或矢量控制),将工频交流电源通过整流器转换为直流电源,再把直流电源转换成近似于正弦波可控的交流电以供给电动机。
以图1为例简单说明一下变频器的工作原理。
三相交流电经过VD1~VD6整流后,正极经过RL,RL在这里是防止电流忽然变大。
经过RL电流趋于稳定,晶闸管触点会导通。
之后直流电压加在了滤波电容CF1、CF2上,这两个电容的作用是让直流电波形变得更加平滑。
之所以是两个电容是由于一个电容的耐压有限,所以用两个电容串联起来使用。
均压电阻R1、R2是让CF1和CF2上的电压一样,两个电容的容量不同的话,分压就会不同,所以各并联了一个均压电阻。
而中间的放电回路作用则是释放掉感性负载启动或停止时的反电势,用来保护逆变管V1~V6和整流管VD1~VD6。
变频调速原理

异步电动机是电力、化工等生产企业最主要的动力设备。
作为高能耗设备,其输出功率不能随负荷按比例变化,大部分只能通过挡板或阀门的开度来调节,而电动机消耗的能量变化不大,从而造成很大的能量损耗。
近年来,随着变频器生产技术的成熟以及变频器应用范围的日益广泛,使用变频器对电动机电源进行技术改造成为各企业节能降耗、提高效率的重要手段。
1 变频调速原理n=60 f(1-s)/p (1)式中n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。
变频调速就是通过改变电动机电源频率实现速度调节的。
变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
2 谐波抑制变频器使用的突出问题就是谐波干扰,当变频器工作时,输出电流的谐波电流会对电源造成干扰。
虽然各变频器厂家对变频器谐波的治理均采取了措施且基本达到国家标准要求,但谐波仍然是变频器选型和使用中最需要关注的问题。
变频器的输出电压中含有除基波以外的其他谐波。
较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。
由于变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较陡的脉冲波,其谐波分量较大。
为了消除谐波,主要采用以下对策:a.增加变频器供电电源内阻抗通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。
变频调速的工作原理

变频调速的工作原理变频器的功用是将频率固定的(通常为50Hz的)交流电(三相或单相)变成频率联系可调(多数为O-4OOH0的三相交流电。
由公式:n0=60f/p其中n0为旋转磁场的转速通常称为同步转速f 为电流的频率p 为旋转磁场的磁极对数当频率f连续可调时(一般P为定数),电动机的同步转速也连续可调。
又因为异步电动机的转子转速总是比同步转速略低一些,所以,当同步转速连续可调时,异步电动机转子的转速也是连续可调的。
变频器就是通过改变f (电流的频率)来使电动机调速的在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。
如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R S T,应该有大约几十欧的阻值,且基本平衡。
相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。
将红表棒接到N 端,重复以上步骤,都应得到相同结果。
如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。
B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。
2、测试逆变电路将红表棒接到P端,黑表棒分别接U V W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。
将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试在静态测试结果正常以后,才可进行动态测试,即上电试机。
在上电前后必须注意以下几点:1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
2、检查变频器各接播口是否已正确连接,连接是否有松动, 连接异常有时可能导致变频器出现故障, 严重时会出现炸机等情况。
3、上电后检测故障显示内容, 并初步断定故障及原因。
变压变频调速的基本原理

变压变频调速的基本原理变压变频调速是一种常见的电动机调速方法,它通过改变电源电压和频率来实现电动机的调速控制。
其基本原理主要包括变压器调压和变频器调频两个方面。
一、变压器调压原理变压器调压是通过改变输入电压的大小,从而改变电动机的电压,进而控制电动机的转速。
其原理如下:1.输入电源:变压变频调速系统的输入电源是交流电,通常为三相交流电。
输入电源的额定电压决定了电动机的额定转速。
2.变压器:变压器是连接在电源和电动机之间的关键设备,用于改变输入电压的大小。
根据需求,可以将输入电源的电压调节到合适的范围,以适应电机的调速要求。
3.电源电压调节:通过调节变压器的变比,可以改变输入电源的电压大小。
通常情况下,变压器采用多个可调的分接头,通过切换不同的分接头可以实现不同的电源电压输出,从而调节电动机的转速。
二、变频器调频原理变频器调频是通过改变输入电源波形的频率,从而改变电动机的转速。
其原理如下:1.输入电源:与变压器调压相同,变频器调频的输入电源也是交流电,通常为三相交流电。
2.整流器和滤波器:输入电源的交流电信号首先需要经过整流器和滤波器进行处理,将其转换成直流信号,以供后续的逆变器使用。
3.逆变器:逆变器是整个变频器调频系统的核心部分,其功能是将直流信号转换为可调节频率的交流信号。
逆变器采用高频开关技术,通过控制开关管的开关频率和占空比,可以实现输出信号的频率和幅值的调节。
4.控制器:控制器是变频器调频系统的智能控制部分,通过采集电动机的转速和负载信息,根据预设的调速曲线和调速要求,控制逆变器输出的频率和幅值,从而精确控制电动机的转速。
三、变压变频调速的特点及优势1.广泛适用性:变压变频调速系统适用于不同类型的电动机,包括交流异步电动机、直流电动机等,具有很强的通用性。
2.范围广泛:透过变压变频调速系统,可以实现电动机的大范围调速,将电动机的转速调节在较宽的转速范围内,满足不同工况下的需求。
3.稳定性高:采用变压变频调速系统,可以实现精确的转速控制,对于恒定转矩和变负载的应用场合,具有良好的稳定性和可靠性。
异步电机变频调速原理

异步电机变频调速原理
异步电机变频调速原理是通过变频器控制电机的供电频率和电压来实现调速的方法。
变频器将直流电源转换为可调频、可调幅的交流电源,通过改变输出电压的频率和幅值,控制电机的转速和负载。
变频器的工作原理如下:
1. 电源输入:将交流电源输入到变频器的整流电路中,经过整流、滤波等处理,将交流电源转换为稳定的直流电源。
2. 逆变输出:经过变频器的逆变电路将直流电压转换为交流电压,调节输出电压的频率和幅值,并将其送到电机绕组中。
3. 控制逻辑:变频器内部有控制逻辑电路,根据用户设定的转速需求和反馈信号,通过运算、控制算法等实现电机的闭环调速控制。
4. 异步电机控制:变频器控制电机的供电频率和电压,通过改变频率,可实现电机的转速调节;通过改变电压,可实现电机的负载调节。
调速原理是根据电机的转速和负载需求,将变频器的工作状态(输出频率和幅值)调整到合适的值,以实现电机的稳定运行和高效工作。
同时,变频器还能实现多种保护功能,如过流保护、过载保护、温度保护等,保证电机的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器调速工作原理目前交流调速电气传动已经上升为电气调速传动的主流,在电气传动领域内,由直流电动机占统治地位的局面已经受到了猛烈的冲击。
现在人们所说的交流调速传动,主要是指采用电子式电力变换器对交流电动机的变频调速传动,除变频以外的另外一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,由于其性能较差,终将会被变频调速所取代。
交流调速传动控制技术之所以发展的如此迅速,和如下一些关键性技术的突破性进展有关,它们是电力电子器件(包括半控型和全控型器件)的制造技术、基于电力电子电路的电力变换技术、交流电动机的矢量变换控制技术、直接转矩控制技术、PWM(Pulse Width Modulation)技术以及以微型计算机和大规模集成电路为基础的全数字化控制技术等。
1变频器的发展近二十年来,以功率晶体管GTR为逆变器功率元件、8位微处理器为控制核心、按压频比U/f控制原理实现异步机调速的变频器,在性能和品种上出现了巨大的技术进步。
其一,是所用的电力电子器件GTR以基本上为绝缘栅双极晶体管IGBT所替代,进而广泛采用性能更为完善的智能功率模块IPM,使得变频器的容量和电压等级不断地扩大和提高。
其二,是8位微处理器基本上为16位微处理器所替代,进而有采用功能更强的32位微处理器或双CPU,使得变频器的功能从单一的变频调速功能发展为含有逻辑和智能控制的综合功能。
其三,是在改善压频比控制性能的同时,推出能实现矢量控制和转矩直接控制的变频器,使得变频器不仅能实现调速,还可进行伺服控制。
其发展情况可粗略地由以下几方面来说明。
1.容量不断扩大80年代采用BJT的PWM变频器实现了通用化。
到了90年代初BJT通用变频器的容量达到600KV A,400KV A 以下的已经系列化。
前几年主开关器件开始采用IGBT,仅三四年的时间,IGBT变频器的单机容量已达1800KV A,随着IGBT容量的扩大,通用变频器的容量将随之扩大。
2.结构的小型化变频器主电路中功率电路的模块化、控制电路采用大规模集成电路(LSI)和全数字控制技术、结构设计上采用“平面安装技术”等一系列措施,促进了变频电源装置的小型化。
3.多功能化和高性能化电力电子器件和控制技术的不断进步,使变频器向多功能化和高性能化方向发展。
特别是微机的应用,以其简练的硬件结构和丰富的软件功能,为变频器多功能化和高性能化提供了可靠的保证。
由于全数字控制技术的实现,并且运算速度不断提高,使得通用变频器的性能不断提高,功能不断增强。
4.应用领域不断扩大通用变频器经历了模拟控制、数模混合控制直到全数字控制的演变,逐步地实现了多功能化和高性能化,进而使之对各类生产机械、各类生产工艺的适应性不断增强。
目前其应用领域得到了相当的扩展。
如搬运机械,从反抗性负载的搬运车辆,带式运输机到位能负载的起重机、提升机、立体仓库、立体停车场等都已采用了通用变频器;在其他方面,如农用机械、食品机械、各类空调、各类家用电器等等,可以说其应用范围相当广阔,并且还将继续扩大。
2 变频器的基本结构和分类变频器是利用交流电动机的同步转速随电机定子电压频率变化而变化的特性而实现电动机调速运行的装置。
变频器最早的形式是用旋转变频发电机组作为可变频率电源,供给交流电动机,主要是异步电动机进行调速。
随着电力电子半导体器件的发展,静止式变频电源成为变频器的主要形式。
2.1变频器的基本结构为交流电机变频调速提供变频电源的一般都是变频器。
按主回路电路结构,变频器有交-交变频器和交-直-交变频器两种结构形式。
1.交-交变频器交-交变频器无中间直流环节,直接将工频交流电变换成频率、电压均可控制的交流电,又称直接式变频器。
整个系统由两组整流器组成,一组为正组整流器,一组为反组整流器,控制系统按照负载电流的极性,交替控制两组反向并联的整流器,使之轮流处于整流和逆变状态,从而获得变频变流电压,交-交变频器的电压由整流器的控制角来决定。
交-交变频器由于其控制方式决定了最高输出频率只能达到电源频率的1/3-1/2,不能高速运行。
但由于没有中间直流环节,不需换流,提高了变频效率,并能实现四象限运行。
交-交变频器主要用于大容量、低转速、高性能的同步电动机传动。
2.交-直-交变频器交-直-交变频器,先把工频交流电通过整流器变成直流电,然后再把直流电变换成频率、电压均可控制的交流电,它又称为间接式变频器。
因本课题中所用变频器为交-直-交变频器,故下面的阐述主要就交-直-交变频器进行。
交-直-交变频器其基本构成如图4-2所示,由主电路(包括整流器、中间直流环节、逆变器)和控制电路组成,各部分作用如下所述:图3.1交-直-交变频器的基本构成(1)整流器电网侧的变流器是整流器,它的作用是把三相(或单相)交流电整流成直流电。
(2)逆变器负载侧的变流器为逆变器。
最常见的结构形式是利用六个半导体主开关器件组成的三相桥式逆变电路。
有规律的控制逆变器中主开关器件的通与断,可以得到任意频率的三相交流电输出。
(3)中间直流环节由于逆变器逆变器的负载属于感性负载,在中间直流环节和电动机之间总会有无功功率的交换。
这种无功能量要靠中间直流环节的储能元件(电容器或电抗器)来缓冲。
所以中间直流环节又称为中间直流储能环节。
(4)控制电路控制电路由运算电路、检测电路、控制信号的输入、输出电路和驱动电路等构成。
其主要任务是完成对逆变器的开关控制、对整流器的电压控制以及完成各种保护功能等。
控制方法可以采用模拟控制或数字控制。
高性能的变频器目前已经采用微型计算机进行全数字控制,采用尽可能简单的硬件电路,主要靠软件来完成各种功能。
2.2 变频器的分类按缓冲无功功率的中间直流环节的储能元件是电容还是电感,变频器可分为电压型变频器和电流型变频器两大类。
1.电压型变频器对于交-直-交变频器,当中间直流环节主要采用大电容作为储能元件时,主回路直流电压波形比较平直,在理想情况下是一种内阻抗为零的恒压源,输出交流电压是矩形波或阶梯波,称为电压型变频器,如图3.2所示:图3.2电压变频型器2.电流型变频器当交-直-交变频器的中间直流环节采用大电感作为储能元件时,直流回路中电流波形比较平直,对负载来说基本上是一个恒流源,输出交流电流是矩形波或阶梯波,称为电流型变频器。
3交流电动机变频调速原理异步电动机是用来把交流电能转化为机械能的交流电动机的一个品种,通过定子的旋转磁场和转子感应电流的相互作用使转子转动。
3.1异步交流电动机的机械特性图3.3所示为固定电压下异步电动机的机械特性曲线。
因为该特性对变频器的使用关系极大。
下面把特性曲线中标出的一些术语作简要说明:启动转矩:处于停止状态的异步电动机加上电压后,电动机产生的转矩。
通常启动转矩为额定转矩的1.25倍。
最大转矩:在理想情况下,电动机在最大转差为S m时产生的最大值转矩T m。
启动电流:通常启动电流为额定电流的5~6倍。
图3.3 异步电动机机械特性曲线空载电流:电动机在空载时产生的电流,此时电动机的转速接近同步转速。
电动状态:电动机产生转矩,使负载转动。
再生制动状态:由于负载的原因,使电动机实际转速超过同步转速,此时,负载的机械能量转换为电能并反馈给电源,异步电动机作为发电机运行。
反接制动状态:将三相电源中的两相互换后,旋转磁场的方向发生改变,对电动机产生制动作用,负载的机械能将转换为电能,并消耗于转子电阻上。
3.2异步交流电动机变频调速现代交流调速传动,主要指采用电子式电力变换器对交流电动机的变频调速传动。
对于交流异步电动机,调速方法很多,其中以变频调速性能最好。
由电机学知识知道,异步电动机同步转速,即旋转磁场转速为pf n 1160= (4-1) 式中,f 1为供电电源频率,p 为电机极对数。
异步电动机轴转速为)1(60)1(11s pf s n n -=-= (4-2) 式中,s 为异步电动机的转差率,n n n s -=1 。
改变电动机的供电电源频率f 1,可以改变其同步转速,从而实现调速运行。
3.3 U/f 控制交流电机通过改变供电电源频率,可实现电机调速运行。
对电机进行调速速控制时,希望电动机的主磁通保持额定值不变。
由电机理论知道,三相交流电机定子每相电动势的有效值为m N k N f E Φ=111144.4 (3-1)式中 E 1——定子每相由气隙磁通感应的电动势的有效值;f 1——定子频率;N 1——定子每相有效匝数;K N1——基波绕组系数;φm——每极磁通量。
由上式知道,电机选定,则N1为常数,φm由E1、f1共同决定,对E1、f1适当控制,可保持φm为额定值不变,对此,需考虑基频以下和基频以上两种情况。
(1)基频以下调速由式(3-1),保持E1/f1=常数,可保持φm不变,但实际中E1难于直接检测和控制。
当值较高时定子漏阻抗可忽不计,认为定子相电压U1 E1,保持U1/f1=常数即可。
当频率较低时,定子漏阻抗压降不能忽略,这时,可人为的适当提高定子电压补偿定子电阻压降,以保持气隙磁通基本不变。
(2)基频以上调速基频以上调速时,频率可以从f1N往上增高,但电压U1不能超过额定电压U1N,由式(3-1)可知,这将迫使磁通与频率成反比下降,相当于直流电机弱磁升速的情况。
把基频以下和基频以上两种情况结合起来,可得到图3.4所示的电机U/f控制特性U图3.4 U/f控制特性由上面的讨论可知,异步电动机的变频调速必须按照一定的规律同时改变其定子电压和频率,即必须通过变频装置获得电压频率均可调节的供电电源,实现所谓的VVVF(Variable V oltage Variable Frequency)调速控制。
3.4矢量控制U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。
对于对动态性能要求较高的应用,可以采用矢量控制方式。
矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。
由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,这种控制方式被称为矢量控制(Vectory Control)。
矢量控制方式使异步电动机的高性能控制成为可能。
矢量控制变频器不仅在调速范围上可以与直流电动机相匹敌,而且可以直接控制异步电动机转矩的变化,所以已经在许多需精密或快速控制的领域中得到应用。