最新数学课堂同步练习册(人教版九年级下册)参考答案名师优秀教案
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)052034

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 经调查郑州市目前有家网约车公司,其中生活中最常见的网约车有以下家:滴滴出行、享道出行、有象约车、出行、曹操出行、中交出行.某数学兴趣小组针对以上六家网约车公司的市场份额进行了抽样调查,并把调查结果绘制成了如下尚不完整的扇形统计图.已知这六家网约车四月份共完成订单万单,其中“享道出行”所对应的圆心角度数是“中交出行”所对应的圆心角度数的倍,则“享道出行”对应扇形的圆心角度数及“中交出行”所占市场订单数量约为( )A.,万B.,万C.,万D.,万2. 某地区有所中学,其中七年级学生共名.为了了解该地区七年级学生每天体育锻炼的时间,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.其中正确的是( )A.①②③④⑤B.②①③④⑤C.②①④③⑤D.②①④⑤③3. 为了鼓励学生加强体育锻炼,学校在制定奖励方案前进行问卷调查,设置“赞成、反对、无所谓”三176T340472∘472∘260∘460∘23868583. 为了鼓励学生加强体育锻炼,学校在制定奖励方案前进行问卷调查,设置“赞成、反对、无所谓”三种意见,从全校名学生中随机抽取名学生进行调查,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为 ( )A.B.C.D.4. 下列调查:①日光灯管厂要检测一批灯管的使用寿命;②了解居民对废电池的处理情况;③了解初中生的主要娱乐方式;④某公司对退休职工进行健康检查,应作抽样调查的是( )A.①②③B.①②④C.①③④D.②③④5.甲、乙两名队员参加射击训练,根据两人的成绩绘制了下列两幅统计图:根据以上信息,整理分析数据如下:平均成绩环中位数环众数环方差甲乙表格中,的值分别是( )A.,B.,C.,D.,6. 某瓶装酒精的酒精含量标识为“”,则下列酒精样品的酒精含量不符合要求的是( )A.B.20001003060080014001680///7a 7 1.2b 7.58 4.2a b a =7.5b =7a =7b =7a =7b =7.5a =7.5b =7.575%±5%70%75%C.D.7. 在个数据中,用适当的方法,抽取个作为样本进行统计,频数分布表中这一组数据的频率是,那么估计这个数据中,落在之间的约有( )A.个B.个C.个D.个8. 两名同学在调查观众喜欢的影片类型时使用下面提问方式,你认为哪一种更好些( )A.难道你不认为科幻片比武打片更有意思吗?B.你更喜欢哪一类电影--科幻片还是武打片?C.难道你不认为武打片比科幻片更有意思吗?D.你肯定喜欢科幻片,是吗?二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 为了解某校九年级名学生中会游泳的学生人数,随机调查了其中名学生,结果有名学生会游泳,那么估计该校会游泳的九年级学生人数约为________.10. 收集数据常用的方法有________、________、查阅资料等.调查又分为________调查、________调查和抽样调查等.11. 新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长(单位:小时)的情况,在全市范围内随机抽取了名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:在这次调查活动中,采取的调查方式是________(填写“全面调查”或“抽样调查”),________;从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“”范围的概率是80%90%1005055∼580.1210055∼58120601268400400150t n (1)n =(2)3≤t <4________;若该市有名初中生,请你估计该市每日线上学习时长在“”范围的初中生有________名.12. 两名同学在调查时使用的以下两种调查提问方式,你认为哪一种更好些?①难道你不认为小说比诗歌更感人吗?②你更喜欢哪一类文学作品--小说还是诗歌?提问方式更好些的是________(只需填问题代号)三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 我校为了解学生课间活动的开展情况,随机抽查了三个年级中的部分学生分钟跳绳的次数,并将抽查结果进行统计,绘制了两幅不完整的统计图如图.请根据图中提供的信息,解答下列问题:(每组数据含最小值,不含最大值)学校本次共抽查了多少名学生?请将频数分布直方图补充完整,直接写出扇形统计图中跳绳次数范围为所在扇形的圆心角的度数;若本次抽查中,分钟跳绳次数不低于次为优秀,请你估算我校名学生中有多少名学生的成绩为优秀? 14. 为更好地开展体育活动,提高学生的身体素质,某中学决定在学生中开设:足球,:篮球,:乒乓球,:羽毛球四种球类项目.为了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的统计图.请结合图中的信息解答下列问题:在这项调查中,共调查了________名学生;求被调查的学生中喜欢乒乓球的学生人数,并将条形统计图补充完整.(3)150004≤t <51(1)(2)135≤x <155(3)11251200A B C D (1)(2)15. 为了歌颂抗击冠状病毒肺炎疫情优秀工作者的感人事迹,某市开展了“众志成城抗击疫情”学生作品征集活动,某校随机抽查了部分学生上交作品件数的情况,并绘制如图所示尚不完整的统计图.本次调查共随机抽取了________名学生,其中上交作品为件的有________人;求出上交作品件数的众数和中位数;根据随机抽查的这个结果,请估计该校名学生中上交作品的总件数.16. 小明利用周末去做社会调查,了解美的空调的质量情况.他设计的问题是:你觉得美的空调好吗?你对他设计的问题有何看法,为什么?(1)2(2)(3)1200参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】扇形统计图用样本估计总体【解析】根据扇形图所占的比例进行计算,可以很快算出答案。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)092954

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 一个扇形的半径为,圆心角为,用它做一个圆锥的侧面,则圆锥的底面半径为( )A.B.C.D.2. 圆锥的主视图与左视图都是边长为的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.B.C.D.3. 已知圆锥的高为,母线长为,则圆锥的侧面积是( )A.B.C.D. 4.已知某几何体的三视图(单位:)如图所示,则该几何体的侧面积等于( )A.B.C.30cm 120∘5cm10cm20cm30cm490∘120∘150∘180∘4cm 5cm 15πcm 220πcm 210πcm 25πcm 2cm 12πcm 215πcm 224πcm 230πc 2D.5. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径是,则这个圆锥的母线长为( )A.B.C.D.6. 一个圆锥的高为,底面圆的半径为,则这个圆锥的侧面积为( )A.B.C.D.7. 已知圆锥的高为,高所在的直线与母线的夹角为,则圆锥的侧面积为( )A.B.C.D.8. 如图,正方形的边长为,以点为圆心,的长为半径画圆弧,得到扇形(阴影部分,点在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A.B.C.30πcm 2120∘481012164cm 3cm 12πcm 215πcm 220πcm 230πcm 23–√30∘π1.5π2π3πABCD 4A AD DE ADE E AC ADE 2–√12–√21D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知圆锥形底面半径为,母线长为,则这个圆锥的侧面展开后的扇形的圆心角是________.10. 若—扇形的弧长为 ,圆心角为,则这个扇形的面积是________.11. 已知圆锥的底面周长是分米,母线长为分米,则圆锥的侧面积是________平方分米.12. 圆锥的底面半径是,母线长,它的侧面展开图的面积是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图①,已知圆锥的母线长,其侧面展开图如图②所示.求圆锥的底面半径;求圆锥的全面积.14. 由截面为同一种长方形的墙砖粘贴的部分墙面如图所示,其中三块横放的墙砖比一块竖放的墙砖高,两块横放的墙砖比两块竖放的墙砖低,求每块墙砖的截面面积.15. 如图,已知圆锥的底面半径为,母线长为,为母线的中点,求从点到 点在圆锥的侧面上的最短距离.16. 解下列方程:;123912π120∘π214cm 9cm cm 2l=16cm (1)r (2)10cm 40cm 39C PB A C (1)−−3x+6=012x 23–√如图,一个圆锥的高为,侧面展开图是半圆,求圆锥的侧面积.(2)33–√cm参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】圆锥的计算弧长的计算【解析】此题暂无解析【解答】解:扇形弧长为,设圆锥的底面圆半径为,则.故选.2.【答案】D【考点】圆锥的计算简单几何体的三视图【解析】本题综合考查有关扇形和圆锥的相关计算.【解答】解:∵圆锥的主视图与左视图都是边长为的等边三角形,=20πcm 120π×30180r r ==10cm 20π2πB 4∴圆锥的母线长为、底面圆的直径为,则圆锥的侧面展开图扇形的半径为,设圆锥的侧面展开图扇形的圆心角是,根据题意,得:,解得:,故选.3.【答案】A【考点】圆锥的展开图及侧面积【解析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解答】解:因为母线长为,高为,由勾股定理得,底面半径为,所以底面周长为,那么侧面面积.故选.4.【答案】B【考点】由三视图判断几何体圆锥的展开图及侧面积【解析】此题暂无解析【解答】解:由三视图可知这个几何体是圆锥,高是,底面半径是,所以母线长是,侧面积.故选.444n =4πn ∗π∗4180n =180∘D 5cm 4cm r ==3(cm)−5242−−−−−−√l=2πr =2π×3=6π(cm)S =×6π×5=15π()12cm 2A 4cm 3cm =5(cm)+4232−−−−−−√∴=π×3×5=15π(c )m 2B5.【答案】C【考点】几何体的展开图圆锥的计算【解析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为,根据题意得:,解得:.故选.6.【答案】B【考点】圆锥的展开图及侧面积圆锥的计算【解析】首先根据圆锥的高和底面半径求得圆锥的母线长,然后计算侧面积即可.【解答】解:∵圆锥的高是,底面半径是,∴根据勾股定理得:圆锥的母线长为,则底面周长,侧面面积.故选.7.【答案】Cl =2π×4120π⋅l 180l=12C 4cm 3cm =5cm +3242−−−−−−√=6π=×6π×5=15πc 12m 2B圆锥的计算【解析】利用含度的直角三角形三边的关系得到圆锥的底面圆的半径为,母线长为,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【解答】解:∵高所在的直线与母线的夹角为,∴圆锥的底面圆的半径为,母线长为,所以圆锥的侧面积.故选.8.【答案】D【考点】圆锥的计算圆锥的展开图及侧面积【解析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答】解:设圆锥的底面圆的半径为,根据题意可知:,,所以,解得.所以该圆锥的底面圆的半径是.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】301230∘12=⋅2π1⋅2=122πC r AD =AE =4∠DAE =45∘2πr =45×π×4180r =1212D 120∘圆锥的展开图及侧面积弧长的计算【解析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式得到23=,再解关于n 的方程即可.【解答】解:设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故答案为:.10.【答案】【考点】多边形内角与外角扇形面积的计算弧长的计算【解析】此题暂无解析【解答】此题暂无解答11.【答案】【考点】圆锥的计算【解析】π⋅n ⋅π⋅9180n ∘2π⋅3=⋅π⋅9n ∘180=n ∘120∘120∘120∘108ππ4圆锥的侧面积=底面周长母线长.【解答】解:圆锥的侧面积平方分米.故答案为:.12.【答案】【考点】圆锥的展开图及侧面积圆锥的计算【解析】先计算出圆锥底面圆的周长,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.【解答】解:圆锥的侧面展开图的面积.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:由题意得, 圆锥的底面周长,∴ ,故圆锥的底面半径为.圆锥的全面积.∴圆锥的全面积为.【考点】圆锥的展开图及侧面积圆锥的全面积【解析】×÷2=××1=12π2π4π436π2π×4=×2π×4×9=36π(c )12m 236π(1)2πr =⋅π⋅16270∘180∘r =12r 12cm (2)=π×+π×12×16122=336π(c )m 2336πcm 2πr =270⋅π⋅16(1)由题意得, ,∴ . (2)圆锥的全面积 . 【解答】解:由题意得, 圆锥的底面周长,∴ ,故圆锥的底面半径为.圆锥的全面积.∴圆锥的全面积为.14.【答案】解:设每块墙砖的长为,宽为.根据题意,得 解得,则每块墙砖的截面面积是答:每块墙砖的截面面积是.【考点】圆锥的计算平面展开-最短路径问题【解析】此题暂无解析【解答】解:设每块墙砖的长为,宽为.根据题意,得 解得,则每块墙砖的截面面积是答:每块墙砖的截面面积是.15.【答案】解:圆锥的底面周长是,则,解得:,即圆锥侧面展开图的圆心角是度.∴,∵,∴是等边三角形,∵是中点,∴,∴度.2πr =270⋅π⋅16180r =12=π×+π×12×16=336π122(1)2πr =⋅π⋅16270∘180∘r =12r 12cm (2)=π×+π×12×16122=336π(c )m 2336πcm 2xcm ycm {x+10=3y,2x =2y+40{x =35y =1535×15=525(c )m 2525cm 2xcm ycm {x+10=3y,2x =2y+40{x =35y =1535×15=525(c )m 2525cm 26π6π=nπ×9180n =120∘120∠APB =60∘PA =PB △PAB C PB AC ⊥PB ∠ACP =90C =9∵在圆锥侧面展开图中,,∴在圆锥侧面展开图中.故点到 点在圆锥的侧面上的最短距离为.【考点】平面展开-最短路径问题圆锥的计算【解析】最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.【解答】解:圆锥的底面周长是,则,解得:,即圆锥侧面展开图的圆心角是度.∴,∵,∴是等边三角形,∵是中点,∴,∴度.∵在圆锥侧面展开图中,,∴在圆锥侧面展开图中.故点到 点在圆锥的侧面上的最短距离为.16.【答案】解:∵, ,,∴,∴ ,∴, .设此圆锥的高为,底面半径为,母线长为.AP =9PC =92AC ==(cm)A −P P 2C 2−−−−−−−−−−√93–√2A C cm 93–√26π6π=nπ×9180n =120∘120∠APB =60∘PA =PB △PAB C PB AC ⊥PB ∠ACP =90AP =9PC =92AC ==(cm)A −P P 2C 2−−−−−−−−−−√93–√2A C cm 93–√2(1)a =−12b =−3c =6Δ=−4×(−)×6=21(−3)212x ==−3±3±21−−√2×(−)1221−−√=−3+x 121−−√=−3−x 221−−√(2)hcm rcm AC lcm∵侧面展开图是半圆,∴,∴.由图可知,∵,∴,即,解得,∴,∴圆锥的侧面积为.【考点】解一元二次方程-公式法圆锥的展开图及侧面积【解析】利用公式法解方程即可;直接根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得比值;圆锥的侧面积是展开图扇形的面积,直接利用公式解题即可,圆锥的侧面积为.【解答】解:∵, ,,∴,∴ ,∴, .设此圆锥的高为,底面半径为,母线长为.∵侧面展开图是半圆,2πr =πl l=2r =+l 2h 2r 2h =3cm 3–√=+(2r)2(3)3–√2r 24=27+r 2r 2r =3l=2r =6cm =18π(c )πl 22m 2(1)(2)πl 22(1)a =−12b =−3c =6Δ=−4×(−)×6=21(−3)212x ==−3±3±21−−√2×(−)1221−−√=−3+x 121−−√=−3−x 221−−√(2)hcm rcm AC lcm∴,∴.由图可知,∵,∴,即,解得,∴,∴圆锥的侧面积为.2πr =πl l=2r =+l 2h 2r 2h =3cm 3–√=+(2r)2(3)3–√2r 24=27+r 2r 2r =3l=2r =6cm =18π(c )πl 22m 2。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)071509

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知两圆的半径分别是和,圆心距为,那么这两圆的位置关系是( )A.相交B.内切C.外切D.外离2. 若圆锥的底面半径为,母线长为,则它的侧面展开图的面积等于( )A.B.C.D.3. 已知的半径是一元二次方程的一个根,圆心到直线的距离.则直线与的位置关系是A.相离B.相切C.相交D.无法判断4. 如图,为的直径,直线与相切于点,直线交于点,交于点,连接,,则下列结论错误的是( )5cm 4cm 7cm 3515π9π6π12π⊙O −3x−4=0x 2O l d =6l ⊙O ( )AB ⊙O EF ⊙O D AC EF H ⊙O C AD ODA.若,则平分B.若平分,则C.若 ,则平分D.若, 则5. 如图,中,,,,将半径是的沿三角形的内部边缘无滑动的滚动一周,回到起始的位置,则点所经过的路线长是( )A.B.C.D.6. 如图,=,半径为的切于点,若将在上向右滚动,则当滚动到与也相切时,圆心移动的水平距离为( )A. B.C.D.7. 如图,由边长为的小正方形构成的网格中,点、、都在格点上,以为直径的圆经过点、,则的值为( )AH//OD AD ∠BAHAD ∠BAH AH ⊥EFAH ⊥EF AD ∠BAHD =CH ⋅AH H 2AH ⊥EFRtΔABC ∠C =90∘∠A =60∘AB =101⊙O O 9+3–√9−3–√9+33–√10−3–√∠ACB 60∘3⊙O BC C ⊙O CB ⊙O CA O 336π1A B C AB C D cos ∠ADCA. B. C. D.8. 如图,是外一点,射线、分别切于点、点,切于点,分别交、于点、点,若=,则的周长( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图所示,为矩形,以为直径作半圆,矩形的另外三边分别与半圆相切,沿着折痕折叠该矩形,使得点的对应点落在边上,若,则图中阴影部分的面积为 ______10. 如图,将菱形纸片固定后进行投针训练.已知纸片上于点,于点,.如果随意投出一针都命中菱形纸片,则命中阴影区域的概率是________.P ⊙O PA PB ⊙O A B CD ⊙O E PA PB D C PB 4△PCD 46810ABCD CD DF C E AB AD =2ABCD AE ⊥BC E CF ⊥AD F sinD =4511. 如图,已知菱形的边长为,点、分别是、上的点,若==,=,=________.12. 如图,是的外接圆,=,则的值是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,已知是的内切圆,切点为、、,(1)若,,求与的函数关系式.(2)若,,,求的半径. 14. 如图,在四边形中,,,对角线,交于点,平分交于点,连接.求证:四边形是矩形;若,求;在的条件下,若,求的面积.15. 如图,,分别是的直径和弦,且于点,与相交于点,延长到点,连接,使.ABCD 4E F AB AD BE AF 1∠BAD 120∘⊙O △ABC ∠A 45∘cos ∠OCB ⊙O △ABC D E F ∠A =x ∠EDF =y y x ∠A =90∘AB =8BC =10⊙O ABCD AD//BC ∠ABC =∠ADC =90∘AC BD O DE ∠ADC BC E OE (1)ABCD (2)∠BDE =15∘∠DOE (3)(2)AB =2△BOE AB BF ⊙O CD ⊥AB E CD BF G DC H HF HF =HG求证:是的切线;若, ,连接,求的长. 16. 如图,在矩形中,,.点沿边从点开始向点以的速度移动;点沿边从点开始向点以的速度移动.如果,同时出发,用表示移动的时间那么:当为何值时,为等腰直角三角形?求四边形的面积,提出一个与计算结果有关的结论;当为何值时,以点,,为顶点的三角形与相似?(1)HF ⊙O (2)sin ∠HGF =34BF =3AF AF ABCD AB =12cm BC =6cm P AB A B 2cm/s Q DA D A 1cm/s P Q t(s)(0≤t ≤6)(1)t △QAP (2)QAPC (3)t Q A P △ABC参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】圆与圆的位置关系【解析】根据圆心距与半径之间的数量关系可知两圆的位置关系是相交.【解答】解:∵两圆的半径分别是和,圆心距为,,∴两圆的位置关系是相交.故选.2.【答案】A【考点】扇形面积的计算圆锥的计算【解析】此题暂无解析【解答】解:底面半径为,则底面周长,侧面面积.故选.5cm 4cm 7cm 5−4<7<5+4A 3=6π=×6π×512=15πA3.【答案】A【考点】直线与圆的位置关系一元二次方程的解【解析】先求方程的根,可得的值,由直线与圆的位置关系的判断方法可求解.【解答】解:∵,∴,.∵的半径为一元二次方程的根,∴.∵,∴直线与的位置关系是相离.故选.4.【答案】D【考点】切线的性质圆的有关概念平行线的判定与性质角平分线的定义切割线定理【解析】由平行线的性质得出,由等腰三角形的性质得到,等量代换,即可判断;证明,由切线的性质得到,即可判断;由切线的性质和已知证明,进而得出,判断;由切割线定理即可得出,无法得出,判断.【解答】r −3x−4=0x 2=−1x 1=4x 2⊙O −3x−4=0x 2r =4d >r l ⊙O A ∠CAD =∠ADO ∠ADO =∠DAO ∠CAD =∠DAO A AH//OD OD ⊥EF B AH//CD ∠CAD =∠DAO C D =CH ⋅AH H 2AH ⊥EF D解:,若,则.,,,即平分,故正确;,若平分,则.,,,.与相切,,,故正确;,与相切,.,,.,,,即平分 ,故正确;,与相切,,即不一定正确,故错误.故选.5.【答案】A【考点】切线长定理【解析】如图,点运动的轨迹是 ,利用解直角三角形分别求出 的长,再相加即可.【解答】如图所示,A AH//OD ∠CAD =∠ADO ∵OA =OD ∴∠ADO =∠DAO ∴∠CAD =∠DAO AD ∠BAH AB AD ∠BAH ∠CAD =∠DAO ∵OA =OD ∴∠ADO =∠DAO ∴∠CAD =∠ADO ∴AH//OD ∵EF ⊙O ∴OD ⊥EF ∴AH ⊥EF BC ∵EF ⊙O ∴OD ⊥EF ∵AH ⊥EF ∴AH//OD ∴∠CAD =∠ADD ∵OA =OD ∴∠DAO =∠ADO ∴∠CAD =∠DAO AD ∠BAH C D ∵EF ⊙O ∴D =CH ⋅AH H 2AH ⊥EF D D O ΔO O 2O 1OO 1O 1O 2OO 2中, 又:的半径是,在中,:点经过的路线长为故答案为:.6.【答案】B【考点】切线的判定与性质弧长的计算【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】圆周角定理【解析】根据圆周角定理得到,再根据余弦的定义计算即可;【解答】由图可知在中,故答案选.RtAABC ∠C =,∠A =,AB =1090∘60∘∵AC =5⊙O 1∵CQ =1PQ =O =AC −AP −CQ =4−O 23–√RtΔOO 1O 2O =O ⋅tan =4−3O 1O 260∘3–√=2O =8−2O 1O 2O 23–√O O ++O =9+O 1O 1O 2O 23–√A ∠ADC =∠ABC ∠ADC =∠ABCRt △ABC AC =2,BC =3AB ==+3222−−−−−−√13−−√,cos ∠ADC =cos ∠ABC ===BC AB 313−−√313−−√13C8.【答案】C【考点】切线的性质【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】切线的性质【解析】此题暂无解析【解答】解:作于交半圆于,连接,作于,如图,∵矩形的另外三边分别与半圆相切∴为半圆的半径,∴,∵沿折叠到,∴.3−3–√4π3OH ⊥AB H,DE M OM ON ⊥DM N OH CD =2OH =2AD =4DC DF DE DE =DC =4在中,∵ ∴,∴,∵,∴ ,∵,∴,∴,∴图中阴影部分的面积=.故答案为:.10.【答案】【考点】解直角三角形几何概率菱形的性质【解析】根据题意可以分别求得矩形的面积和菱形的面积,从而可以解答本题.【解答】解:设,∵四边形是菱形,于,于,,∴,,∴,∴命中矩形区域的概率是:,故答案为:.11.【答案】Rt △ADE sin ∠AED ==AD DE 12∠AED =30°AE =AD =23–√3–√CD//AB ∠CDE =∠AED =30°OD =OM ∠ODM =∠OMD =30°∠DOM =120°−S △ADE S 弓形DHM =−(−)S △ADE S 扇形DOM S △DOM =×2×2−(−×2×1)123–√120⋅π⋅22360123–√=3−π3–√433−π3–√4325CD =5a ABCD AE ⊥BC E CF ⊥AD F sinD =45CF =4a DF =3a AF =2a =4a ⋅2a 5a ⋅4a 2525【考点】菱形的性质等边三角形的性质与判定全等三角形的性质与判定【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】解直角三角形三角形的外接圆与外心圆周角定理【解析】先利用圆周角定理得到=,则可判断为等腰直角三角形,所以=,然后利用特殊角的三角函数值得到的值.【解答】∵===,而=,∴为等腰直角三角形,∴=,∴.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】2–√2∠BOC 90∘△OBC ∠OCB 45∘cos ∠OCB ∠BOC 2∠A 2×45∘90∘OB OC △OBC ∠OCB 45∘cos ∠OCB =2–√2=−x1与的函数关系式是.(2)设圆的半径是.由勾股定理得:,∵是的内切圆,切点为、、,∴,,,,,∴四边形是正方形,∴,∴,∴,∴.答:的半径是.【考点】三角形的内切圆与内心勾股定理多边形内角与外角正方形的判定与性质圆周角定理切线长定理【解析】(1)连接、,求出,,根据四边形的内角和定理求出即可;(2)根据勾股定理求出,推出,,,,,证四边形是正方形,根据代入求出即可.【解答】解:(1)连接、.∵是的内切圆,切点为、、,∴,,∴,∴,答:与的函数关系式是.(2)设圆的半径是.由勾股定理得:,∵是的内切圆,切点为、、,∴,,,,,∴四边形是正方形,∴,∴,∴,y x y =−x 90∘12O r AC ==6B −A C 2B 2−−−−−−−−−−√⊙O △ABC D E F AE =AF CD =CF BE =BD ∠OEA =∠OFA =∠A =90∘OE =OF OEAF OE =OF =AE =AF =r AC −r +AB−r =BC 6−r +8−r =10r =2⊙O 2OE OF ∠EOF =2y ∠OEA =∠OFA =90∘AC AE =AF CD =CF BE =BD ∠OEA =∠OFA =∠A =90∘OE =OF OEAF AC −r +AB−r =BC OE OF ⊙O △ABC D E F ∠EOF =2y ∠OEA =∠OFA =90∘∠A+∠EOF =−−=360∘90∘90∘180∘y =−x 90∘12y x y =−x 90∘12O r AC ==6B −A C 2B 2−−−−−−−−−−√⊙O △ABC D E F AE =AF CD =CF BE =BD ∠OEA =∠OFA =∠A =90∘OE =OF OEAF OE =OF =AE =AF =r AC −r +AB−r =BC 6−r +8−r =10∴.答:的半径是.14.【答案】证明:∵,∴,∵,∴,∴,∴四边形是矩形.解:由可得: ,,,∴,∵平分,∴,∴是等腰直角三角形,∴,,∵,∴,∴,又,∴是等边三角形,∴,,∴,∴,∴.解:作于,如图,∵四边形是矩形,∴,,,,,∴,∴,∴,∵,∴,∴,∴,∴的面积.【考点】平行线的性质矩形的判定矩形的性质r =2⊙O 2(1)AD//BC ∠ABC +∠BAD =180∘∠ABC =90∘∠BAD =90∘∠BAD =∠ABC=∠ADC =90∘ABCD (2)(1)AO =CO BO =DO AC =BD OD =OC DE ∠ADC ∠CDE =45∘△DCE ∠DEC =45∘CD =CE ∠BDE =15∘∠DBC =∠ADB =−=45∘15∘30∘∠BDC =60∘OD =OC △OCD OC =CD =CE ∠DCO =∠COD =60∘∠OCE =30∘∠COE =∠CEO =(−)÷2=180∘30∘75∘∠DOE =∠COD+∠COE =+=60∘75∘135∘(3)OF ⊥BC F ABCD CD =AB =2∠BCD =90∘AO =CO BO =DO AC =BD AO =BO =CO =DO BF =FC OF =CD =112EC =CD =AB =2AC =BD =4BC ==2−4222−−−−−−√3–√BE =BC −CE =2−23–√△BOE =BE ⋅OF =×(2−2)×1=−112123–√3–√等边三角形的性质与判定角平分线的定义三角形的面积勾股定理【解析】此题暂无解析【解答】证明:∵,∴,∵,∴,∴,∴四边形是矩形.解:由可得: ,,,∴,∵平分,∴,∴是等腰直角三角形,∴,,∵,∴,∴,又,∴是等边三角形,∴,,∴,∴,∴.解:作于,如图,∵四边形是矩形,∴,,,,,∴,∴,∴,∵,∴,∴,∴,∴的面积.15.(1)AD//BC ∠ABC +∠BAD =180∘∠ABC =90∘∠BAD =90∘∠BAD =∠ABC=∠ADC =90∘ABCD (2)(1)AO =CO BO =DO AC =BD OD =OC DE ∠ADC ∠CDE =45∘△DCE ∠DEC =45∘CD =CE ∠BDE =15∘∠DBC =∠ADB =−=45∘15∘30∘∠BDC =60∘OD =OC △OCD OC =CD =CE ∠DCO =∠COD =60∘∠OCE =30∘∠COE =∠CEO =(−)÷2=180∘30∘75∘∠DOE =∠COD+∠COE =+=60∘75∘135∘(3)OF ⊥BC F ABCD CD =AB =2∠BCD =90∘AO =CO BO =DO AC =BD AO =BO =CO =DO BF =FC OF =CD =112EC =CD =AB =2AC =BD =4BC ==2−4222−−−−−−√3–√BE =BC −CE =2−23–√△BOE =BE ⋅OF =×(2−2)×1=−112123–√3–√【答案】证明:连接,如图,因为,所以.又因为,所以.又因为,所以,所以,所以.因为,即,所以,所以是的切线.解:连接,如图,因为是直径,所以,所以.又因为,所以,所以.在中,,因为,所以,所以.【考点】圆的综合题切线的判定勾股定理锐角三角函数的定义【解析】此题暂无解析【解答】(1)OF HF =HG ∠HFG =∠HGF OF =OB ∠OFB =∠OBF CD ⊥AB ∠GEB =90∘∠EGB+∠GBE =90∘∠EGB =∠HGF =∠HFG ∠GBE+∠EGB =90∘∠OFB+∠HFB =90∘∠OFH =90∘OF ⊙O (2)AF AB ∠AFB =90∘∠A+∠B =90∘∠B+∠BGE =∠B+∠HGF =90∘∠HGF =∠A sin ∠HGF =sin ∠A =34Rt △ABF sin ∠A ==BF AB 34BF =3AB =4AF ==−4232−−−−−−√7–√证明:连接,如图,因为,所以.又因为,所以.又因为,所以,所以,所以.因为,即,所以,所以是的切线.解:连接,如图,因为是直径,所以,所以.又因为,所以,所以.在中,,因为,所以,所以.16.【答案】解:对于任何时刻,,,,当时,为等腰直角三角形,即,解得,故当时,为等腰直角三角形.在中,,边上的高,∴.在中,,,∴,∴.由计算结果发现:在,两点移动的过程中,四边形的面积始终保持不变.(1)OF HF =HG ∠HFG =∠HGF OF =OB ∠OFB =∠OBF CD ⊥AB ∠GEB =90∘∠EGB+∠GBE =90∘∠EGB =∠HGF =∠HFG ∠GBE+∠EGB =90∘∠OFB+∠HFB =90∘∠OFH =90∘OF ⊙O (2)AF AB ∠AFB =90∘∠A+∠B =90∘∠B+∠BGE =∠B+∠HGF =90∘∠HGF =∠A sin ∠HGF =sin ∠A =34Rt △ABF sin ∠A ==BF AB 34BF =3AB =4AF ==−4232−−−−−−√7–√(1)t AP =2t DQ =t QA =6−t QA =AP △QAP 6−t =2t t =2(s)t =2s △QAP (2)△QAC QA =6−t QA DC =12=QA ⋅DC =(6−t)⋅12=36−6t S △QAC 1212△APC AP =2t BC =6=AP ⋅BC =⋅2t ⋅6=6t S △APC 1212=+=(36−6t)+6t =36(c )S 四边形QAPC S △QAC S △APC m 2P Q QAPC(也可提出:,两点到对角线的距离之和保持不变).根据题意,可分为两种情况来研究,在矩形中:①当时,,则有,解得,即当时,;②当时,,则有,解得,即当时,.综上,当或时,以点,,为顶点的三角形与相似.【考点】动点问题相似三角形的性质三角形的面积等腰三角形的判定与性质【解析】(1)根据题意分析可得:因为对于任何时刻,,,.当时,为等腰直角三角形,可得方程式,解可得答案;(2)根据(1)中.在中,,边上的高,由三角形的面积公式可得关系式,计算可得在、两点移动的过程中,四边形的面积始终保持不变;(3)根据题意,在矩形中,可分为、两种情况来研究,列出关系式,代入数据可得答案.【解答】解:对于任何时刻,,,,当时,为等腰直角三角形,即,解得,故当时,为等腰直角三角形.在中,,边上的高,∴.在中,,,∴,∴.由计算结果发现:在,两点移动的过程中,四边形的面积始终保持不变.(也可提出:,两点到对角线的距离之和保持不变).P Q AC (3)ABCD =QA AB AP BC △QAP ∼△ABC =6−t 122t 6t ==1.2(s)65t =1.2s △QAP ∼△ABC =QA BC AP AB △PAQ ∼△ABC =6−t 62t 12t =3(s)t =3s △PAQ ∼△ABC t =1.2s 3s Q A P △ABC t AP =2t DQ =t QA =6−t QA =AP △QAP △QAC QA =6−t QA DC =12P Q QAPC ABCD =QA AB AP BC =QA BC AP AB (1)t AP =2t DQ =t QA =6−t QA =AP △QAP 6−t =2t t =2(s)t =2s △QAP (2)△QAC QA =6−t QA DC =12=QA ⋅DC =(6−t)⋅12=36−6t S △QAC 1212△APC AP =2t BC =6=AP ⋅BC =⋅2t ⋅6=6t S △APC 1212=+=(36−6t)+6t =36(c )S 四边形QAPC S △QAC S △APC m 2P Q QAPC P Q AC根据题意,可分为两种情况来研究,在矩形中:①当时,,则有,解得,即当时,;②当时,,则有,解得,即当时,.综上,当或时,以点,,为顶点的三角形与相似.(3)ABCD =QA AB AP BC △QAP ∼△ABC =6−t 122t 6t ==1.2(s)65t =1.2s △QAP ∼△ABC =QA BC AP AB △PAQ ∼△ABC =6−t 62t 12t =3(s)t =3s △PAQ ∼△ABC t =1.2s 3s Q A P △ABC。
最新新课程课堂同步练习册(九年级数学下册人教版)答案

最新人教版数学精品教学资料数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)(),6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)092657

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列立体图形中,有六个面的是( )A.三棱柱B.圆锥C.四棱柱D.圆柱2. 绕着虚线旋转一周,能得到锥体的是( ) A. B. C. D.3. 如图,阴影部分是一个矩形,它的面积是( )A.B.C.D.5cm 23cm 24cm 26cm 24. 圆柱是由长方形绕着它的一边所在直线旋转周得到的,那么下列绕直线旋转周后能得到如图所示图形的是( ) A. B. C.D.5. 如图所示,将平面图形绕轴旋转一周,得到的几何体是( )A. B.C. D.6. 个棱长为的正方体木块堆成如图所示的形状,则它的表面积是( )111016. 个棱长为的正方体木块堆成如图所示的形状,则它的表面积是( )A.B.C.D.7. 在下列立体图形中,只要两个面就能围成的是( ) A. B. C.D.8. 将下左图直角三角形绕直角边旋转一周,所得几何体从正面是( ) A.B.10130343648ABC ACC. D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,一个正方体由个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走________个小立方块.10. 将一个高为.底面半径为的实心圆柱体铸铁零件改造成一个实心正方体零件(改造过程中损耗忽略不计),则改造后的正方体的棱长为________取11. 一个长为,宽为的长方形纸片,若将长方形纸片绕长边所在直线旋转一周,得到的几何体的体积为________.(结果保留)12. 如图,棱长为的正方体,无论从哪一个面看,都有三个穿透的边长为的正方形孔(阴影部分),则这个几何体的表面积(含孔内各面)是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 某长方体包装盒的表面积为,其展开图如图所示.求这个包装盒的体积.2783(π3)3cm 2cm cm 3π5cm 1cm cm 2146cm 214.某厂家准备生产一种长和宽相等的长方体模型,该模型的长、宽、高由塑料棒组成.现在设计人员仅画出如图所示设计图,请你补全长方体模型的直观图.(注:不必写画法)该厂共有名工人,每个工人每天可生产该长方体模型中长或宽的塑料棒根或者高根,如果你是车间主任,你会如何分配工人才能成套生产长方体模型?如果给出一个与该模型一样的长方体木块,该木块的长和宽都是,高是,并在这个木块上切下一个棱长是厘米的正方体,请直接写出剩余木块的表面积(要求:切下的正方体木块中至少有一个面是原来长方体木块表面的一部分)15. 如图,平面上有四个点,,,.根据下列语句画图:①画射线,连接;②画直线,相交于点;③在线段的延长线上取一点,使,连接.点与直线的关系是________.图中以为顶点的角中,小于平角的角共有________个.16. 如图是一个正八棱柱,它的底面边长为,高为.(1)这个棱柱共有多少个面?计算出它的侧面积.(2)这个棱柱共有多少条棱?(3)这个棱柱共有多少个顶点?(1)(2)358060(3)20cm 30cm 10A B C D (1)BA BD AD BC E DC F CF =BC EF (2)B AD (3)E 3cm 6cm参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】认识立体图形【解析】根据每个几何体的组成,逐项分析即可.【解答】解:,三棱柱有五个面,故此选项错误;,圆锥有一个曲面和一个平面组成,故此选项错误;,四棱柱有六个面组成,故此选项正确;,圆柱有一个曲面和两个平面组成,故此选项错误.故选.2.【答案】B【考点】点、线、面、体【解析】根据面动成体的原理可知,一个直角三角形围绕一条直角边为对称轴旋转一周能得到锥体.【解答】解:、能得到圆柱,不符合题意;、能得到锥体,符合题意;、能得到圆台,不符合题意;、能得到上下两个圆锥,不符合题意.A B C D C A B C D故选.3.【答案】A【考点】几何体的表面积勾股定理【解析】根据勾股定理先求出斜边的长度,再根据长方形的面积公式求出带阴影的矩形面积.【解答】解:∵厘米,∴带阴影的矩形面积平方厘米.故选.4.【答案】A【考点】认识立体图形【解析】此题暂无解析【解答】解:,可以通过旋转得到两个圆柱,故本选项正确;,可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;,可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;,可以通过旋转得到三个圆柱,故本选项错误.故选.5.【答案】C【考点】B =5+3242−−−−−−√=5×1=5A A B C D A点、线、面、体【解析】根据半圆旋转得到的图形是球,可得答案.【解答】解:由半圆旋转,得球,故选:.6.【答案】C【考点】几何体的表面积【解析】如图所示:第一层露出个面;第二层露出个面;第三层露出;底面个面.【解答】根据以上分析露出的面积==.7.【答案】D【考点】认识立体图形【解析】本题考查了立体图形的认识.【解答】解:,球只要一个面就能围成,故错误;,正方体要六个面才能围成,故错误;,圆柱需要三个面才能围成,故错误;,圆锥只要两个面就能围成,故正确.故选.8.【答案】C 54×2+24×2+3+2×1+265+4×2+2+4×2+3+2×1+2+636A B C D D【答案】D【考点】点、线、面、体【解析】首先根据面动成体可得绕直角边旋转一周可得圆锥,再找出主视图即可.【解答】解:直角三角形绕直角边旋转一周可得圆锥,从正面看图形是等腰三角形.故选:二、填空题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】【考点】认识立体图形几何体的表面积【解析】根据表面积不变,只需留个,分别是正中心的个和四角上各个.【解答】解:若新几何体与原正方体的表面积相等,最多可以取走个小正方体,只需留个,分别是正中心的个和四角上各个,如图所示:故答案为:.10.【答案】AC ABC ACD1611321611 32166【考点】认识立体图形【解析】设改造后的正方体的棱长为,根据题意可得正方体的体积=实心圆柱体体积,然后列出方程,再解即可.【解答】设改造后的正方体的棱长为,由题意得:=,=,=,=,11.【答案】【考点】点、线、面、体【解析】根据圆柱体的体积公式进行计算即可.【解答】解:.故答案为:.12.【答案】【考点】几何体的表面积【解析】根据正方体个外表面的面积、个内孔内壁的面积和,减去“孔”在外表面的面积即可.【解答】解:由正方体的个外表面的面积为,x x π××832x 3x 3π×9×8x 33×9×8x 612πV =πh r 2V =π××3=12π2212π2766965×5×6−3×6=132个内孔的内壁的面积为,因此这个有孔的正方体的表面积(含孔内各面)为.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】这个包装盒的体积为【考点】几何体的表面积几何体的展开图【解析】分别表示出长方体的各侧面面积,进而得出等式求出答案.【解答】设高为,则长为,宽为.由题意,得=,解得:=,=(舍去),∴长为:,宽为:.长方体的体积为:=.14.【答案】解:补全长方体模型的直观图如图所示.设有人生产长或宽的塑料棒,人生产高的塑料棒,,解得:,.答:有人生产长或宽的塑料棒,人生产高的塑料棒.①,②,③.答:剩余木块的表面积为或或.94×4×9=144132+144=27627690cm 3xcm (13−2x)cm (14−2x)cm 12[(13−2x)×(14−2x)+(14−2x)x+x(13−2x)]×21212146x 12x 2−99cm 5cm 9×5×290cm 3(1)(2)x (35−x)80x =2×60×(35−x)x =2135−21=142114(3)2×(20×20+20×30+20×30)=3200(c )m 22×(20×20+20×30+20×30)+4×10×10=3600(c )m 22×(20×20+20×30+20×30)+2×10×10=3400(c )m 23200cm 23400cm 23600cm 2【考点】认识立体图形一元一次方程的应用——调配与配套问题几何体的表面积【解析】此题暂无解析【解答】解:补全长方体模型的直观图如图所示.设有人生产长或宽的塑料棒,人生产高的塑料棒,,解得:,.答:有人生产长或宽的塑料棒,人生产高的塑料棒.①,②,③.答:剩余木块的表面积为或或.15.【答案】解:如图所示.点在直线外【考点】(1)(2)x (35−x)80x =2×60×(35−x)x =2135−21=142114(3)2×(20×20+20×30+20×30)=3200(c )m 22×(20×20+20×30+20×30)+4×10×10=3600(c )m 22×(20×20+20×30+20×30)+2×10×10=3400(c )m 23200cm 23400cm 23600cm 2(1)8作图—尺规作图的定义点、线、面、体角的概念对顶角【解析】(1)根据直线、射线、线段的特点画出图形即可;(2)根据角的概念:有公共端点是两条射线组成的图形叫做角数出角的个数即可.【解答】解:如图所示.由可知直线不经过点.故答案为:点在直线外.以为顶点的角中,小于平角的角共有个,有,,,,,,,故答案为:.16.【答案】解:(1)有个侧面,个底面,共有个面,它的侧面积为:;(2)这个棱柱共有棱:条;(3)这个棱柱共有个顶点.(1)(2)(1)AD B (2)E 8∠HEA ∠HEF ∠HEG ∠AEB ∠AEF ∠BEF ∠BEG ∠FEG.8828+2=103×6×8=144cm 28+8×2=248×2=16【考点】认识立体图形几何体的表面积【解析】(1)分侧面与底面两种查出面即可,根据侧面是长方形,然后根据长方形的面积公式计算即可得解;(2)根据图形,分侧面上的棱与底面上的棱计算即可得解;(3)根据图形计算顶点的个数.【解答】解:(1)有个侧面,个底面,共有个面,它的侧面积为:;(2)这个棱柱共有棱:条;(3)这个棱柱共有个顶点.828+2=103×6×8=144cm 28+8×2=248×2=16。
人教版数学九年级下册全册 同步练习 及答案

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【基础练习】一、填空题:1.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为;2.有一面积为60的梯形,其上底长是下底长的13,设下底长为x,高为y,则y与x的函数关系式是;3.已知y与x成反比例,并且当x = 2时,y = -1,则当x = -4时,y = .二、选择题:1.下列各问题中的两个变量成反比例的是();A.某人的体重与年龄B.时间不变时,工作量与工作效率C.矩形的长一定时,它的周长与宽D.被除数不变时,除数与商2.已知y与x成反比例,当x = 3时,y = 4,那么当y = 3时,x的值为();A. 4B. -4C. 3D. -33.下列函数中,不是反比例函数的是()A. xy = 2B. y = - k3x(k≠0) C. y =3x-1 D. x = 5y-1三、解答题:1.一水池内有污水60m3,设放净全池污水所需的时间为t (小时),每小时的放水量为w m3,(1)试写出t与w之间的函数关系式,t是w反比例函数吗?(2)求当w = 15时,t的值.2.已知y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数表达式; (2)将表中空缺的x 、y 值补全.【综合练习】举出几个日常生活中反比例函数的实例.【探究练习】已知函数y = y 1 +y 2,y 1与x 成正比例,y 2与x 成反比例,且当x = 1时,y = 4,当x = 2时,y = 5. 求y 关于x 的函数解析式.x -5-3-2 1 4 5 y-34-1-3321]答案:【基础练习】一、1. v = 120t ; 2. y = 90x ; 3. 12. 二、1. D ; 2. A ; 3. C. 三、1. (1)t =60w ,(2)t = 4. 2. (1)y = 3x ;(2)从左至右:x = -4,-1,2,3;y = - 35 ,- 32 ,3,34,35. 【综合练习】略.【探究练习】y = 2x + 2x .第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数一.判断题1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小 ( ) 2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数 ( ) 3.如果一个函数不是正比例函数,就是反比例函数 ( ) 4.y 与x 2成反比例时y 与x 并不成反比例 ( ) 5.y 与2x 成反比例时,y 与x 也成反比例 ( ) 6.已知y 与x 成反比例,又知当2=x 时,,则y 与x 的函数关系式是( )二.填空题 7.叫__________函数,x 的取值范围是__________;8.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是_________=h ,这时h 是a 的__________;9.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成__________; 10.如果函数y =222-+k k kx是反比例函数,那么k =________,此函数的解析式是 ;11.下列函数表达式中,均表示自变量,那么哪些是反比例函数,如果是请在括号内填上的值,如果不是请填上“不是” ①;( ) ②;( ) ③; ( ) ④;( )⑤πxy =;( )⑥xy 5-=( )⑦( )12.判断下面哪些式子表示y 是x 的反比例函数? ①31-=xy ; ②x y -=5; ③x y 52-=; ④)0(2≠=a a xay 为常数且; 解:其中 是反比例函数,而 不是; 13.计划修建铁路1200,那么铺轨天数(天)是每日铺轨量x 的反比例函数吗?解:因为 ,所以y 是x 的反比例函数;14.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成 函数关系,列出a 关于b 的函数关系式为 ;三.选择题:15.若n x m y ++=2)5(是反比例函数,则m 、n 的取值是 ( ) (A )3,5-=-=n m (B )3,5-=-≠n m (C ) 3,5=-≠n m (D )4,5-=-≠n m 16.附城二中到联安镇为5公里,某同学骑车到达,那么时间t 与速度(平均速度)v 之间的函数关系式是( )(A ) st v = (B ) s t v += (C ) t s v = (D ) stv = 17.已知A (2-,a )在满足函数xy 2=,则___=a ( ) (A ) 1- (B ) 1 (C ) 2- (D ) 218.下列函数中,是反比例函数的是 ( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 19.下列关系式中,哪个等式表示y 是x 的反比例函数 ( ) (A ) x k y =(B ) 2xB y = (C ) 121+=x y (D ) 12=-xy20.函数y m x m m =+--()2229是反比例函数,则m 的值是 ( )(A )m =4或m =-2(B ) m =4 (C ) m =-2 (D ) m =-1四.解答题:21.在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)031034

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 把抛物线平移得到抛物线,是怎样平移得到的( )A.向右平移个单位长度,再向下平移个单位长度B.向左平移个单位长度,再向上平移个单位长度C.向右平移个单位长度,再向上平移个单位长度D.向左平移个单位长度,再向下平移个单位长度2. 如图,正三角形的顶点在坐标原点,点,点从点出发,沿边运动到点停止,点是轴上的点,且始终保持,当点与轴距离最近时,点的坐标为( )A.B.C.D.3. 平面直角坐标系内,函数与函数的图象可能是( )A.y =−2x 2y =−2+7(x−3)273373737OAB O A(4,0)P A AB B Q x ∠OPQ =60∘Q y Q (2,0)(,0)114(,0)134(3,0)y=a +bx+b(a ≠0)x 2y=ax+bB. C. D.4. 已知二次函数的图象如图所示,那么下列判断正确的是( )A.,,B.,,C.,,D.,,5. 已知函数,下列结论正确的是( )A.当时,随的增大而减小;B.当时,随的增大而增大;C.当时,随的增大而减小;D.当时,随的增大而增大.y=a +bx+c(a ≠0)x 2a >0b >0c >0a <0b <0c <0a <0b >0c >0a <0b <0c >0y =(x−1)2x >0y x x <0y x x <1y x x <−1y x6. 把二次函数配方成顶点式为( )A.B.C.D.7. 将抛物线 向下平移个单位长度得到的抛物线的解析式为()A.B.C.D.8. 如图是二次函数的图象,下列结论:①二次三项式的最大值为;②;③一元二次方程的两根之和为;④使成立的的取值范围是.其中正确的个数有( )A.个B.个C.个D.个y =−2x−1x 2y =(x−1)2y =(x+1−2)2y =(x+1+1)2y =(x−1−2)2y =13x 21y =+113x 2y =13(x+1)2y =13(x−1)2y =−113x 2y =a +bx+c x 2a +bx+c x 244a +2b +c <0a +bx+c =1x 2−1y ≤3x x ≥01234二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 将配方成的形式,则________.10. 抛物线向左平移个单位,再向上平移个单位所得函数解析式为________.11. 二次函数的最小值是________.12. 如图,直线与轴,轴分别交于点,,抛物线过,两点,交轴于另一点,抛物线的对称轴与轴交于点.点在轴上,连接分别交对称轴和抛物线于点、,若,则点的坐标为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分) 13. 已知关于的一元二次方程.当取何值时,此方程有两个不相等的实数根;当抛物线与轴两个交点的横坐标均为整数,且为负整数时,求此抛物线的解析式;在的条件下,若,是此抛物线上的两点,且,请结合函数图像直接写出实数的取值范围.14. 如图,折线表示芳芳骑自行车离家的距离与时间的关系,她点离开家,点回家,请根据图象回答下列问题:芳芳到达距家最远的地方时,离家__________千米.第一次休息时离家__________千米.她在的平均速度是__________.+6x+3x 2+n (x+m)2m+n =y =x 215y =3(x+4−5)2y =x−3x y A C y =−+4x−3x 2A C x B x D P y AP M N PM =22–√N x m −(2m+1)x+2=0x 2(1)m (2)y =m −(2m+1)x+2x 2x m (3)(2)P(n ,)y 1Q(n+1,)y 2>y 1y 2n 915(1)(2)(3)10:00—10:30芳芳一共休息了__________小时.芳芳返回用了__________小时.返回时的平均速度是__________.15. 已知二次函数的图象经过点,且顶点坐标为.求这个二次函数解析式.16. 将二次函数=的解析式化为=的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.(4)(5)(6)(0,−3)(1,−4)y 2+4x−1x 2y a(x+m +k )2参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】二次函数图象的平移规律【解析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【解答】解:抛物线的顶点坐标为,抛物线的顶点坐标为,因为点先向右平移个单位,再向上平移个单位可得到点,所以抛物线先向右平移个单位,再向上平移个单位可得到抛物线.故选.2.【答案】D【考点】二次函数的最值相似三角形的性质与判定【解析】先求得,根据相似三角形对应边成比例得,,求得,再由二次函数的相关性质即可得解.【解答】y =2x 2(0,0)y =2+7(x−3)2(3,7)(0,0)37(3,7)y =2x 237y =2+7(x−3)2C △POB ∼△QPA QA =PB ⋅PA OB PA =x OQ =OA−QA =4−QA =−x+4=+314x 214(x−2)2解:∵是正三角形,∴,,∴,∴,∴,∵,,∴,∵,∴,∴,∴,设,则,∴,∵,∴时,有最小值,此时.故选.3.【答案】C【考点】一次函数的图象二次函数的图象【解析】根据二次函数图象的开口以及对称轴与轴的关系即可得出、的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:,二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故错误;,∵二次函数图象开口向下,对称轴在轴左侧,∴,,∴一次函数图象应该过第二、三、四象限,且与二次函数交于轴负半轴的同一点,故错误;,二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故正确;△OAB OA =OB =AB ∠B =∠OAB =60∘A(4,0)OA =4OB =AB =4∠OPA =∠BOP +∠B ∠OPA =∠OPQ +∠QPA ∠BOP =∠QPA ∠B =∠QAP △POB ∼△QPA =PB QA OB PA QA =PB ⋅PA OB PA =x PB =AB−PA =4−x OQ =OA−QA =4−QA=−x+414x 2=+314(x−2)2>014x =2OQ 3Q(3,0)D y a b A y a >0b <0y A B y a <0b <0y B C y a >0b <0y C,∵二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故错误.故选.4.【答案】C【考点】二次函数图象与系数的关系【解析】利用抛物线开口方向确定的符号,利用对称轴方程可确定的符号,利用抛物线与轴的交点位置可确定的符号.【解答】解:∵抛物线开口向下,∴.∵抛物线的对称轴在轴的右侧,∴,∴.∵抛物线与轴的交点在轴上方,∴.故选.5.【答案】C【考点】二次函数的性质【解析】利用形如的形式的二次函数的性质进行判断即可.【解答】解:∵二次函数的对称轴为,,∴开口向上,当时,随的增大而减小;当时,随的增大而增大.故,,错误,正确.故选.D y a >0b <0y D C a b y c a <0y x =−>0b 2a b >0y x c >0C y =a(x−h)2y =(x−1)2x =1a =1>0x <1y x x >1y x A B D C C6.【答案】D【考点】二次函数的三种形式【解析】利用配方法把一般式配成顶点式即可.【解答】解:.故选.7.【答案】D【考点】二次函数图象的平移规律【解析】此题暂无解析【解答】此题暂无解答8.【答案】B【考点】二次函数的图象二次函数的最值二次函数图象与系数的关系【解析】y =−2x+1−2x 2=(x−1−2)2D a +bx+c2①根据抛物线的顶点坐标确定二次三项式的最大值;②根据时,确定的符号;③根据抛物线的对称性确定一元二次方程的两根之和;④根据函数图象确定使成立的的取值范围.【解答】解:∵抛物线的顶点坐标为,∴二次三项式的最大值为,①正确;∵时,,∴,②正确;根据抛物线的对称性可知,一元二次方程的两根之和为,③错误;由图象知,使成立的的取值范围是或,④错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】二次函数的三种形式【解析】原式配方得到结果,即可求出的值.【解答】解:,则,,.故答案为:10.【答案】【考点】二次函数图象的平移规律【解析】根据函数图象向左平移加,向上平移加,可得答案.a +bx+c x 2x =2y <04a +2b +c a +bx+c =1x 2y ≤3x (−1,4)a +bx+c x 24x =2y <04a +2b +c <0a +bx+c =1x 2−3+1=−2y ≤3x x ≥0x ≤−2B −3m +6x+3x 2=+6x+9−6x 2=(x+3−6)2=(x+m +n )2m=3n =−6∴m+n =3−6=−3−3y =+5(x+1)2【解答】解:原抛物线的顶点为,向左平移个单位长度,再向上平移个单位长度,那么新抛物线的顶点为.所以新抛物线的解析式为.故答案为:.11.【答案】【考点】二次函数的最值【解析】由抛物线解析式可求得其最值.【解答】解:∵抛物线的开口方向向上,顶点坐标坐标是,∴当时,.故答案为:.12.【答案】或【考点】二次函数的图象【解析】此题暂无解析【解答】解:由题意易得,∵,∴∵∴.∵∴∴或.当时,直线为,(0,0)15(−1,5)y =+5(x+1)2y =+5(x+1)2−5y =3(x+4−5)2(−4,−5)x =−4=−5y 最小值5(2,1)(0,−3)A(3,0),B(1,0),C(0,−3),D(2,0),DM//OP ==,PA PM OA OD 32PM =2,2–√PA =32–√OA =3OP ==3,P −O A 2A 2−−−−−−−−−−√P(0,3)(0,−3)P(0,3)PA y =−x+3解方程组得或此时, ;当时,直线为,解方程组得或此时,.综上所述,N 点的坐标为或.故答案为:或.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:由题意,得,且,,解得,.设与轴的交点的横坐标为,则,,∵均为整数,为负整数,∴或,当时,抛物线为,令,此时,符合题意;当时,,不符合题意;所以,抛物线的解析式为.∵,即随的增大而减小.,抛物线的开口向下,∴点和在对称轴的右边,抛物线的对称轴为,∴.【考点】二次函数的性质抛物线与x 轴的交点根与系数的关系根的判别式{y =−x+3,y =−+4x−3x 2{x =2,y =1{x =3,y =0,N(2,1)P(0,−3)PA y =x−3{y =x−3,y =−+4x−3x 2{x =0,y =−3{x =3,y =0,N(0,−3)(2,1)(0,−3)(2,1)(0,−3)(1)m≠0Δ=−4×m×2>0(2m+1)2(2m−1>0)2m>12(2)x ,x 1x 2.=x 1x 22m +=x 1x 22m+1m 、x 1x 2m m=−1m=−2m=−1y =+x+2−x 2+x+2=0−x 2=2,=−1x 1x 2m=−2+==x 1x 2−4+1−232y =+x+2−x 2(3)n+1>n ,>y 1y 2y x a =−1<0P Q x =−=12×(−1)12n >12一元二次方程的定义【解析】该小题考查了一元二次方程的概念和根的判别式.一元二次方程必须满足,有两个实数根必须满足判别式大于.第小题考查一元二次方程根与系数的关系和二次函数与轴交点.一元二次方程两根的和第于一次项系数除以二次项系数,两根的积等于常数项除以二次项系数,结合根为整数求解即可.该小部主要考查二次函数的增减性.当开口向下时,在对称轴的右边随的增大而减小,利用这一性质求解即可.【解答】解:由题意,得,且,,解得,.设与轴的交点的横坐标为,则,,∵均为整数,为负整数,∴或,当时,抛物线为,令,此时,符合题意;当时,,不符合题意;所以,抛物线的解析式为.∵,即随的增大而减小.,抛物线的开口向下,∴点和在对称轴的右边,抛物线的对称轴为,∴.14.【答案】,,千米/小时,,,千米/小时【考点】函数的图象【解析】此题暂无解析【解答】a ≠00(2)x y x (1)m≠0Δ=−4×m×2>0(2m+1)2(2m−1>0)2m>12(2)x ,x 1x 2.=x 1x 22m +=x 1x 22m+1m 、x 1x 2m m=−1m=−2m=−1y =+x+2−x 2+x+2=0−x 2=2,=−1x 1x 2m=−2+==x 1x 2−4+1−232y =+x+2−x 2(3)n+1>n ,>y 1y 2y x a =−1<0P Q x =−=12×(−1)12n >12301714 1.5215解:由图可知,图中距离最大的点为,最大距离为千米.当芳芳休息时,速度为,即图中斜率为的线段,则第一次休息的点为点,离家千米.在中,她由点到点,故平均速度.同理题,图中斜率为的线段共两段,分别为,故时间为返回时距离应从最大处至,由图可知返回用了.返回时速度.故答案为:;;千米/小时;;;千米/小时.15.【答案】解:根据题意,设函数解析式为.∵图象经过点,∴,.∴解析式为.【考点】二次函数的性质【解析】可设解析式为顶点式,根据图象经过点求待定系数,即可得解.【解答】解:根据题意,设函数解析式为.∵图象经过点,∴,.∴解析式为.16.【答案】=,=,=,开口方向:向上,(1)E 、F 30(2)00C 17(3)10:00−10:30B C =7÷0.5=14km/h (4)(2)0CD 、EF 0.5+1=1.5h (5)02h (6)=30÷2=15km/h 301714 1.5215y =a(x−1−4)2(0,−3)−3=a −4a =1y =(x−1−4=−2x−3)2x 2(0,−3)y =a(x−1−4)2(0,−3)−3=a −4a =1y =(x−1−4=−2x−3)2x 2y 2(+2x)−1x 2y 2(+2x+1)−2−1x 2y 2(x+1−3)2顶点坐标:,对称轴:直线=.【考点】二次函数的三种形式二次函数的性质【解析】利用配方法把将二次函数=的解析式化为=的形式,利用二次函数的性质指出函数图象的开口方向、顶点坐标和对称轴,即可得到答案.【解答】=,=,=,开口方向:向上,顶点坐标:,对称轴:直线=.(−1,−3)x −1y 2+4x−1x 2y a(x+m +k )2y 2(+2x)−1x 2y 2(+2x+1)−2−1x 2y 2(x+1−3)2(−1,−3)x −1。
人教版初三数学下练习册答案

人教版初三数学下练习册答案人教版初三数学下册练习册答案一、选择题1. 下列哪个选项是二次根式?A. \( \sqrt{4} \)B. \( \sqrt{-5} \)C. \( \sqrt{2} \)D. \( \sqrt{0} \)答案:C2. 若 \( a \) 和 \( b \) 是非零实数,下列哪个等式是正确的?A. \( a^2 = b^2 \) 则 \( a = b \)B. \( a^3 = b^3 \) 则 \( a = b \)C. \( a^2 = b^2 \) 则 \( a = -b \)D. \( a^3 = b^3 \) 则 \( a = -b \)答案:B3. 一个圆的半径是 \( r \),那么它的面积是:A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi r \)D. \( \pi \)答案:A二、填空题4. 若一个三角形的三边长分别为 \( a \)、\( b \) 和 \( c \),且\( a + b > c \),那么这个三角形是________。
答案:合法的5. 一个数的平方根是 \( \sqrt{16} \),那么这个数是_______。
答案:16 或 -16(注意:负数没有实数平方根)三、解答题6. 解方程 \( x^2 - 5x + 6 = 0 \)。
答案:首先将方程因式分解为 \( (x - 2)(x - 3) = 0 \),因此\( x = 2 \) 或 \( x = 3 \)。
7. 已知 \( \triangle ABC \) 是一个直角三角形,其中 \( AB \)和 \( AC \) 是直角边,\( BC \) 是斜边。
若 \( AB = 3 \) 且\( AC = 4 \),求斜边 \( BC \) 的长度。
答案:根据勾股定理,\( BC = \sqrt{AB^2 + AC^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学课堂同步练习册(人教版九年级下册)参考答案数学课堂同步练习册(人教版九年级下册)参考答案第二十六章二次函数26.1 二次函数及其图象(一)2一、 D C C 二、 1. ?0,=0,?0,=0,?0 =0, 2. y,x,6xy,x(10,x)3. ,二122三、1. 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. y,xy,3x16?26.1 二次函数及其图象(二)2一、 D B A 二、1. 下,(0,0),轴,高 2. 略 3. 答案不唯一,如 yy,,2x三、1.的符号是正号,对称轴是轴,顶点为(0,0) 2. 略 ya23. (1) (2) 否 (3) ; y,,2x3,6,,,3,6,,,,?26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略三、1. 共同点:都是开口向下,对称轴为y轴(12不同点:顶点分别为(0,0);(0,,);(0,,,) .2. 3. a,y,,3x,54?26.1 二次函数及其图象(四)x,,3一、 ,,, 二、1. 左,,, 2. 略 3. 向下,,(,,,,)112ac,,,3,2三、1. 2. 3. a,yx,,3,,34?26.1 二次函数及其图象(五)x,1一、C D , 二、1. ,(1,1) 2. 左,1,下,2 3.略22yx,,,12三、1.略2((1) (2)略 3. (1) a,6h,2k,,3y,6(x,2),3,,(2)直线 x,,,2223小2yx,,,122((1) (2)略,,?26.1 二次函数及其图象(六)3731(,)直线x,一、B B D D 二、1. 2. 5; 3. < ,;,52224212b4acb,222y(x4)6y3(x)ya(x)三、1. 略 ,,,,,,,,,,332a4a2A(20),,B(10),2. 解:(1)设这个抛物线的解析式为(由已知,抛物线过,,yaxbxc,,,1420abc,,,,a,2,,,,C(28),三点,得解这个方程组,得 ( abc,,,0,b,2,,,,428abc,,,(c,,4,,2所求抛物线的解析式为( yxx,,,224?219,,22(2)( yxxxxx,,,,,,,,,2242(2)2,,22,,19,,该抛物线的顶点坐标为( ,,,?,,22,,?26.2 用函数观点看一元二次方程33,1,x,一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. ; ; 或,122 3xx,,,1或x,,1x,3 三、1.(1)或 (2),-1或,3 xx212(3),,3 2.(1) (2)和 ,126,0,26,0,xyx,,,,23,,,,,,2?26.3 实际问题与二次函数(一)2一、 A C D 二、1. 大 18 2. 7 3. 400cm ,22三、1.(1)当矩形的长与宽分别为40m和10m时,矩形场地的面积是400m 2(2)不能围成面积是800m的矩形场地.2(3)当矩形的长为25m、宽为25m时,矩形场地的面积最大,是625m2xm2. 根据题意可得:等腰直角三角形的直角边长为,矩形的一边长为. 2xm 20422,,x,,其相邻边长为 ,,,1022x,,21,,?该金属框围成的面积 Sxxxx,,,,,,,2102222,,,,220 (,,) ,,,,32220xxx1052,,,10当x,,,30202时,金属框围成的面积最大.322,260402xm,,此时矩形的一边长为,,,相邻边长为. 10221032210210,,,,,,m,,,,,,22 Sm,,,,1003223002002.,,,,最大26.3 实际问题与二次函数(二)252一、A B A 二、1. , 2. 3.或12.5 50(1),x2x,7.5三、1. 40元当元时,元 W,625最大22. 解:(1)降低x元后,所销售的件数是(500+100x),y=,100x+600x+5500 (0,x?11 )22(2)y=,100x+600x+5500 (0,x?11 )配方得y=,100(x,3)+6400 当x=3时,y的最大值是6400元。
即降价为3元时,利润最大。
所以销售单价为10.5元时,最大利润为6400元。
答:销售单价为10.5元时,最大利润为6400元.m,,x,1003.(1)(0?x?100)y,(x,50)(,x,100)(2)每件商品的利润为x,50,所以每天的利润为:2?函数解析式为 yxx,,,,1505000150x,,,75(3)? 在50,x,75元时,每天的销售利润随着x的增大而增大 2,(,1)26.3 实际问题与二次函数(三)2一、 A C B 二、 1. 10( 2. 3. 3 yRR,,30,,三、1.(1)矩形广场四角的小正方形的边长为35米或者10米((2)当矩形广场四角的小正方形的边长为22(5米时,所铺设设铺设矩形广场地面的总费最小,最少费用为199500元(122. (1) (2)( 215,6y,,(x,6),512323. (1) (2)当( AD,30,x(cm)x,20cm时,y取最大值为300cm4第二十七章相似?27.1图形的相似(一)一、1. B 2. A 3. C 二、1. 是不是 2.(3)(5) 3. B 三、1.(1)与(3),(2)与(9),(4)与(7),(5)与(6),(10)(11)(12)(13),(14)(16)分别是相似图形2.(略)?27.1图形的相似(二)一、1. C 2. B 3. B 二、1. 1:5000 2. 70? 50? 3. 2 三、1.(1)b = 2,c =3 (2)3 2.?C′=112?AB = 20 BC = 16ABAE69????ABEDEF?,DF33. ,(即,( ,?,2DFDEDF22EF,,,2313ABCD,,D90?Rt?DEF在矩形中,(在中,( ??27.2.1相似三角形(一)3一、1. C 2. B 3. C 二、1. AN ,AC 2. 8 3. 2AEAD42BCBFDE,,3三、1. ??,? ?,,,,, DEEFABECBD63BFAE23,3,,BC,3,4.5,7.5?, ? ? FC,,4.5FCEC322.?四边形ABCD是正方形,?AD?BC,?,CEF?. ,DAFCFEFCE21? ,,,,DFAFAD42?27.2.1相似三角形(二)20一、1. B 2. C 3. C 二、 1. 是 3?5 2 . 2 3 . 3三、1. ?四边形ABCD是平行四边形 ??ABC??CDA ?E.F分别是AB.BC的中点 ?EF?AC ??EBF??ABC ??EBF??CDA2. 如图所示:3. ?AB = 3cm ?OA = 2cm4. 提示:连结BC,证CD?AB ?27.2.1相似三角形(三)ADAC8323,一、1. A 2. B 3. C 二、1. 或 2. 3. 32ACAB4111ABC三、1.?、、是?的中位线 ? DEDFEFDEBCEFABDFAC,,,,,222DEEFDF1 ? ??ABC??FED ,,,BCABAC2CFACACFGCAACFGCA2.(1)??? (提示:证)(2) ???? ,ACCG,,,,,,,,,,,12245CAFACB,,,CAF1 ? ?0,,,,CD90ADQQCP3. ??? ?四边形ABCD是正方形 ?,1QADDCBC,,BPPC,3CD?,是的中点 ?,PCBC,44PCCQ111ADQQCP,?, ???? ,,DQCQDCBC,,,DQAD222?27.2.1相似三角形(四)AEAD一、1. A 2. B 3. C 二、1. 或,,,2C或,,,B1,ACAB2. 1.53.4. BAC 1?4 23o三、1.?ABE 与?ADC相似(理由如下:?AE是?O的直径, ??ABE=90,o?AD是?ABC的边BC上的高,??ADC =90,??ABE =?ADC(又? 同弧所对的圆周角相等, ??E=?C( ????( ABE ADC?AEEBADDF,,,,?BF,?,,,CEBABF,2.(1) ?ED,,,CA,????CBEAFB 又 .CBBE5CB5???CBEAFB,AFAD,2,(2)由(1)知,又( ?,,.?,AFFB8AD4?27.2.2相似三角形应用举例一、1. C 2. C 二、1. 减小 3.5 2. 5 3. 15.1mABBCABACBC三、1.?ABC??DEF (提示:证或) ,,,,,ABCDEF,,DEEFDEDFEF2.延长EA、DB相交与点G,设GB为米,ED为y米 ?AB?FC?ED xx1.6x1.6x,1 ? ,得,=11.2 答:(略) ,y,xy,6x,13.23. ?A′B′?OS,AB?OS ??A′B′C′??SOC′??ABC??SOC’’’’ABB’CBBC’CABBC''ABAB,,?,? ?,. ,OSOC’OCOC’OSOC1.81ABBC1.51OBx,x,5设米, ? ? ? ? ,,,h51,xx,,,41.81OSOC? 答 :(略) h,9()米?27.2.3相似三角形的周长与面积2一、1. A 2. C 3. B 二、1. 8 2. 700cm 3. 1?2 三、1. BC = 20 A′B′= 18 A′C′= 30 2. S?S=1?9 ?AEF?ABC5S104,APQ 3.(1)秒 (2)= 39S,ABC?27.3位似(一)80一、1. D 2. B 3. D 二、1. 2. 4 3. 1cm 三、(略) 7?27.3位似(二)一、1. B 2. A 3. A 二、1. 1?2(46),(46),,,2.(0,0)(4,4)(6,2)或(0,0)(-4,-4)(-6,-2) 3. 或三、1.四边形A′B′C′D′四个顶点的坐标分别为:(2,2)(8,4)(6,8)(4,6)或(-2,-2)(-8,-4)(-6,-8)(-4,-6)2.(1)图略,的坐标为:(-9,-1) (2)图略,的坐标为:(5,5) BB12(3)图略第二十八章锐角三角函数 ?28.1锐角三角函数(一)645一、1.A 2. B 3. C 二、,. 2. 3. 8 4. 351334三、,.4.5m ,. ,. 45?28.1锐角三角函数(二)23224一、1. A 2., 3.B 二、,. ,. ,. 4. 323514三、,. ,. 3. (1) y=4 ; (2) 31,25?28.1锐角三角函数(三)31017一、1(B 2. A 3. D 二、,. 2 ,. ,. 4. 10224000三、,. 13.6 ,. ,.11.3 30,30,120?28.1锐角三角函数(四)一、1.B 2.A 3.C170h二、,.60 ,.2.3 ,.4、13、12 4. ,,10 3353,三、,.等腰三角形 ,. ,.(1)略 (2)AD = 8 26?28.1锐角三角函数(五)00一、1.A 2.A 3.B 二、,(60 ,. ,. 90 4. 60 123,61三、,.(,) (,),1 (3) (4)2.5 241525sin,cos,,,tan,2. (1);; (2)BD = 3 ,552?28.1锐角三角函数(六)00一、1. A 2. D 3.B 二、,. 0.791 ,. 1.04 ,. 68 4. 203三、,. 略 ,. 7794 3. sinB,4?28.2解直角三角形(一)ADDB0一、1.B 2.D 3.A 二、,. ,. 、 ,. ? ? 4.、45 3,110ACCD00,A,,B,45,B,60三、,.(,) 、 b = 35 (,)、AB = 2、BC = 12. 3. AC = 46.2 323?28.2解直角三角形(二)13603一、1. B 2.C 3.A 二、,. 6 ,. ,. 4. 乙 10033三、,. 计划修筑的这条公路不会穿过公园 2. 2.3 3. 6.3?28.2解直角三角形(三)8一、1.A 2.A 3.D 二、1. 2. 0.64 3. 9 4. 17 33三、1. 4.0(米) 2. 94.64 3. 30,103?28.2解直角三角形(四)30一、1.D 2.D 3.B 二、1. 南偏东35 2. 250m 3. 4. 25034三、1. 52.0 2.(1)3(小时) (2)3.7(小时) 3. 这艘轮船要改变航向第二十九章投影与视图 ?29.1投影(一)一、A B D 二、1. 平行投影,中心投影 2. 40米 3. 远CD三、1.如图1,是木杆在阳光下的影子2.如图2,点P是影子的光源,EF就是人在光源P下的影子(P PA 太阳光BCD O ,BC 线EF A B ,A木杆图3 图2 图173. (1)如图3,连接PA并延长交地面于点C,线段BC就是小亮在照明灯(P)照射下的影子.(2)在Rt?CAB和Rt?CPO中, ? ?C=?C,?ABC=?POC=90?,1.6BCABCB,? ?,CAB ??CPO(? ( ? ( POCO1213,BC? BC=2(? 小亮影子的长度为2m(?29.1投影(二)一、A B D A 二、1. 相等 2. 2:5 3. 965,三、1. 2.?29.2三视图(一)一、D B C B二、1.主视图、左视图、俯视图 2.长对正,高平齐,宽相等3.长方形,圆4.三棱锥,圆锥.三、1. 2.主视图左视图主视图左视图俯视图俯视图3.主视图左视图俯视图?29.2三视图(二)一、A A C C 二、 1.球 2.正面,主视 3.球,圆柱 4.等腰梯形.8三、1. 2.略 3.主视图左视图主视图俯视图?29.2三视图(三)一、D C B C 二、1. 24 2.主视图 3. 12 4. 实,虚. 三、1. 2. 3.略?29.2三视图(四) 一、B A B D 二、1.圆锥 2. 6 3.四棱锥. 三、1.略 2.圆柱 3.三棱柱?29.2三视图(五)1abc104,一、D A B 二、1. 2. 3. . ,2三、1.根据题意可知,密封罐为圆柱体,高为50,底面直径为40,则制作一个密封cmcm罐用的铁皮的面积为22. S,50,40,,2,,,20,2000,,800,,2800,(cm)2所以制作100个密封罐所需铁皮的面积为. 2800,,100,280000,(cm)228m,故制作100个密封罐所需铁皮的面积为.2.该几何体的形状是直四棱柱由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm(552?菱形的边长为cm,棱柱的侧面积=×8×4=80(cm)( 223.(1)圆锥;(2)表面积 S=SS,,,,12416,,,(平方厘米); 圆扇形(3)如图将圆锥侧面展开,线段BD为所求的最短路程 ,由条件得,?BAB′=120?,C为弧BB′中点,所以BD= . 334(解:(1)这个几何体下部是一个长30cm,宽20cm,高50cm的长方体,上部是一个底面直径为10cm,高为30cm的圆柱.210,,(2). ,,V,,,,,,,3020503030000750,,2,,9。