刚体力学基础

合集下载

刚体力学基础

刚体力学基础
mB
mA
第5章 刚体力学基础
2.7
刚体力学基础
解:研究对象:A、B、圆柱 用隔离法分别对各物体作受力 分析,如图所示。
mB
N
mA
f
mB m Bg
TB
TA
mA
aB T 'B
aA
mAg
T 'A
第5章 刚体力学基础
2.7
刚体力学基础
N
f
mB m Bg
TB
TA
T 'B
T 'A
mA mAg
aA
aB
A: mA g TA mAaA TB f mB aB B: N mB g 0
2.7
定点转动:
刚体力学基础
运动中刚体上只有一点固定不动,整个刚体绕过该
固定点的某一瞬时轴线转动. 如:陀螺的运动
i3
(转轴方向(2),绕轴转角(1))
第5章 刚体力学基础
2.7
刚体力学基础
二 刚体定轴转动的运动学描述 定轴转动:刚体上任意点都绕同一 轴在各自的转动平面内作圆周运动
特征:刚体各个部分在相同时间内绕 转轴转过的角度(角位移)都相同 引入角量描述将非常方便。
oo mi vi 垂直于z轴。
i
th
刚体 mi
oo mi vi ri mi vi
z
我们只对z方向的分量感兴趣:
Liz ri mi vi mi ri 2
Lz Liz mi ri
2
ω,α vi
△ mi
ri O’ × 刚体 × O
刚体定轴转动的动能=绕质心转动的动能+
刚体携总质量(质心)绕定轴作圆周运动的动能

第三章刚体力学基础

第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

刚体力学基础详解

刚体力学基础详解

(2) 如以重量P =98 N的物体挂在绳端,试计 算飞轮的角加速。
rO T
解 (1) FrJ F r9 80.23.2 9rad 2 /s
J 0.5 (2) m gTma
F mg
TrJ ar
J
mgr mr2
两者区别
0.59 1 80 0.2 0.222.1 8rad 2 /s
例 圆盘以 0 在桌面上转动,受摩擦力而静止
3. 一般运动
刚体不受任何限制的的任意运动称为刚体
的一般运动。它可视为以下两种刚体的基
本运动的叠加:
随基点O(可任 选)的平动
FMac
绕通过基点O的瞬时 轴的定轴转动
质点运动
本章主要讨论
§5.2 刚体绕定轴转动运动学
z 组成刚体的各质点都绕同一直线 做圆周运动 _____ 刚体转动。
转轴固定不动 — 定轴转动
当 M 为零时,则刚体保持静止或匀速转动
实验证明 当存在 M 时, 与 M 成正比
M
在国际单位中 M J
刚体的转动定律 Mz J
作用在刚体上所有的外力对 定轴 z 轴的力矩的代数和
推论
刚体对 z 轴 的转动惯量
(1) M 正比于 ,力矩越大,刚体的 越大
(2) 力矩相同,若转动惯量不同,产生的角加速度不同
dr
J0 m r2 d m 0 R2 R m 2r3 d rm 2R 2
O
Rm dr
r O
(3) J 与转轴的位置有关
z
z
M
L
M
L
O
dx
x
O dx
x
J Lx2dx1M2L
0
3
J L/2x2dx1M2L

刚体力学基础

刚体力学基础


0
0t

1 t2
2
2

2 01 刚体 刚体定轴转动的描述
四、绕定轴转动刚体上各点的速度和加速度
线速度大小与 角速度大小的关系
v r
at

dv dt

r
z
a an r

at ve t
an

v2 r
2r a
ret

r 2en
第三章 刚体力学基础
3-1 刚体 刚体定轴转动的描述 3-2 刚体定轴转动的转动定律 3-3 刚体定轴转动的动能定理 3-4 刚体定轴转动的角动量定理和角动量守 恒定律
教学基本要求
一 理解刚体绕定轴转动的角速度和角加速 度的概念,理解角量与线量的关系。
二 理解力矩和转动惯量的概念,能应用 平行轴定理和转动惯量的可加性,计算刚体对定 轴的转动惯量。
O
F ri
Fii
i
i
ie
mi
Fie sini Fii sin i miait miri
以 ri 乘上式两边
Fieri sin i Fiiri sin i miri2
rad s1

62.8
rad s1
角位移 0 2πN 2π 10 rad 62.8 rad
角加速度
2 02
0 62.82
rad s2 31.4 rad s2
2 0 2 62.8
制动过程的时间
t

0
0 62.8 31.4
法向加速度
an r 2 0.5 3.142 m s2 493 m s2
§3.2 刚体定轴转动的转动定律

1.3大学物理(上)刚体力学基础

1.3大学物理(上)刚体力学基础

dm ds dm dV
面密度和体密度。
线分布
面分布
体分布
注 意
只有对于几何形状规则、质量连续且均匀分布
的刚体,才能用积分计算出刚体的转动惯量。
[例3.1]: 求长为L、质量为m的均匀细棒对图中不同 轴的转动惯量。 [分析]:取如图坐标,dm=dx
A B
L
X
J A r dm
2
x dx mL / 3
T1 mg sin ma 1 2 T2 R T1 R J mR 2 mg T2 ma
a R
mg
[例3.4]: 转动着的飞轮的转动惯量为J,在t=0时角速度 为ω0。此后飞轮经历制动过程,阻力矩M的大小与角速度 ω的平方成正比,比例系数为k(k>0),当ω= ω0/3时,飞 轮的角速度及从开始制动到现在的时间分别是多少? [分析]: (1)已知 M k 2
练习:右图所示,刚体对经过
棒端且与棒垂直的轴的转动惯
mL
量如何计算?(棒长为L、球
半径为R)
mO
J L1
1 2 mL L 3
2 2 J o mo R 5
2 2
J L 2 J 0 m0 d J 0 m0 ( L R)
1 2 2 2 2 J mL L mo R mo ( L R) 3 5
dL d ( mv ) dr d (mv ) dr r mv F , v dt dt dt dt dt dL v mv 0, r F M r F v mv dt dL 角动量定理的微分形式 M dt
平均角速度
角速度
t

刚体力学基础

刚体力学基础

非专业训练,请勿模仿
例 解 由转动定律得
1 mgl sin J 2 1 2 式中 J ml 3 3g sin 得 2l
角加速度与质量无关,与长 度成反比,竹竿越长越安全。
-------------------------------------------------------------------------------
刚体的一般运动 质心的平动
+
绕质心的转动
-------------------------------------------------------------------------------
二、刚体绕定轴转动定律
F外力 F内力 mi ai
ai :质元绕轴作圆运动
-------------------------------------------------------------------------------
二、定轴转动的角动量守恒定律
质点角动量(相对O点)
定轴转动刚体
L r p r mv
-------------------------------------------------------------------------------
解:
M 1l gdl cos M mgL cos 2 m g1 l cos dl cos mgl M 2 3g cos L 1 22 J 2l M ml L g 3 cos L 2 3g cos d d d d 1 2 l dt cos d d mgL dt 2
2 法向: F cos F cos m r 法向力的作用线过转轴 i i i i. 内力 ,其力矩为零 外力 切向:F外力 sin i F内力 sin i mi ri

第3章刚体力学基础

第3章刚体力学基础

将圆盘视为一个系统,破裂后其受合 外力矩为零,所以其角动量守恒。
§3-3 刚体的能量
一、力矩的功
α
二、力矩的功率
说明:1、变力矩情况
2、此式的简单应用 三、转动动能 对刚体上任一质点mi, ri Vi ω 和质点的动能形式进行比较。
四、动能定理
意义:合外力矩对定轴转动的刚体所作的功, 等于刚体转动动能的增量。
第三章 刚体力学基础
§3-1 刚体运动的描述 一、刚体(rigid body) 刚体:在任何外力作用下,其形状和大小均不发生 改变的物体。 说明:
1)理想模型。
2)在外力的作用下,物体的形状和大小的变化很小 ,可以忽略不计,该物体仍可视为刚体。
二、刚体的运动 1、平动(translation)
刚体内任意两点的连线在
由平行轴定理
6g sinq 由(1)、(2)得: w = 2 7l v v v + mg = ma c 应用质心运动定理: N
(3) (4)
7 = ml 48
2
(2)
l = w2 a cl 4 6 = g sin q 7 l a = ct 4
(5)
由 (3)(4)(5)(6) 可解得:
l l 4 mg cos q = 4 J o 3 g cos q = (6) 7 13 N = mg sin q , l 7
解得:
应用型问题研究时以ω 绕轴旋转,在Δt 时间内其 角速度变为零。 d X C 碰撞过程中受力图为: ω Nx L/2 在图示坐标中, NY 依角动量定理: Z Y F
∵X方向无运动,∴NX = 0 结论:门碰装在离轴2/3处,开门时对轴的冲击力最小。
3)刚体匀变速转动公式
同匀变速直线运动公式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t1
J
M外
2
dt
mghC
L2
L1
t2
t1
MZ
dt

L2Z

L1Z
(积分形式)
M外 0
L 常矢量
投影形式: M z 0
LZ 常量
3.5.3 角动量守恒定律在工程技术上的应用 陀螺仪与导航
§3.6 进 动
进动现象 现象: 陀螺仪在外力矩的作用下,在绕其对称轴高速转动的同时,
刚体绕定轴转动的动能定理—— 合力矩功的效果
dA Md d 1 J 2 (刚体绕定轴转动动能定理的微分形式)
2
A
2 Md
1

1 2
J22

1 2
Hale Waihona Puke J12 刚体的重力势能 Ep mghC
(刚体绕定轴转动的动能定理)
LZ rimiv(i 绕定轴的转动)

LO'zk r mv LO
z
显然,结论与O’在 轴上的位置无关.
质点系:Lz
k

(ri

mivi
)
O r

Lzk
i
(ri mivi() 指出各部分的含义) O'
r' A
v
i
Lz rimiv i sin i M zdt dLz(针对刚体进行讨论)

2

(J0 (J0

2mr12 2mr22
) )
1
r1 r2

系统机械能的变化
Ek

1 2
(
J
0
2mr22 )22

1 2
(
J
0
2mr12 )12

1 2
(
J
0

2mr12
)12
(
J J
0 0

2mr12 2mr22
1)
非保守内力作正功,机械能增加。
3.5.3 角动量守恒定律在工程技术上的应用 陀螺仪与导航
§3.5 刚体的角动量定理与角动量守恒定律
主要内容:
1. 刚体绕定轴转动的角动量定理 2. 角动量守恒定律 3. 角动量守恒定律在工程技术上的应用
3.5.1 刚体绕定轴转动的角动量定理
质点系的角动量定理和角动量守恒定律
1. 质点系的角动量
质点系对参考点O 的角动量
LO


LO i

ri
i
含有刚体的力学系统的机械能
ri2mii Jii J
当 A外 + A非保内 = 0 时,有
i
i
E Ek Ep 恒量
定轴转动刚体的机械能:
质点系的角动量定 理 M zdt
M外dt dL (微分形式) 质点系动量矩守恒定律


E
dLz

1 2
t2
变形体绕某轴转动时,则变形体对该轴的动量矩
Lz rimivi ri2mii Jii C
i
i
i
m
r1 r2

演示
Mz 0
角动量守恒时,J变大,则角速度变小;J变小,则角速度变大。
动量矩守恒举例
花样滑冰 跳水 芭蕾舞等通过改变身体姿态(转动惯量)来改变转速
猫习惯于在阳台上睡觉,因而从阳台上掉下来的事情时有发生。长期的观 察表明猫从高层楼房的阳台掉到楼外的人行道上时,受伤的程度将随高度 的增加而减少,据报导有只猫从32层楼掉下来也仅仅只有胸腔和一颗牙齿
有轻微的损伤。为什么会这样呢?
在非定轴转动的情况下,只要作用于物体的外力对过质 心轴的合外力矩为零,则对该轴的角动量保持不变。
分析人和转盘组成的系统当双臂由r1变为r2后,系统转动惯 量、转动角速度和机械能的变化情况。
由角动量守恒,有
m
(J0 2mr12 )1 (J0 2mr22 )2
质点系所受合外力矩的冲量矩等于质点系角动量的增量
说明 质点系的内力矩不能改变质点系的角动量
3. 质点系动量矩守恒定律


对质点系 M外 0 dL 0
投影形式,以 z 轴为例,如
L 常矢量
Mz 0
LZ 常量
4. 质点系角动量在 z 轴的投影(关于 z 轴角动量)
4. 质点系角动量在 z 轴的投影(关于 z 轴角动量)
mivi

i
i
m1
m2 m3
v2 v4
v3
v1 m4
(所有质点的角动量之和)
O
2. 质点系的角动量定理





Midt dLi Midt dLi M外dt dL 微分形式
t2
t1
M外
dt

L2 L1
dL
i

L2

L1

i
L
积分形式
M zdt dLz
演示
尾桨的设置:直升机发动后机身要在旋翼旋转相反方向旋 转,产生一个向下的角动量。为了不让机身作这样的反向 旋转,在机身尾部安装一个尾桨,尾桨的旋转在水平面内 产生了一个推力,以平衡单旋翼所产生的机身扭转作用。
对转螺旋桨的设置:双旋翼直升机则无需尾桨,它在直立 轴上安装了一对对转螺旋桨,即在同轴心的内外两轴上安 装了一对转向相反的螺旋桨。工作时它们转向相反,保持 系统的总角动量仍然为零。
M J
t2
t1
Mz
dt

2 1
dJ


J2

J1(角动量定理积分形式)
z
ri
v
Pmi
z
定轴转动刚体所受合外力矩的 冲量矩等于其角动量的增量
O r
3. 刚体定轴转动的角动量守恒定律
Mz 0
dLz 0
Jω 常量
O' r' A
v
讨论:质点系角动量守恒 M zdt dLz
i
刚体定轴转动的角动量定理和角动量守恒定律
1. 刚体定轴转动的角动量
Lz rimiv i sin i rimiv i ri2mi
i
i
i

Lz J (所有质元对Z轴的角动量之和)
2. 刚体定轴转动的角动量定理
O
Mzdt dLz dJ
角动量定理 微分形式
陀螺仪:能够绕其对称轴高速 旋转的厚重的对称刚体。
支架S
外环
陀螺G 内环
陀螺仪的特点:具有轴对称性和 绕对称轴有较大的转动惯量。
演示
陀螺仪的定向特性:由于不受外力矩作用,陀螺角动量的 大小和方向都保持不变;无论怎样改变框架的方向,都不 能使陀螺仪转轴在空间的取向发生变化。
直升机螺旋桨的设置
LO'
r'mv
(O'O r ) m(v //
v)
z
v //
v
LO'z

?


LO' k [(O'O r ) m(v // v )] k

[r

mv
]

k
O rm
O' r' A
v
若质点作平面运动,z 轴垂直运动平面,则
相关文档
最新文档