大学物理 第3章刚体力学基础(完全版)

合集下载

第三章刚体力学基础

第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。

大学物理第三章刚体力学

大学物理第三章刚体力学

三维
dm dm dV :质量体密度
(2) 决定刚体转动惯量的因素
① 与刚体的总质量m有关
② 与转轴的位置有关
例题2. 求长为L、质量为m的均匀细棒AB的转动惯量.
(1) 对于通过棒的一端与棒垂直的轴;
(2) 对于通过棒的中心与棒垂直的轴.
J r 2dm
解:设 为单位长度的质量, m L ,则: dm dx

(1)
受力分析; 对于质点:牛顿第二定律
F
ma

要 (2) 列方程: 对于刚体:定轴转动定律 M J

线量与角量的关系:at R
(3) 解方程.
单选题 25分
4. 一轻绳跨过一轴承光滑的定滑轮,滑轮视为圆盘,绳的两端
分别悬有质量为m1和m2的物体,且m1<m2. 设滑轮的质量为M, 半径为R,绳与轮之间无相对滑动,则滑轮两侧绳中张力的大小
(1)求角加速度和从制动开始到停止转动飞轮转过的圈数;
(2)求从制动开始后 t =10s 时飞轮的角速度;
(3)设飞轮半径为0.5m,求在t =10s时飞轮边缘上一点的线速度和切
向及法向加速度.
解:(1)
已知0
2
1800 60
t 0 t
60 rad/s;t 20s时,t t 0 3 rad/s2
A 一定为零
B 不一定为零 C 一定不为零
提交
F
F
Fi 0 , M i 0
F
F
Fi 0 , M i 0
结论: 一个刚体所受合外力为零,其所受合外力矩不一定为零
3.2.2 定轴转动定律 转动惯量
1. 定轴转动定律
取刚上切a体式向it 内两:riF任F端iit 一同f质f乘iitF元以it irm,mif再iitiaa它i求it 所和m受ir:i 合 外力为Fo iz,ri f内i mf力iit 为Fit fFii:r

第三章+刚体力学基础

第三章+刚体力学基础
定轴转动刚体的角坐标。
θ角的正负规定:定轴转动刚体转动的方向和z 轴成右手螺旋时,θ角为正,否则θ角为负。
4、定轴转动刚体运动的描述 ①运动学方程: (t), 即:角坐标随时间的变化规律。
②描述刚体整体运动的物理量——角量,包括:角位移, 角速度,角加速度。
角位移 :定轴转动刚体在 t时间内角坐标的增量 。
任意质元的角位移 是相同的——是一整体运动的量。
面对z 轴观察:逆时针转动, 0 ;反之, 0。
单位: rad
角速度ω:在 t t t这一过程中,
(t)
lim


d


t0 t dt
即:瞬时角速度等于角坐标对时间的导数。
面对z轴观察逆时针转动时: 0;反之, 0。
②刚体上任意质元的位置矢量不同,相差一恒矢量,但
各质元的速度和加速度却相同。
rj ri rij O
rj


rij
r 根据刚体平动特点

drj dt

dri dt
vj
ijv为i , 恒矢dd2t量r2j

d 2ri dt 2
ri
a j

ai
刚体内任何一点的运动就可代表整个刚体的运动
小结:
刚体上各质点的位置、线速度、加速度一般不同, 但角量(角位移、角速度、角加速度)都相同
描述刚体的转动用角量最方便。
角量与刚体上各质点具体位置 无关
角坐标
角位移
d
dt


d
dt

d 2
dt 2



d
dt
v r an r 2 a r

大学物理教程课件讲义刚体力学基础

大学物理教程课件讲义刚体力学基础
图3.13 例3.4图
3.2 刚体的定轴转动定律
例3.5 一根长为l,质 量为m的均匀细杆,可绕通过 其一端且与杆垂直的光滑水 平轴转动,如图3.14所示, 将杆由水平位置静止释放, 求它下摆到角度为θ 时
的角加速度和角速度。
图3.14 例3.5图
3.2 刚体的定轴转动定律
3.3 刚体定轴转动的角动量定理 角动量守恒定律
3.4 刚体定轴转动的动能定理
3.4.5
1.刚体定轴转动的功能原理
如果刚体在定轴转动中除受到外力矩外,还受到 保守力矩的作用,而在刚体的定轴转动中,涉及的势 能主要是重力势能。所以,保守力只考虑重力,当系 统取地球和刚体时,式(3-22) 可写为
3.4 刚体定轴转动的动能定理
3.4 刚体定轴转动的动能定理
3.2 刚体的定轴转动定律
图3.12 平行轴定理
3.2 刚体的定轴转动定律
以上例子是根据转动惯量的定义式(3-5)计算规则几 何形状的刚体的转动惯量,对于几何形状较复杂的刚体通 常要用实验测定。表3.1列出几种几何形状简单、规则、密 度均匀的物体对通过质心的不同转轴的转动惯量。
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
3.2.3 力对转轴的力矩
图3.9 转动定律
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
由转动定律的表达式M=Jβ可以看出,在相同的外力矩作 用下,刚体的转动惯量J越大,刚体所获得的角加速度β越小, 则刚体的转动状态不易改变;刚体的转动惯量J越小,刚体所获 得的角加速度β越大,刚体的转动状态容易发生变化。转动惯 量J是和质量m相对应的物理量,物体的质量m是质点的平动惯性 的量度,而刚体的转动惯量J是刚体转动惯性的量度。

大学物理第3章-刚体力学基础

大学物理第3章-刚体力学基础

2
FT2
(mA mC 2)mB g mA mB mC 2
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
例6、一个质量为M、半径为R 的定滑轮(当作均匀圆盘)上面 绕有细绳,绳的一端固定在滑轮 边上,另一端挂一质量为m的物 体而下垂。忽略轴处摩擦,求物 mg 体m由静止下落高度h时的速度 和此时滑轮的角速度。
1.刚体 §3.1 刚体运动概述
内部任意两点的距离在运动过程中始终保持不变 的物体,即运动过程中不发生形变的物体。 ➢ 刚体是实际物体的一种理想的模型 ➢ 刚体可视为由无限多个彼此间距离保持不变的质 元组成的质点系。
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
2.刚体的运动形式
刚体的任意运动都可视为某一点的平动和绕通过 该点的轴线的转动
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
k
3
t3
3 400π 1503
rad s-4
103 rad s-4
由此得
1 103 t3
3
由角速度的定义 d,得转子在150s内转过的角度为
dt
150 1 103 t3dt 1687.5102 rad 03
因而转子在这一段时间内转过的圈数为
由角加速度的定义,有
d kt 2
dt
分离变量并积分,有
d
t kt 2dt
0
0
t 时刻转子的角速度为
1 kt3
3
当t =150s,转子的角速度为 2π 12000 rad s-1 400πrad s-1
60
则有
k
3t3
3 400π 1503
rad s-4

大学物理第三章刚体力学基础习题答案

大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma

g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

大学物理 第3章刚体力学基础(完全版)课件

大学物理 第3章刚体力学基础(完全版)课件

•线位移和角位移的关系
刚体转过 d
刚体上的一点位移 ds
dsrd
学习交流PPT
r ds d
o
x
8
•速度与角速度之间的关系
将 dsrd式两边同除 dt
ds r d dt dt
r
r
•加速度与角加速度之间的关系
将质点的加速 度可分解为切向加速 度和法向加速度.
a
o
ran
at
学习交流PPT
9

a
d dt
an
2 r
a
d dt
r
d
dt
r
an
2 r
(r )2 r2
r
•若角加速度 =c(恒量),则有
a
o
ran
a
o t
ot
1t2
2
2 -o2 2
学习交流PPT
10
§5-2 刚体的定轴转动
一.刚体的角动量
刚体的角动量=刚体上各个质点的角动量之和。
设刚体以角速度 绕固定轴z转动(见图5-2),质量
为Δmi的质点对o点的角动量为
对时间 t 的二次导数。
单位:弧度/秒2,rad/s2, s-2 方向:角速度变化的方向。
0
0
学习交流PPT
7
对于刚体转动而言,可用角位移、角速度、角 加速度来描写,但对于刚体上的某一点来讲是作曲线 运动的,可用位移、速度、加速度来描写。那么描写 平动的线量与描写转动的角量之间有什么关系呢?
2 线量与角量之间的关系

(3)均质圆盘(m,R)绕中心轴转
动时,可将圆盘划分为若干个半
径r、宽dr的圆环积分 :
Jc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中: J=Δmi ri2
称为刚体对z轴的转动惯量。
o ri i
mi
实用文档
图5-2
11
刚体对z轴的角动量:
Lz= J (5-1)
显然,刚体的角动量的方向
与角速度的方向相同,沿z轴
方向(见图5-2),故也称为刚体对 固定轴z的角动量。
问题:为何动量的概念对刚体 已失去意义?
Z
L
o ri i
mi
图5-2
3
2
于是得 M-4g
J 3R
o
由= o+ t = 0得
t -o 3RO 4g
又由2-o2=2 ,
dr r
水平桌面
图5-11
所以停下来前转过的圈数为
N 2-2o2 1 36 o2R g
实用文档
33
§5-4 定轴转动的角动量守恒定律
定轴转动方程:
MdLd(J)
dt dt
tt1 2M d J J 1 2 1 t2d (J )J2 2-J1 1(5-8)
解 由 M=J , = o+t
有外力矩时,
20-M20r==JJ1,1,1=1=/t/1t1(因(因o=o=00)) (1)
撤去外力矩时,
-Mr=J2 , 2=- /t2
(2)
代入t1=10s , t2=100s , =(100×2)/60=10.5rad/s,
解式(1)、(2)得
J=17.3kg.m2 。
第5 章
Dynamics of Rigid Body
刚体力学基础
(6)
实用文档
1
本章的主要内容是研究刚体的转动,尤其是定轴 转动。
核心内容: • 定轴转动的转动定理
• 刚体的转动惯量 • 定轴转动的角动量守恒
• 定轴转动的功能原理 这些内容同学们最不熟悉,请同学们先预习。
实用文档
2
刚体——力学中物体的一种理想模型。 刚体:运动中形状和大小都保持不变的物体。
0
0
实用文档
7
对于刚体转动而言,可用角位移、角速度、角 加速度来描写,但对于刚体上的某一点来讲是作曲线 运动的,可用位移、速度、加速度来描写。那么描写 平动的线量与描写转动的角量之间有什么关系呢?
2 线量与角量之间的关系
•线位移和角位移的关系
刚体转过 d
刚体上的一点位移 ds
dsrd
实用文档
r
ds
P=0
实用文档
12
二.刚体定轴转动定理
设有一质点系, 第i个质点的
位矢为 ri , 外力为 Fi , 内力为 fij , j( i j )
按质点角动量定理(4-11)式,有
mi:r i F i r i j(i j)f ij d (r i d m it i)
对各质点求和,并注意到
(ri fij)0
实用文档
19
二.转动惯量的计算
(1)质量离散分布刚体
J=Δmi ri2
(5-5)
即:刚体的转动惯量等于刚体上各质点的质量乘
以它到转轴距离的平方的总和。
(2)质量连续分布刚体
J r2dm (5-6)
式中: r为刚体上的质元dm到转轴的距离。
实用文档
20
三.平行轴定理
Jo=Jc+Md2
(5-7)
a
o
ran
a
o t
ot
1t2
2
2-o22
实用文档
10
§5-2 刚体的定轴转动
一.刚体的角动量
刚体的角动量=刚体上各个质点的角动量之和。
设刚体以角速度 绕固定轴z转动(见图5-2),质量为
Δmi的质点对o点的角动量为
Z
Li=Δmiiri=Δmi ri2
L
刚体对z轴的角动量就是
Lz=(Δmi ri2) =J
度转动。现将盘置于粗糙的水平桌面上,摩擦系数 为µ,求圆盘经多少时间、转几圈将停下来?
解 将圆盘分为无限多个半径为r、宽为dr的圆环, 用积分计算出摩擦力矩。
M
R
-rg
m
0
R2
2rdr
o
- 2 mgR
3
dr r
J 1 mR2 2
水平桌面
实用文档
图5-11
32
M- 2 mgR, J 1 mR2
处理办法:
对平动的物体,分析受力,按照 F m a 列方程。 对转动的刚体,分析力矩,按照 MJ列方程。
补加转动与平动的关联方程
联立求解各方程。
实用文档
29
例题5-6 一根质量为m、长为l的均匀细棒AB,可 绕一水平光滑轴o在竖直平面内转动,Ao= l/3。今使
棒从水平位置由静止开始转动,求棒转过角 时的角

(3)均质圆盘(m,R)绕中心轴转 动时,可将圆盘划分为若干个半 径r、宽dr的圆环积分 :
Jc
R
r2
m
0 R
2
2rdr
1 mR 2 2
实用文档
R
dm
r dr
图5-7
25
例题5-3 以20N.m的恒力矩作用在有固定轴的转 轮上,在10s内该轮的转速均匀地由零增大到 100rev/min。此时撤去该力矩,转轮经100s而停止。试 推算此转轮对该轴的转动惯量。
积分得
记住!
l
Jc
2 x 2 m dx 1 ml 2
-l l
12
C dm o x dx x
2
若棒绕一端o转动,由平行 轴定理, 则转动惯量为
图5-6 o
Jo
1 ml2m( l
12
2
)2
1 3
ml
2
实用文档
24
(2)均质细圆环(m, R)绕中心轴转动时,其转动 惯量为
Jc
R2dm mR2
J
J是刚体转动惯性大小的量度
注意: 1 改变刚体转动状态,产生角加速度的原因是
力矩,而不是力!
如果说:作用于刚体的力越大,则刚体的角加速
度一定大,则错。
实用文档
17
2 M M J J为 瞬 间作用规律。
一旦 M0,立刻 0,匀角速度转动。
3
M和
J,均对同一转轴而言。
4 M代表作用于刚体的合外力矩,M M外
上式的物理意义是:合外力矩的冲量(冲量矩)等于 物体角动量的增量。
若物体所受的合外力矩为零(即M=0)时,则
J =常量
(5-9)
这表明:当合外力矩为零时,物体的角动量将保持
不变,这就是定轴转动的实用角文档动量守恒定律。
34
系统角动量守恒定律:
当系统所受的合外力力矩为零时,系统的总角动量 的矢量和就保持不变。
d
o
x
8
•速度与角速度之间的关系
将 dsrd式两边同除 dt
ds r d dt dt
r r
•加速度与角加速度之间的关系
将质点的加速 度可分解为切向加速 度和法向加速度.
a
o
ran
at
实用文档
9

d a dt
2 an r
a
d dt
r
d
dt
r
an
2 r
(r )2 r2
r
•若角加速度 =c(恒量),则有
显然它也适用于定轴转动刚体这样的质点系。
实用文档
14
M
dL
dt
(5-2)
上式是一矢量式, 它沿通过定点的固定轴z方
向上的分量式为
Mz
dLz dt
d( J )
dt
(5-3)
(Lz=J)
上式称为物体定轴转动方程。
对定轴转动的刚体, J为常量, d /dt=, 故式(6-16)
又可写成
M=J
(5-4)
如果刚体在运动中,刚体内任何两点的连线在空间 的指向始终保持平行,这样的运动就称为平动。
在平动时,刚体内各质点的运动状态完全相同,因此
平动刚体可视为质点。通常是用刚体质心的运动来
代表整个刚体的平动。 比如:手捧一本书,围绕某点转一圈,书在平动
还是转动?
实用文档
4
如果刚体内的各个质点都绕同一直线(转轴)作圆 周运动,这种运动便称为转动。如果转轴是固定不动 的,就称为定轴转动。
0 特别强调:系统所受合外力为零,M外不一定
一对力偶产生的力矩不为零。
以上内容的学习要点:掌握刚体定轴转
动定律及用隔离体法求解(刚体+质点)系统问
题的方法。
实用文档
18
§5-3 转动惯量 一.转动惯量的物理意义
动量: p=m 角动量: L=J
质量m—物体平动惯性大小的量度。 转动惯量J—物体转动惯性大小的量度。
对m:
mg-T=ma
对柱: TR=J
M •R
T
m
a=R 解得 =2mg/[(2m+M)R],
T=Mmg/(2m+M)。 实用文档
mg 图5-8
27
例题5-5 两匀质圆盘可绕水平光滑轴转动,质量
m1=24kg, m2=5kg。一轻绳缠绕于盘m1上,另一端 通过盘m2后挂有m=10kg的物体。求物体m由静止开 始下落h=0.5m时,物体m的速度及 绳中的张力。
dt
又因 d d d d 3g cos dt d dt d 2l
d 3gcosd
0
0 2l
完成积分得 3gsin
l
A
o
C
讨论: (1)当=0时, =3g/2l, =0 ; mg (2)当=90°时, =0, 3 g 图5-10
l
实用文档
B
31
相关文档
最新文档