2020年六年级上册数学按比例分配练习题
小学数学六年级上册按比例分配应用题了练习2

青岛版小学数学六年级上册
按比例分配应用题练习2
1.一个长方形的周长是360为米,长与宽的比是4:2,这个长方形的长和宽各是多少?
2.有840吨粮食,分给两个运输队运出去。
甲运输队有载重5吨的汽车12辆,乙运输队有载重3吨的汽车15辆,按两个队的运输能力分配,甲乙两运输队各应运粮食多少吨?
3.甲乙丙三个班人数的和是420人,甲班和乙班的比是2:3,乙班和丙班的比是4:5,甲乙丙三个班各是多少人?
4.甲乙丙三个班的人数平均是25人,甲乙丙三个班人数的比是6:5:4,甲乙丙三个班各有多少人?
5.一个长方形的周长是28米,长与宽的比是4:3,这个长方形的面积是多少平方米?
6.长方体的长、宽、高的比是5:3:1,棱长之和是144米,这个长方体的体积是多少立方米?
7.三个人的平均年龄是40岁,这三个人年龄的比是2:5:3,最小的年龄是多少岁?
8.两个生产小组,甲组有7人,乙组有9人,要生产1600套同样的玩具,按人数分配生产任务,甲乙两组各应生产玩具多少套?
9.三个煤炭厂内共有煤炭1400万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂与丙厂煤炭重量的比是6:7,三个煤炭厂各存煤炭多少万千克?
10.一个草坪的周长是360米,长与宽的比是7:5,这个草坪的面积是多少平方米?
11.甲乙丙的平均数是7.2,它们的比是4:2:3,甲乙丙三个数各是多少?
12. 甲和乙的身高比是2:3,乙和丙的身高比是4:5,甲和丙的身高比是多少?
13.甲乙丙三个班的平均人数是60,这三个班人数的比是2:3:5.这三个班人数各是多少?。
【奥数题】人教版小学数学六年级上册奥数思维拓展:按比分配问题(试题)含答案与解析

奥数思维拓展:按比分配问题一、填空题1.我国国旗法规定,国旗长和宽的比是3∶2,一面国旗的宽是1.28米,长应是( )米。
2.过年了,熊猫阿宝表演踩高跷。
阿宝站在高跷上,阿宝的身高只占他和高跷总高度的14。
阿宝表演时不小心把两只高跷各弄断20dm的一截,这时阿宝站在高跷上,他的身高占总高度的13。
开始时阿宝和高跷的总高度是( )dm。
3.甲、乙两个工程队分别负责两项工程。
晴天,甲完成工程需要10天,乙完成工程需要16天;雨天,甲和乙的工作效率分别是晴天时的30%和80%。
实际情况是两队同时开工、同时完工。
那么在施工期间,下雨的天数是( )天。
4.将一堆糖果全部分给甲、乙、丙三个小朋友。
原计划甲、乙、丙三人所得糖果数的比为5:4:3。
实际上,甲、乙、丙三人所得糖果数的比为7:6:5,其中有一位小朋友比原计划多得了15块糖果。
那么这位小朋友是( )(填“甲”、“乙”或“丙”),他实际所得的糖果数为( )块。
5.袋子里红球与白球的数量之比是19:13。
放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11。
已知放入的红球比白球少80只。
那么原来袋子里共有( )只球。
二、解答题6.一个容器内注满了水。
将大、中、小三个铁球这样操作:第一次,沉入小球;第二次,取出小球,沉入中球;第三次,取出中球,沉入大球。
已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍。
求小、中、大三球的体积比。
7.一个水箱,用甲、乙、丙三个水管往里注水。
若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满。
又知,乙管每分钟注水量是甲管每分钟注水量的2倍。
则该水箱最多可容纳多少吨水?8.一批零件平均分给甲、乙两人同时加工,两人工作5小时,共完成这批零件的2。
已知3甲与乙的工作效率之比是5:3,那么乙还要几小时才能完成分配的任务?9.甲、乙两项工程分别由一、二队来完成。
六年级上册数学按比例分配应用题专项作业(2)

类型三:已知A + B = 和,未知A :B = 比,按比例分配1)A + B = 220, A÷B = 1.2,A、B各多少?
2)学校把种70棵树的任务按人数分配给六年
级三个班,一班46人,二班44人,三班50人,
三个班各种多少棵树?
3)畜牧场鸡、鸭、鹅一共有380只,鸡的只数
与鸭的比是3:2 ,鸭的只数与鸡的比也是3:2,
问:鸡、鸭、鹅各多少只?
4)有牛和羊一共230头,牛的头数的2
5
与羊
的3
4
一样多,牛和羊各多少头?
5)一个等腰三角形,顶角与底角的比是3:1 这
个三角形的顶角是多少度?
6)有三位朋友一起拼车,按路程分摊路费,第
一位朋友坐到全程的
1
3
A地下车,第二位朋友
坐到全程的
3
4
B地下车,第三位朋友坐到终点
C地。
三们朋友共付车费57元,问三位朋友各
出多少元?
7)老李一家4口人和老王家3口人一起(AA制)
到餐厅吃饭,共花费175元。
老李、老王各出
多少元?
8)一个块长方形地,长边靠墙。
现在要用篱笆
把另外三边围起来种菜,共用篱笆18米,长与
宽的比是5:2,这块长方形地的面积是多少平方
米?
类型四:已知A - B = 差,已知A :B = 比,求A或B
9)A - B = 120, A :B = 2:5,A、B各多少?10)甲数减去乙数差是56,甲数与乙数的比是5:2,甲数乙数各是多少?。
北师大版六年级数学上册第六单元:按比例分配问题“进阶版”专项练习(原卷版+解析)

18.一辆汽车从甲地开往乙地,第一天行驶路程与未行驶路程的比是2∶5,第二天行驶了210千米正好到达两地的中点,还需要行驶多少千米就可以到达乙地?
19.为创建文明洛宁,政府准备在某公园旁修建一条混凝土的景观路,长500米,宽4米,让我们一起经历经费预算的全过程,解决其中的实际问题。
【点睛】本题考查了利用分数乘法及按比例分配解决问题,需准确分析题目中的数量关系。
6.解答。
(1)用84厘米长的铁丝恰好围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?
(2)用84厘米长的铁丝恰好围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?
6.解答。
(1)用84厘米长的铁丝恰好围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?
(2)用84厘米长的铁丝恰好围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?
7.用一根480厘米的铁丝制作成一个长方体框架,长、宽、高的比是 ,求这个长方体的体积是多少立方厘米?
又已知按4∶1的面积比种小白菜和秋葵,则种小白菜的面积占剩下面积的 ,把剩下的面积看作单位“1”,根据分数乘法的意义,求出种小白菜的面积。
【详解】种小白菜和秋葵的面积之和:
900×(1- )
=900×
=600(平方米)种小白菜的面ຫໍສະໝຸດ :600×=600×
=480(平方米)
答:爷爷种了480平方米的小白菜。
11.东方大学的劳动基地有1200平方米的菜地,其中的 种植黄瓜,剩余的菜地按照3∶7分别种植茄子和西红柿,那么有多少平方米的土地种植西红柿?
北师大版六年级数学上册第六单元:按比例分配问题“拓展版”专项练习(原卷版+解析)

2023-2024学年六年级数学上册典型例题系列第六单元:按比例分配问题“拓展版”专项练习1.星期天张宁帮助王老师打一份稿件,经过一段时间,已经完成的与未完成的比是1∶3,再打30分钟,正好完成全部任务的一半,如果张明同学的打字速2023-2024学年六年级数学上册典型例题系列第六单元:按比例分配问题“拓展版”专项练习1.星期天张宁帮助王老师打一份稿件,经过一段时间,已经完成的与未完成的比是1∶3,再打30分钟,正好完成全部任务的一半,如果张明同学的打字速【详解】110÷(6+5)=110÷11=10(人)10×6=60(人)10×5=50(人)解:设参加这次消防知识大赛的男生有5x人,女生有4x人。
(5x-60)∶(4x-50)=4∶3(4x-50)×4=(5x-60)×316x-200=15x-18016x-200-15x+200=15x-180-15x+200x=2020×5+20×4=100+80=180(人)答:参加这次消防知识大赛的六年级学生共180人。
【点睛】关键是理解比的意义,用比例解决问题只要比例两边的比统一即可。
3.某工厂三个车间共有520名工人,第一、二车间人数的比是2∶3,第三车间比第一车间多30名工人。
第三车间有多少名工人?【答案】170名【分析】已知三个车间共有工人520名,第一、二车间人数的比是2∶3;第三车间比第一车间多30名工人,用三个车间总人数-30名后,三个车间的人数比就是2∶2∶3,用三个车间人数减去30后的人数平均分成了(2+2+3)份,用三个车间人数减去30后的人数除以(2+2+3)份,求出一份有多少名工人,再乘2,求出第一车间有多少名工人,再加上30,即可求出第三车间有多少名工人。
【详解】520-30=490(名)490÷(2+2+3)=490÷(4+3)=490÷710.星辉灯具厂接到一批灯具订单,第一周生产的灯具数量与这批订单总数量的比是2∶7。
六年级数学上册《按比分配》公式+练习题

总份数=a+b;每一份=总数量÷(a+b);
甲数=总数量÷(a+b)×a; 乙数=总数量÷(a+b)×b
类型2:已知甲数,甲数与乙数的比是a:b,求甲、乙两数之和是多少?
甲、乙两数之和=甲数÷a×(a+b)乙数=甲数÷a×b
六年级数学上册
六年级数学上册
《按比分配》公式+练习题
《按比例分配》应用题
4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?
解:1+100=1015656÷101=56(千克)
答:需石灰56千克。
5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?
2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?
解:1+100=101
5050÷101=50(千克)
答:需要盐水50千克。
3、山羊和绵羊的头数比是2∶5,山羊40头。山羊和绵羊一共有多少头?
解:40÷2=20(头)
20×(5+2)=140(头)
答:山羊和绵羊一共有140头。
《按比分配》公式+练习题
《按比例分配》应用题
1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?
解:4+5+6=15
300÷15=20
20×4=80(本),20×5=100(本),20×6=120(本)
答:四年级得80本,五年级得100本,六年级得120本。
六年级数学上册
最新2019-2020年人教版六年级上册第四单元 专题 按比例分配
专题 按比例分配一、填空1、公鸡与母鸡的只数比是2∶9,也就是公鸡占总只数的) ()(,母鸡占总只数的) () (,公鸡的只数是母鸡的) () (,母鸡的只数是公鸡的) ()(。
2、一批货物按2∶3∶4分配给甲、乙、丙三个队去运,甲队运这批货物的) ()(,丙队比乙队多运这批货物的) ()(。
3、甲数的52与乙数的74相等,甲、乙两数的最简比是( ).4、甲、乙两数的比是4∶5,甲数比乙数少( ),乙数比甲数多( ).5、甲数与乙数的比是3∶4,乙数与丙数的比是8∶11,甲数与丙数的比是( ):( ),如果甲数是66,丙数是( ).6水结成冰,体积增加91,水与冰的体积比是( ).7、一个直角三角形中两个锐角的度数比是4∶5,这两个锐角分别是( ) 度和( )度.8、甲数比乙数少51,甲数与乙数的最简整数比是( ). 9、一个长方体的棱长总和是48cm ,它的长、宽、高之比是3∶2∶1,这个长 方体的表面积是( )cm 2,体积是( )cm 3.10、甲数除以乙数的商是0. 4,那么甲数与乙数的最简比是( ).11、甲、乙两筐苹果各24千克,从甲筐取出4千克放入乙筐,这时乙筐里的苹果比甲筐多)()(. 12、王师傅3小时加工14个零件,李师傅4小时加工19个零件. 王师傅和李 师傅的工作效率之比是( ).一、按比例分配和例:有一块长方形的土地,测得周长为60米,. 长与宽的比是3︰2.求这块地的面积。
1、长方体的棱长总和为220厘米,已知长、宽、高的比为5︰4︰2.这个长方体的体积是多少立方厘米?2、一个等腰三角形的铁片,顶角和一个底角的度数的比是4:3,求这个等腰三角形的顶角和底角各是多少度?3、用36米长的篱笆围成一个长方形菜地,要求长与宽的比是5∶4,这块菜地的面积是多少平方米?4、已知A 、B 、C 三个数的比是2∶3∶5,这三个数的平均数是90,这三个数分别是多少 ?5、粮食局有三个汽车队,一队有9辆载重汽车,二队有8辆,三队有7辆,每辆载重量相同,有264吨粮食运往外地,按运输能力分配,各队应运粮食多少吨?6、小红和小明两人共做了38道数学题,小红的43和小明的65一样多,两人各做了多少道题?7、甲乙丙三个班的人数平均是25人,甲乙丙三个班人数的比是6:5:4,甲乙丙三个班各有多少人?8、一个直角三角形,两个锐角度数的比是1:4,这两个锐角各多少度?二、按比例分配差例:1、某校合唱队女生人数与男生人数的比是5:3,女生比男生多30人,合唱队一共有学生多少人?2、把一批图书按4:5:6分借给二、三、四三个班,已知二班比四班少分得48本。
六年级上册数学专项训练-按比例分配 苏教版
按比例分配专项训练按比例分配是指在日常生活生产中,常常需要把一定的数量按照一定的比例来进行分配,这种分配方法称为按比例分配。
它是比的概念的一种应用。
基本的解题方法是求出一份的数量:数量÷对应的份数=一份的数量。
也可以把比转化成所占的百分比或分数,再用乘法来计算。
已学过的平均分其实是按比例分配的一种特例。
【例题精讲】例1.一个长方体棱长总和为144厘米,长、宽、高的比是5∶3∶4,这个长方体的体积是多少立方厘米?解析:144厘米是4条长、4条宽和4条高的长度总和,所以对应的份数和应是4条长、4条宽和4条高的份数和,或者求出1条长、1条宽和1条高的数量,对应着(3+4+5)份数,求出一份的数量。
144÷4÷(5+3+4)=3(厘米)(3×5)×(3×3)×(3×4)=1620(立方厘米)或144÷(5×4+3×4+4×4)=3(厘米)(3×5)×(3×3)×(3×4)=1620(立方厘米)也可用乘法:144÷4×55+3+4= 15(厘米) 144÷4×35+3+4= 9(厘米) 144÷4×45+3+4=12(厘米) 15×9×12=1620(立方厘米) 答:略。
例2.某工厂男职工人数的52与女职工人数的43相等,已知全厂有职工460人,这个工厂男女职工各有多少人?解析:根据“男职工人数的52与女职工人数的43相等”,可以写出数量关系等式:4352⨯=⨯女职工人数男职工人数,从而求出男、女职工的人数比,转化为按比例分配的问题。
14352=⨯=⨯女职工人数男职工人数男职工人数:女职工人数=25:34=15:8 460÷(15+8)×15=300(人) 460÷(15+8)×8=160(人)答:略。
六年级数学按比分配应用题及答案
按比分配应用题及答案1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15300÷15=2020×4=80(本),20×5=100(本),20×6=120(本)答:四年级得80本,五年级得100本,六年级得120本。
2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=1015050÷101=50(千克)答:需要盐水50千克。
3、山羊和绵羊的头数比是2∶5,山羊40头。
山羊和绵羊一共有多少头?解:40÷2=20(头)20×(5+2)=140(头)答:山羊和绵羊一共有140头。
4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。
5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)200÷100=2(根)52×2=104(根)48×2=96(根)答:一班可得跳绳104根,二班可得跳绳96根。
6、一个分数,它的分子和分母的和是40,分子和分母的比是4∶6,这个分数是几分之几?解:4+6=1040÷10=44×4=166×4=24答:这个分数是24分之16。
7、一种药水是用药粉和水按1∶80配制成的。
⑴、40千克药粉,可配制成多少千克的药水?解:40×80=3200(千克)3200+40=3240(千克)答:40千克药粉,可配制成3240千克的药水。
⑵、60千克水,需要药粉多少千克?解:60÷80=0.75(千克)答:60千克水,需要药粉0.75千克。
比例应用题(同步练习)-2021-2022学年数学六年级上册
比例应用题基础练习一、按比例分配例1:一批化肥500吨,把其中的51留作库存,其余的按3:5分配给甲、乙两个生产队,甲、乙两个生产队各分到多少吨化肥?练习:甲、乙两辆汽车从相距720千米的A 、B 两地同时开出,相向而行,4小时后相遇。
已知甲、乙两车的速度比是4:5,那么这两辆车的速度各是多少?例2:红旗小学共有师生1081人,其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4,请问:红旗小学的老师、男生、女生各多少人?练习:512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排。
如果每次都按5:3的人数比来分,那么A 排有多少名士兵?二、化连比我们把两个数之间的比称为单比,多个数的比称为连比。
单比与连比之间可以相互转化。
如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?甲 乙 丙2 :3 甲:乙:丙=10:15:12 5 : 410 : 15 : 12例3:育才小学五年级学生分成三批去参观博物馆,第二批人数是第一批的54,第三批人数是第二批的32。
已知第一批的人数比第二、三批的总和少55人,请问:育才小学五年级一共有多少人?练习:萱萱家8月份共水费、电费、煤气费140元,其中煤气费是电费的169,水费与煤气费的比是1:3,萱萱家水费、电费、煤气费各是多少元?例4:甲、乙、丙三个人合买一台电视机,甲付钱的21等于乙付钱的31,等于丙付钱的73,已知丙比甲多付了120元,那么这台电视机多少钱?练习:A 、B 、C 三架飞机模型在空中停留了一段时间,A 在空中停留时间的32是B 的74,B 在空中停留时间的32又是C 的74,C 在空中的停留时间比A 多13分钟,那么B 在空中停留了多少时间?挑战极限:已知甲、乙、丙三个班的总人数之比为3:4:2,其中甲班男、女生人数之比为5:4,丙班男、女生人数之比为2:1,且三个班所有男生和所有女生的人数之比为13:14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按比例分配练习题
一、 填空:
1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)
()(。
2. 甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的
)()(。
3. 某班男生人数与女生人数的比是4
3,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数与总人数的比是( )。
4. 一本书,小明计划每天看7
2,这本书计划( )看完。
5. 一根绳长2米,把它平均剪成5段,每段长是
)()(米,每段是这根绳子的)()(。
6. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意
义是( )。
7. 一个正方形的周长是5
8米,它的面积是( )平方米。
8. 89吨大豆可榨油3
1吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
9. 甲数的32等于乙数的5
2,甲数与乙数的比是( )。
10. 把甲数的7
1给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
11. 甲数比乙数多
41,甲数与乙数比是( )。
乙数比甲数少)()(。
12. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。
13. 4 :5 = 24÷( )= ( ) :15
14. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量
占盐水的(—)。
15. 如果8A = 9B 那么B :A =( )
二、 选择(将正确答案的序号填在括号里)
1. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是( )
A 、2:7
B 、6:21
C 、4:14
2. 在盐水中,盐占盐水的10
1,盐和水的比是( )。
A 、1:8 B 、1:9 C 、 1:10 D 、1:11
3. 如果X =4
3Y ,那么Y :X =( )。
A 、1:43 B 、4
3:1 C 、3:4 D 、4:3 4. 一件工作,甲单独做12天完成,乙单独做18天完成。
甲乙效率的最简比是( )。
A 、 6:9
B 、 3:2
C 、 2:3
D 、 9:6
5. 一个三角形三个内角度数的比是6:2:1,这个三角形是( )。
A 、 直角三角形
B 、锐角三角形
C 、钝角三角形
D 、无法确定
6. 甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做( )。
A 、 480个
B 、400个
C 、80个
D 、40个
三、应用题
1. 建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少
吨?
2. 一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是3:8,这两种拖拉机
各有多少台?
3. 用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三
条边各是多少厘米?
4. 甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个数各是
多少?
5.乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?
6.一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?
7.一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多少平方米?
8.一种药水是用药物和水按3:400配制成的。
(1)要配制这种药水1612千克,需要药粉多少千克?
(2)用水60千克,需要药粉多少千克?
(3)用48千克药粉,可配制成多少千克的药水?
9.商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?
3,绿色球的个数与黄色球个数的比是4:5,10.纸箱里有红绿黄三色球,红色球的个数是绿色球的
4
已知绿色球与黄色球共81个,问三色球各有多少个?
1小时的路程,汽车要行多少小时?
11.飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4
2
12.配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
1,第二天栽了136棵,这时剩下的与已栽的棵数13.园林绿化队要栽一批树苗,第一天栽了总数的
5
的比是3:5。
这批树苗一共有多少棵?
16、学校买来一批书,共1000本,把这批书按3:4:5分给四、五、六三个年级,每个年级各分到多少本?
17、(1)果园里梨树与桃树的比是3:5,这个果园里共有果树40棵,梨树与桃树各多少棵?
(2)果园里梨树与桃树的比是3:5,已知桃树有40棵。
这个果园共有果树多少棵?
(3)果园里梨树与桃树的比是3:5,已知梨树比桃树少40棵,这个果园共有果树多少棵?
18、一个长方形的周长是40分米,它的长与宽的比是3:2,这个长方形的面积是多少?
19、小明在期末考试中数文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?
20、把一段长96厘米的铁丝做一个长方体框架,长方体的长宽高的比是5:4:3,这个长方体的长、宽、高分别是多少?
21、加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。
两个共同加工3小时,可以加工多少个零件?
22、工厂买来120吨生产原料,其中的分给一车间,其余的按3:5分给甲乙两个车间,甲乙两个车间各分到多少吨?
23、一种药水是用药粉和水按3:100配成的。
(1)要配制这种药水515千克,需要药粉多少千克?
(2)有水60千克,需要药粉多少千克?(3)用90千克的药粉,可配成多少千克的药水?
24、一杯盐水,盐与盐水的比为1:5,再加上16克盐后,盐与盐水的比为1:4,原来盐水有多少千克?
25、甲乙两地相距600千米,两车分别从两地相向同时出发,3小时后两车相遇,已知快车与慢车的速度比为11:9,快车与慢车的速度分别是多少?
26、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?
27、一班和二班的人数比为8:7,如果将一班的8名同学调到二班去,那么一班和二班的人数的比为4:5,求原来两班各有多少人?。