八年级上册全等三角形证明题题型归类训练
八年级数学上册三角形全等证明题专项练习

八年级数学上册三角形全等证明题专项练习1、如图,已知: AD是BC上的中线,且DF=DE.求证:BE∥CF.2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE ≌△CDF.3、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。
求证:AM是△ABC的中线。
4、已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DE F.5、如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。
求证:AE=AF6、如图:DF=CE,AD=BC,∠D=∠C。
求证:△AED≌△BFC。
7、如图:在△ABC中,BA=BC,D是AC的中点。
求证:BD⊥AC。
8、已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE BF.求证:AB CD∥.ADECBFM FE CB ADCBACMFEFED CBA9、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD10、如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.11、如图,已知AB =DC ,AC =DB ,BE =CE ,求证:AE =DE.12、如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .13、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C15、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB16、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE17、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DCDCBA FEA BC DP DACBACEDBABECD.3421DCBAABC DE F图918、如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.19、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA20. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
人教版数学八年级全等三角形证明题精选20题

三角形全等专题训练1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且∠B+∠D=180度,求证:AE=AD+BE2,已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
3,如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CFAEDCBDCABDCE 124,如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC 、CF ,求证:CA 是∠DCF 的平分线。
FDAC B5、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。
6、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。
求证:∠ACE=∠BDF 。
EGABCDEFO7. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。
求证:BF ⊥AC 。
8.已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥D 于F 。
求证:OE=OF 。
9.已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。
AB CDEFA BCD E F OO B AC D E10.已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。
求证:△AEF ≌△DBC 。
A BCDEF11.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.12.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.CBE D图1NMABC DEMN图2AC BEDN M 图313如图,已知AD 是△ABC 的中线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证:(1)AD 是∠BAC 的平分线;(2)AB=AC .14如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE⊥AD 交AB 于E .求证∠CDA =∠EDB .15在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .F A 1 2 E CDBCD12ABCDE16.如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由17如图,在△ABC中,AD是中线,BE交AD于F,且AE=EF,说明AC=BF的理由18如图,在△ABC中,∠ABC=100º,AM=AN,CN=CP,求∠MNP的度数19如图,已知∠BAC=90º,AD⊥BC, ∠1=∠2,EF⊥BC,FM⊥AC,说明FM=FD的理由20如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连结BD,AE,并延长AE交BD于F.求证:(1)△ACE≌△BCD(2)直线AE与BD互相垂直ABC D E F。
(完整版)八年级上册——全等三角形证明题题型归类训练

(完整版)八年级上册——全等三角形证明题题型归类训练-CAL-FENGHAI.-(YICAI)-Company One1《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C .求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAABEO FD3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .AFC BDEG2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AE4、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.ABC FD E5、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
证明题题型

《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AEAFCBDEGA BC FD E4、在△ABC中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。
8上全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:1CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
八年级上册数学全等三角形证明题

八年级上册数学全等三角形证明题一、全等三角形证明题1 20题及解析。
(一)题目1。
1. 题目。
已知:如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:AF = EF。
2. 解析。
证明:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG = ∠CDA(对顶角相等),DG = DA。
根据SAS(边角边)全等判定定理,可得△BDG≌△CDA。
所以BG = AC,∠G = ∠CAD。
又因为BE = AC,所以BG = BE。
所以∠G = ∠BEG。
因为∠BEG = ∠AEF(对顶角相等),所以∠AEF = ∠CAD。
所以AF = EF。
(二)题目2。
1. 题目。
如图,在△ABC和△DEF中,AB = DE,BE = CF,∠B = ∠DEF。
求证:AC = DF。
2. 解析。
因为BE = CF,所以BE + EC = CF+EC,即BC = EF。
在△ABC和△DEF中,AB = DE,∠B = ∠DEF,BC = EF。
根据SAS全等判定定理,可得△ABC≌△DEF。
所以AC = DF。
(三)题目3。
1. 题目。
已知:如图,AB = CD,AE = DF,CE = FB。
求证:AF = DE。
2. 解析。
因为CE = FB,所以CE + EF = FB + EF,即CF = BE。
在△AEB和△DFC中,AB = CD,AE = DF,BE = CF。
根据SSS(边边边)全等判定定理,可得△AEB≌△DFC。
所以∠B = ∠C。
在△ABF和△DCE中,AB = CD,∠B = ∠C,BF = CE。
根据SAS全等判定定理,可得△ABF≌△DCE。
所以AF = DE。
(四)题目4。
1. 题目。
如图,在Rt△ABC中,∠ACB = 90°,CA = CB,D是AC上一点,E在BC的延长线上,且AE = BD,BD的延长线与AE交于点F。
人教版八年级数学上册 第12章 全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF 和EF 。
8上全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又 EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:1CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AEAFCBDEGA FD E4、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
求证:(1)AM=AN ;(2)AM ⊥AN 。
FMNE1234题型4:连接法(构造全等三角形)1、已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证:AE =AF 。
2、如图,直线AD 与BC 相交于点O ,且AC=BD ,AD=BC .求证:CO=DO .DBAFEAO DC B3、如图 11-30,已知AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点.求证:AF ⊥CD.FEB4、在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.5、如图所示,BD=DC,DE ⊥BC,交∠BAC 的平分线于E ,EM ⊥AB,EN ⊥AC,求证:BM=CN6、如图,在△ABD 和△ACD 中,AB=AC ,∠B=∠C .求证:△ABD ≌△ACD .AC NEM BDDE CB AADCB题型5:全等+角平分线性质1、如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC2、已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于N ,判断PM 与PN 的关系.题型6:倍长中线(线段)造全等前言:要求证的两条线段AC 、BF 不在两个全等的三角形中,因此证AC=BF 困难,考虑能否通过辅助线把AC 、BF 转化到同一个三角形中,由AD 是中线,常采用中线倍长法,故延长AD 到G ,使DG=AD ,连BG ,再通过全等三角形和等线段代换即可证出。
1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BFA C EFP D ACM N2、已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF3、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.D CBA4、在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( )A、1<AB<29B、4<AB<24C、5<AB<19D、9<AB<195、已知:AD、AE分别是△ABC和△ABD的中线,且BA=BD,求证:AE=21ACCE6、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA7、已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAEABCDE8、如图23,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF. ⑴求证:BG=CF⑵请你判断BE+CF 与EF 的大小关系,并说明理由。
9、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+第 14 题图DF CBEA10、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.EDFCBA11、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //A D BC E交AE 于点F ,DF=AC.求证:AE 平分BACABFDEC题型7:截长补短1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:BC =AB +CD 。
2、如图,AD ∥BC ,点E 在线段AB 上,∠ADE=∠CDE ,∠DCE=∠ECB.求证:CD=AD+BC.3、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB=AC+CD.DCB A 124、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数D CB A5、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=ODDCBA6、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.7、如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BPCBAD O ECBA8、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PCBA9、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?题型8:角平分线上的点向角两边引垂线段1、如图,在四边形ABCD 中,BC >BA,AD =CD ,求证:∠BAD+∠C=180°C2、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补.为什么?3、如图,在△ABC 中,∠ABC=100°,∠ACB=20°,CE 平分∠ACB ,D 是AC 上一点,若∠CBD=20°,求∠ADE 的度数.DBEACNEB M A D图十一4321P A BC4、已知,AB >AD ,∠1=∠2,CD =BC 。
求证:∠ADC +∠B =180°。
图九21CBAD5、如图,在△ABC 中∠A BC,∠A CB 的外角平分线交P.求证:AP 是∠BAC 的角平分线6、如图,∠B=∠C=90°,AM 平分∠DAB,DM 平分∠ADC 求证:点M 为BC 的中点题型9:作平行线1、已知△ABC ,AB=AC ,E 、F 分别为AB 和AC 延长线上的点,且BE=CF ,EF 交BC 于G .求证:EG=GF .AFC GBE2、如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=1BE 题型10:延长角平分线的垂线段1、如图,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ECD .AF DCBE2、如图,△ABC 中,∠BAC=90度,AB=AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD=2CE .FE DCB A3、如图:∠BAC=90°,CE ⊥BE ,AB=AC ,BD 是∠ABC 的平分线,求证:BD=2ECB4、已知,如图34,△ABC 中,∠ABC=90º,AB=BC ,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE . CEBAD题型11:面积法1、如图所示,已知D 是等腰△ABC 底边BC 上的一点,它到两腰AB 、AC 的距离分别为DE 、DF,CM ⊥AB,垂足为M,请你探索一下线段DE 、DF 、CM 三者之间的数量关系, 并给予证明.E DCBAMF2、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是BC 上任一点,PE ⊥AB ,PF ⊥AC 垂足分别为E 、F ,求证:① PE+PF=CD PE – P F=CD.题型12:旋转型1、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。
求证:① △BCG ≌△DCE② BH ⊥DE2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE .3、(1)如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;FEDAB GP图1图2 F EDC ABGPFE D C AB G H(2)如图,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.4、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。