轴对称将军饮马问题

合集下载

轴对称中的动点问题:将军饮马

轴对称中的动点问题:将军饮马

轴对称中的动点问题【命题:严学荣 审核:明祥彬】将军饮马问题:如图所示,将军准备从A 点出发,想让马到一条笔直的河流上去饮水,然后再去B 地,那么走怎样的路线最短呢?【题型梳理】一、两点一线型(两定一动) 例1 如图,A 、B 两点在直线l 的异侧,点P 是l 上一动点,若AB =5,求P A +PB 的最小值.【变式训练】1.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小.2. 如图,A 、B 两点在直线l 的同侧,点P 是l 上一动点,若AB =5,求PA PB −的最大值.3.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA PB −的最大.l Alll二、一点两线型(一定两动) 例2 如图,点P 是∠MON 内的一点,分别在OM ,ON 上 作点A ,B .使△P AB 的周长最小【变式训练】1.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使P A 与点P 到射线ON 的距离之和最小.三、两点两线型(两定两动)例3 如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B .使四边形P AQB 的周长最小【变式训练】如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A 到B 的距离最短?【精讲精练】1.如图,在台球桌面ABCD 上,有白和黑两球分别位于M ,N 两点处,问:怎样撞击白球M ,使白球先撞击台边BC ,反弹后再去击中黑球N ?OONAO2.已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为cm.3.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD 最小时,∠PCD=°.4.如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为5.如图,在锐角△ABC中,AB=6,∠BAC=30°,∠BAC的平分线交BC于点D,M,N 分别是AD和AB上的动点,则BM+MN的最小值是.6.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,连接MB,若AB=8 cm,△MBC的周长是14 cm,(1)求BC的长(2)在直线MN上是否存在点P,使PA PC−的值最大,若存在,画出点P的位置,并求最大值,若不存在,说明理由.7.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,当BM+MN的值最小时,求AN.DA BCMMNCBA【能力提升】8.直线l 的同侧有两点A 、B ,在直线l 上求两点C 、D ,使得AC 、CD 、DB 的和最小,且CD 的长为定值1cm ,点D 在点C 的右侧.9.长方形OACB ,OA =3,OB =4,D 为边OB 的中点.若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,画出点E 、F 的位置;10.嘉贡七(2)班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO ),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,站在C 处的学生小明先拿桔子再拿糖果,然后回到C 处,请你在下图帮助他设计一条行走路线,使其所走的总路程最短?11.已知:如图,△ABC 中,AB =AC ,过点A 的直线MN ∥BC ,点P 是MN 上的任意点.求证:PB +PC≥2A B .lB。

轴对称的应用-将军饮马最短路径问题

轴对称的应用-将军饮马最短路径问题

QB、QB/,如图所示。
由轴对称的性质知
PB=PB/,QB=QB/
∴PA+PB=PA+PB/=AB/
QA+QB=QA+QB/
又∵AB/<QA+QB/(两点之间线段最短或三角形中两边之和
大于第三边)
∴PA+PB< QA+QB
即此时点P使得PA+PB的值最小
B
A P L
Q
B/
典型例题:
1.要在河边修建一个水泵,分别向张村、李 庄送水(如图),修在河边什么地方,可使 所用水管最短?
照镜子:物和像关 于镜面成抽对称, 镜面上的任意一点 到物和像对应点的 距离相等。
探索新知 5、通过以上学习和讨论,你知道海伦是怎样帮 助将军解决问题的了吗?
B A
l
P B′
6、为什么这样找到的点P,就能使得PA+PB最短 呢?你能尝试证明吗?
探究新知
证明:在直线L上任意取不同于点P的一点Q,连接QA、
2、如图,A,B 两点位于直线L
A
的两侧,你能
在直线L上找一
点P,使得点p
到A、B两点距
离之和最短吗?
图形 B
A
O
L
L P
B
语言描述
两点之间,线段最短。
直线外一点与直线上 所有点的连线中,垂 线段最短。
将直线异侧的两点A、 B直接连接,交直线L 于点P,此时PA+PB 最短。
任务驱动 启迪智慧
问题
李庄
张村


3.如图,等腰三角形ABC的底边BC长为4,面积是 12,腰AB的垂直平分线EF分别交AB,AC于点E、 F,若点D为底边BC的中点,点M为线段EF上一动 点,则 BDM的周长的最小值为( )

将军饮马模型

将军饮马模型

将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。

所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。

而最短距离是题眼,也就意味着归类这类的题目的理由。

比如题目经常会出现线段 a+b 这样的条件或者问题。

一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。

1.将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?•A•B模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。

一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。

A’B即为最短距离。

理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。

所以 PA+PB=PA’+PB。

这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。

例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。

已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。

(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小。

模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题 眼)。

一般做法:作点 P 关于 OA 和 OB 的对称点 P1、P2。

2将军饮马问题

2将军饮马问题

比较特殊的题型
例题3.∠OAB中有一点P,求在OA、OB上分别找一个点M,N,使 得PM+MN最短(题眼)。
根据前面总结的,首先肯定是作点P的 对称点,那么就面临第一个问题,点P 关于OA和OB的对称都要作吗?这个时 候就要明白,作对称的本质并不是对称 点,而是对称边。换句话说关于OA对 称式在对称线段PM,关于OB对称实际 上是在对称线段PN。那么对于这道题 目,显然PN显然是无用的,所以这道 题目就应该关于OA对称。接下里会面 临第二个问题,对称完连接谁?根据前 面的理论,应该找一个定点相连,这道 题目里面显然没有第二个定点可用。切 记不能直接与N相连,因为N点是个动 点。但是从另一个侧面可以知道这条线 段其实有无数条。但是最终要达到一个 要求连线最短。最后就会想到过P’作 OB垂线。则交点即为所求。
将军饮马最常见的三大模型
类型三
3. 如图,在∠OAB内有两点P、Q,在OA和OB各找一个点M、N, 使得四边形PMNQ周长最短(题眼)。 一般做法:题目中PQ距离 固定。所以只是求PM+MN+QN的最短距离。最终P’Q’+PQ即为所 求最短周长。M、N即为所求的点。 理由:作完对称后,由于 P’M=PM,Q’N=QN,所以 PM+MN+QN=P’M+MN+Q ’N。所以就化成了求P’到Q’ 的最短距离,所以相连即 可。
【点评】
本题考查了二次函数的综合运用, 涉及了顶点坐标的求解、 三角形的面积及轴对称 求最短路径的知识,解答本题的关键是熟练各个知识点,注意培养自己解综合题 的能力.
2.(2015•吉林市一模)如图,抛物线y=x2 +bx+c与x轴交于A (﹣1,0),B(3,0)两点. (1)求b、c的值; (2)P为抛 物线上的点,且满足S△PAB=8,求P点的坐标; (3)设抛物线 交y 轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. 【分析】(1)抛物线y=x2 +bx+c与x 轴的两个交点分别为A(﹣1,0),B (3,0),求得b,c值;(2)设点P 的坐标为(x,y),求得y值,分别代 入从而求得点P的坐标;(3)由AC长 为定值,要使△QAC的周长最小,只 需QA+QC最小.又能求得由几何知识 可知,Q是直线BC与对称轴x=1的交点, 再求得BC的直线,从而求得点Q的坐 标.

生活中的轴对称图形:将军饮马

生活中的轴对称图形:将军饮马
M
A
O
N
三、课堂练习
【精讲精练】
1.如图,在台球桌面ABCD上,有白和黑两球分别位于M,N两点处,问: 怎样撞击白球M,使白球先撞击台边BC,反弹后再去击中黑球N?
A
D
M
N
B
C
三、课堂练习
【精讲精练】 2. 已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点, D为AB的中点,则PD+PB的最小值为 cm.
将军饮马
——最短路径问题初探
将军饮马问题:
在古罗马时代,传说亚历山大城有一位 精通数学和物理的学者,名叫海伦.一天, 一位罗马将军专程去拜访他,向他请教一个 百思不得其解的问题:
将军每天骑马从城堡A出发,到城堡B,途中
马要到河边饮水一次。将军问怎样走路程最 短?据说海伦略加思索就解决了它。
这就是被称为"将军饮马"而广为流传的问题。

.
A
D
P E
B
C
三、课堂练习
【精讲精练】 5.如图,在锐角△ABC中,AB=6,∠BAC=30°,∠BAC的平分线交
BC 于 点 D , M , N 分 别 是 AD 和 AB 上 的 动 点 , 则 BM + MN 的 最 小 值


C
M
D
A
N
B
三、课堂练习
【精讲精练】 6.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、 N,当BM+MN的值最小时,求AN.
一、两点一线型(两定一动)
【变式训练】 1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小.
A B l
二、一点两线型(一定两动)

中考复习《轴对称》之“将军饮马”问题

中考复习《轴对称》之“将军饮马”问题

《轴对称》之“将军饮马”问题“将军饮马”的起源:早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.而从此以后,这个被称为“将军饮马”的问题便流传至今.【图示】【分析】我们把俯视图视角的问题抽象化,数学化,将河流看作一条直线l,军营看作一个点,转化为一个路程之和的最短问题.即如下图:直线同侧有两点A,B,在直线上选取一点C,使得AC+BC最短.在思考这个问题之前,我们先来回忆下初一上学期中,涉及线段最短的两个重要结论:1、两点之间,线段最短.2、垂线段最短.请各位同学务必记住,初中阶段的几何最值问题,最后几乎都可以转化为通过这两个结论来求得.如果“将军饮马”问题不能很快回答,那么我们先看这个问题,假如军营A,B在河的两岸,那么这个点C在哪呢?很简单,连接AB,与直线l的交点即为点C.理由,两点之间,线段最短.(当然也可以用三角形一边小于两边之和)那么回到原先的问题,即军营A,B在河的同侧,该如何思考就不难了.根据线段对称性,只需作点A关于直线l的对称点A’,连接A’B,与直线l的交点即为点C.【解答】如图【变式1】若将军骑马从军营出发,先骑马去草地边吃草,再牵马去河边喝水,最后回到军营,问:这位将军怎样走路程最短?【图示】【分析】我们同样把这个问题转化为熟悉的数学问题,把军营看作一个点,而把草地边和河边看作两条直线,当然在图示中,这两条直线相交,形成了一个角.问题即转化为,如下图:在∠MON的部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.若点C位置确定,要求AB+BC最短,同学们肯定已经知道,作点A 关于OM的对称点A’,连接A’C即可,但现在点C的位置不确定,而若点B位置确定,要求AC+BC最短,则作点A关于ON的对称点A’’,连接A’’B即可.想到这,分别作点A关于OM,ON的对称点,问题不就迎刃而解了吗?【解答】如图,作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.【变式2】若将军骑马从军营出发,先骑马去草地边吃草,再牵马去河边喝水,最后把马牵回马厩,步行回到军营,问:这位将军怎样走路程最短?【图示】【分析】首先,将问题转化为如下图:在∠MON的部有点A和点B,在OM 上找一点C,在ON上找一点D,使得四边形ABCD周长最短.从马厩步行回军营,则必然“两点之间,线段最短”,问题转化为求AC+CD+DB的最小值,方法与变式2类似,过点A作OM的对称点,过点B作ON的对称点即可.【解答】如图,作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.【总结&反思】我们已经知道,类似的“将军饮马”问题,最关键的就是要作对称,但怎么做,可能大家并不是十分明确,我们再来好好体会一下:首先,明确定点,定线,动点.军营,马厩,这些不动的点,即为定点.河边,草地边,这些不动的线,即为定线.河边的饮马点,草地边的吃草点等,这些不确定的点,即为动点.1.必然是作定点关于定线的对称点!2.作的次数需要看动点个数!有几个动点在哪些定线上,那么相应的定点就要做关于这些定线的对称点.原题,只要在一条定线(河边)上找一个动点(饮马点),那只需作定点(军营A)关于定线(河边)的一个对称点.变式1,要在两条定线(河边)(草地边)找两个动点(饮马点)(吃草点),则需要作作定点(军营)关于定线(河边) (草地边)的两个对称点,即两次.变式2,要在两条定线(河边)(草地边)找两个动点(饮马点)(吃草点),则需要作作定点(军营)关于定线(河边)的对称点与定点(马厩) 关于定线(草地边)的对称点,也是2个,即2次.3.作完对称点如何连接也需看作对称次数!1. 原题,把对称点直接连接另一个定点(军营B),则连线与定线(河边)上的交点,即为动点(饮马点).2. 变式1,把两个对称点连接,与定线(河边)(草地边)上的交点即为动点(饮马点)(吃草点),分别与定点(军营A)相连.3. 变式2,把两个对称点连接,与定线(河边)(草地边)上的交点即为动点(饮马点)(吃草点),分别与定点(军营)(马厩)相连.如果用口诀来总结,那就是:定点定线作对称,次数就看动点数.一次对称直连定,两次对称先相连.【练习】如图,黑、白两球分别位于长方形台球桌面OMCN上的A、B两点的位置.(1)怎样撞击白球,使白球A碰撞球桌边OM后,反弹击中黑球?(2)怎样撞击白球,使白球A依次碰撞球桌边OM、ON后,反弹击中黑球?。

轴对称之将军饮马模型练习及其答案

轴对称之将军饮马模型练习及其答案

轴对称之将军饮马模型基本图模1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小. 2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.方法总结:1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.模型归纳【典例1】如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB 值最小的是()A.B.C.D.【变式1】如图,点A,B在直线l的同侧,在直线l上找一点P,使PA+PB最小,则下列图形正确的是()A.B.C.D.【典例2】如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是()A.4B.4.8C.5D.6【变式2-1】已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是()A.5B.3C.D.【变式2-2】如图,在△ABC中,直线l垂直平分AB分别交CB、AB于点D,E,点F为直线l上任意一点,AC=3,CB=4.则△ACF周长的最小值是()A.4B.6C.7D.10【变式2-3】如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=7,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为()A.3B.C.3.5D.【典例3】如图,等腰三角形ABC的底边BC为4,面积为24,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为()A.8B.10C.12D.14【变式3-1】如图,在△ABC中,AB=AC,BC=4,△ABC的面积是14,AC的垂直平分线EF分别交AC,AB于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.4D.2【变式3-2】如图,等腰三角形ABC的底边BC的长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.7B.8C.9D.10【典例4】如图,已知∠AOB的大小为30°,P是∠AOB内部的一个定点,且OP=1,点E、F分别是OA、OB上的动点,则△PEF周长的最小值等于()A.B.C.2D.1【变式4-1】如图,∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是()A.5B.15C.20D.30【变式4-2】如图,∠MON=50°,P为∠MON内一点,OM上有点A,ON上有点B,当△PAB的周长取最小值时,∠APB的度数为()A.60°B.70°C.80°D.100°【典例5】如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°【变式5-1】如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,∠EAF的度数为()A.60°B.90°C.100°D.120°【变式5-2】如图,四边形ABCD中,∠BAD=a,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,则∠MAN的度数为()A.a B.2a﹣180°C.180°﹣a D.a﹣90°【典例6】如图,在平面直角坐标系中,点C的坐标为(﹣1,5).(1)若把△ABC向右平移5个单位,再向下平移3个单位得到△A1B1C1,并写出B1的坐标;(2)求出△ABC的面积;(3)在y轴上找一点P,使得PA+PB的值最小(保留作图痕迹,不写作法).【变式6】如图,在平面直角坐标系中,点C的坐标为(﹣1,5).(1)若把△ABC向右平移5个单位,再向下平移3个单位得到△A1B1C1,并写出B1的坐标;(2)在x轴上找一点P,使得PA+PB的值最小.随堂练习1.如图,点M,N在直线L的同侧,小东同学想通过作图在直线L上确定一点Q,使MQ与QN的和最小,那么下面的操作正确的是()A.B.C.D.2.某区计划在公路旁修建一个核酸采集点P,现有如下四种方案,则核酸采集点P到A、B两个小区之间的距离之和最短的是()A.B.C.D.3.如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm4.已知∠AOB=30°,在∠AOB内有一定点P,点M,N分别是OA,OB上的动点,若△PMN的周长最小值为3,则OP的长为()A.1.5B.3C.D.5.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则∠AOB的度数是()A.15B.30C.45D.606.如图,在四边形ABCD中,∠C=α°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF 的周长最小时,∠EAF的度数为()A.αB.2αC.180﹣αD.180﹣2α7.如图,在四边形ABCD中,∠C=72°,∠B=∠D=90°,M,N分别是BC,DC上的点,当△AMN 的周长最小时,∠MAN的度数为()A.72°B.36°C.108°D.38°8.如图,在△ABC中,AB=3,AC=4,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.4B.5C.6D.79.如图,AD是等边△ABC的BC边上的中线,F是AD边上的动点,E是AC边上动点,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°10.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F 点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.10B.9C.8D.611.如图,在等边△ABC中,点E是AC边的中点,点P是△ABC的中线AD上的动点,且AD=6,则EP+CP的最小值是()A.12B.9C.6D.312.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是°.13.如图,∠AOB=30°,点P是∠AOB内的一定点,且OP=6,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是.14.如图,AB⊥BC,AD⊥DC,∠BAD=116°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数是.15.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,点E,F分别是边BC、DC上的点,当△AEF的周长最小时,∠EAF点的度数为.答案及其解析【典例1】如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB 值最小的是()A.B.C.D.【答案】D【解答】解:作点A关于直线l的对称点A′,连接A′B交直线l于点O,则点O即为所求点.故选:D.【变式1】如图,点A,B在直线l的同侧,在直线l上找一点P,使PA+PB最小,则下列图形正确的是()A.B.C.D.【答案】B【解答】解:∵点A,B在直线l的同侧,∴作A点关于l的对称点A',连接A'B与l的交点为P,由对称性可知AP=A'P,∴P A+PB=PA′+PB=A′B为最小,故选:B.【典例2】如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是()A.4B.4.8C.5D.6【答案】B【解答】解:如图所示:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于点N,∵BD平分∠ABC,∴ME=MN,∴CM+MN=CM+ME=CE.∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,CE⊥AB,=•AB•CE=•AC•BC,∴S△ABC∴10CE=6×8,∴CE=4.8.即CM+MN的最小值是4.8,故选:B.【变式2-1】已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是()A.5B.3C.D.【答案】C【解答】解:如图作点F关于AD的对称点F′,连接EF′.作BH⊥AC于H.∵AB=AC,AD⊥BC,∴BD=CD=3,∴点F′在AC上,∵BE+EF=BE+EF′,根据垂线段最短可知,当B,E,F′共线,且与H重合时,BE+EF的值最小,最小值就是线段BH 的长.在Rt△ACD中,AC=5,∵•BC•AD=•AC•BH,∴BH=,∴BE+EF的最小值为,故选:C【变式2-2】如图,在△ABC中,直线l垂直平分AB分别交CB、AB于点D,E,点F为直线l上任意一点,AC=3,CB=4.则△ACF周长的最小值是()A.4B.6C.7D.10【答案】C【解答】解:∵直线l垂直平分AB,∴A,B关于直线l为对称,∴F与D点重合时,AF+CF最小,最小值是BC=4,∴△ACF周长的最小值=AF+CF+AC=AC+CD+BD=AC+BC=3+4=7,故选:C.【变式2-3】如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=7,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为()A.3B.C.3.5D.【答案】A【解答】解:如图所示,作点M关于BD的对称点M',连接PM',则PM'=PM,BM=BM'=1,∴PN+PM=PN+PM',当N,P,M'在同一直线上,且M'N⊥AC时,PN+PM'的最小值等于垂线段M'N的长,此时,∵Rt△AM'N中,∠A=30°,∴M'N=AM'=×(7﹣1)=3,∴PM+PN的最小值为3,故选:A.【典例3】如图,等腰三角形ABC的底边BC为4,面积为24,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为()A.8B.10C.12D.14【答案】D【解答】解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=24,解得AD=12,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=12+×4=14.故选:D【变式3-1】如图,在△ABC中,AB=AC,BC=4,△ABC的面积是14,AC的垂直平分线EF分别交AC,AB于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.4D.2【答案】B【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点.∴AD⊥BC,=BC•AD=×4×AD=14,解得AD=7,∴S△ABC∵EF是线段AB的垂直平分线,∴点C关于直线EF的对称点为点A,连接AM,则CM+DM=AM+DM≥AD,∴当点M在线段AD上时,CM+DM的值最小,∴AD的长为CM+MD的最小值.故选:B.【变式3-2】如图,等腰三角形ABC的底边BC的长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.7B.8C.9D.10【答案】D【解答】解:∵EF是AC的垂直平分线,∴点A与点C关于EF对称.连接AD,与EF的交点为M,则此时点M为使△CDM周长最小时的位置.∵点D是底边BC上的中点,且△ABC是等腰三角形,∴AD⊥BC.=16,BC=4,∵S△ABC∴AD===8.∵MA=MC,∴△CDM的周长=MC+MD+CD=AD+DC=8+2=10.故选:D【典例4】如图,已知∠AOB的大小为30°,P是∠AOB内部的一个定点,且OP=1,点E、F分别是OA、OB上的动点,则△PEF周长的最小值等于()A.B.C.2D.1【答案】D【解答】解:作P点关于OA的对称点P',作P点关于OB的对称点P'',连接P'P''交OA于点E、交BO于点F,连接OP'、OP'',由对称性可知,PE=P'E,PF=P''F,∴△PEF周长=PE+PF+EF=P'E+P''F+EF=P'P'',此时△PEF周长最小,∵PO=OP',OP=OP'',∴OP'=OP'',∵∠AOB=30°,∴∠P'OP''=60°,∴△OP'P''是等边三角形,∵OP=1,∴P'P''=1,故选:D.【变式4-1】如图,∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是()A.5B.15C.20D.30【答案】B【解答】解:作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB 于N,连接PM,PN,则此时△PMN的周长最小,连接OD,OE,∵P、D关于OA对称,∴OD=OP,PM=DM,同理OE=OP,PN=EN,∴OD=OE=OP=15,∵P、D关于OA对称,∴OA⊥PD,∵OD=OP,∴∠DOA=∠POA,同理∠POB=∠EOB,∴∠DOE=2∠AOB=2×30°=60°,∵OD=OE=15,∴△DOE是等边三角形,∴DE=15,即△PMN的周长是PM+MN+PN=DM+MN+EN=DE=15,故选:B.【变式4-2】如图,∠MON=50°,P为∠MON内一点,OM上有点A,ON上有点B,当△PAB的周长取最小值时,∠APB的度数为()A.60°B.70°C.80°D.100°【答案】C【解答】解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点.∴△P AB即为所求的三角形,根据对称性知道:∠APO=∠AP1O,∠BPO=∠BP2O,还根据对称性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故选:C.【典例5】如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°【答案】C【解答】解:作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD于N,交BC于M,连接AM、AN,∵∠B=∠D=90°,∴AN=NF,AM=EM,∴△AMN的周长=AM+AN+MN=NF+MN+EM=EF,此时△AMN的周长有最小值,∵∠F AN=∠F,∠E=∠EAM,∴∠E+∠F=180°﹣∠BAD,∵∠BAD=130°,∴∠E+∠F=50°,∴∠BAM+∠FAN=50°,∴∠MAN=130°﹣50°=80°,∴∠ANM+∠AMN=180°﹣∠MAN=100°,故选:C.【变式5-1】如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,∠EAF的度数为()A.60°B.90°C.100°D.120°【答案】C【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.∵DAB=140°,∴∠AA′E+∠A″=180°﹣140°=40°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=40°,∴∠EAF=140°﹣40°=100°.故选:C.【变式5-2】如图,四边形ABCD中,∠BAD=a,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,则∠MAN的度数为()A.a B.2a﹣180°C.180°﹣a D.a﹣90°【答案】B【解答】解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=a,∴∠A′+∠A″=180°﹣a,∴∠AMN+∠ANM=2×(180°﹣a)=360°﹣2a.∴∠MAN=180°﹣(360°﹣2a)=2a﹣180°,故选:B.【典例6】如图,在平面直角坐标系中,点C的坐标为(﹣1,5).(1)若把△ABC向右平移5个单位,再向下平移3个单位得到△A1B1C1,并写出B1的坐标;(2)求出△ABC的面积;(3)在y轴上找一点P,使得PA+PB的值最小(保留作图痕迹,不写作法).【解答】解:(1)如图,△A1B1C1即为所求,∴B1的坐标(3,﹣2);=3×4﹣×2×2﹣×1×4﹣×2×3=12﹣2﹣2﹣3=5;(2)S△ABC(3)作点B关于y轴的对称点B',连接AB'交y轴于P,则点P即为所求.【变式6】如图,在平面直角坐标系中,点C的坐标为(﹣1,5).(1)若把△ABC向右平移5个单位,再向下平移3个单位得到△A1B1C1,并写出B1的坐标;(2)在x轴上找一点P,使得PA+PB的值最小.【解答】解:(1)△A1B1C1如图所示.从图象看,B1点的坐标是(﹣3,2).(2)A点关于x轴的对称点A′坐标为(4,﹣4),连接A'B交x轴于P点,则PA+PB=PA'+PB=A'B,此时PA+PB的值最小,随堂练习1.如图,点M,N在直线L的同侧,小东同学想通过作图在直线L上确定一点Q,使MQ与QN的和最小,那么下面的操作正确的是()A.B.C.D.【答案】C【解答】解:先作点M关于直线l的对称点,再连接连接N和对称点交l于点Q,则MQ +NQ =M ′Q +NQ =M ′N ,由“两点之间,线段最短”可知,点Q 即为所求的点,故选:C .2.某区计划在公路旁修建一个核酸采集点P ,现有如下四种方案,则核酸采集点P 到A 、B 两个小区之间的距离之和最短的是()A.B.C.D.【答案】B 【解答】解:作点A 关于直线m 的对称点A ',连接A 'B 交直线m 于P ,根据两点之间线段最短,可知选项B 中的核酸采集点P 到A 、B 两个小区之间的距离之和最短.故选:B .3.如图,∠AOB 内一点P ,P 1,P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则P 1P 2的长为()A.3cmB.4cm C.5cm D.6cm【答案】C 【解答】解:∵P 点关于OA 、OB 的对称点P 1、P 2,∴PM =P 1M ,PN =P 2N ,∴△PMN 的周长=PM +MN +PN =P 1M +MN +P 2N =P 1P 2,∵△PMN 的周长是5cm ,∴P 1P 2=5cm .故选:C4.已知∠AOB =30°,在∠AOB 内有一定点P ,点M ,N 分别是OA ,OB 上的动点,若△PMN 的周长最小值为3,则OP的长为()A.1.5B.3C.D.【答案】B【解答】解:分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∴∠COD=60°,∴△COD是等边三角形,∴OC=OD=CD=OP,∵△PMN周长的最小值是3cm,∴PM+PN+MN=3cm,∴DM+CN+MN=3cm,即CD=3cm=OP,故选:B.5.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则∠AOB的度数是()A.15B.30C.45D.60【答案】B【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B.6.如图,在四边形ABCD中,∠C=α°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF 的周长最小时,∠EAF的度数为()A.αB.2αC.180﹣αD.180﹣2α【答案】D【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.∵∠C=α°,∠ACB=∠ADC=90°,∴∠DAB=180°﹣α°,∴∠AA′E+∠A″=α°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=α°,∴∠EAF=180°﹣α°﹣α°=180°﹣2α°.故选:D.7.如图,在四边形ABCD中,∠C=72°,∠B=∠D=90°,M,N分别是BC,DC上的点,当△AMN的周长最小时,∠MAN的度数为()A.72°B.36°C.108°D.38°【答案】B【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=108°,∴∠HAA′=72°,∴∠AA′M+∠A″=∠HAA′=72°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×72°=144°,∴∠MAN=36°,故选:B.8.如图,在△ABC中,AB=3,AC=4,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.4B.5C.6D.7【答案】A【解答】解:连接PC.∵EF是BC的垂直平分线,∴BP=PC.∴PA+BP=AP+PC.∴当点A,P,C在一条直线上时,PA+BP有最小值,最小值=AC=4.故选:A.9.如图,AD是等边△ABC的BC边上的中线,F是AD边上的动点,E是AC边上动点,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°【答案】C【解答】解:如图:过点B作BE⊥AC于点E,交AD于点F,连接CF,∵△ABC是等边三角形,∴AE=EC,AF=FC,∴∠FAC=∠FCA,∵AD是等边△ABC的BC边上的中线,∴∠BAD=∠CAD=30°,∴∠ECF=30°.故选:C.10.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F 点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.10B.9C.8D.6【答案】B【解答】解:连接AD,AM,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=14,解得AD=7,∴S∵EF是线段AC的垂直平分线,∴AM=CM,当点M在AD上时,DM+CM最小,最小值为AD,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=7+×4=7+2=9.故选:B.11.如图,在等边△ABC中,点E是AC边的中点,点P是△ABC的中线AD上的动点,且AD=6,则EP+CP的最小值是()A.12B.9C.6D.3【答案】C【解答】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF是△ABC的中线,∴CF=AD=6,即EP+CP的最小值为6,故选:C12.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是°.【答案】100【解答】解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△P AB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.故答案为:100.13.如图,∠AOB=30°,点P是∠AOB内的一定点,且OP=6,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是.【答案】6【解答】解作点P关于OB的对称点P',作点P关于OA的对称点P'',连接P'P'',则P'P''的长就是△PMN周长的最小值;在△OP'P''中,OP'=OP'',∠AOB=30°,∴∠P'OP''=60°,∵OP=6,∴P'P''=6;故答案为6;14.如图,AB⊥BC,AD⊥DC,∠BAD=116°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数是.【答案】128°【解答】解:作A点关于BC的对称点E,作A点关于CD的对称点F,连接EF,交BC于M点,交CD于N点,∴AM=EM,AN=NF,∴AM+AN+MN=EM+MN+NF=EF,此时△AMN周长最小,由对称性可知,∠E=∠EAM,∠F=∠NAF,∵∠BAD=116°,∴∠E+∠F=180°﹣116°=64°,∴∠MAN=116°﹣64°=52°,∴∠AMN+∠ANM=180°﹣52°=128°,故答案为:128°.15.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,点E,F分别是边BC、DC上的点,当△AEF的周长最小时,∠EAF点的度数为.【答案】80°【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故答案为80°.。

作轴对称图形-将军饮马问题(知识讲解)七年级数学下册基础知识专项练习(北师大版)

作轴对称图形-将军饮马问题(知识讲解)七年级数学下册基础知识专项练习(北师大版)

专题5.16 作轴对称图形-将军饮马问题(知识讲解)【学习目标】1.理解轴对称变换,能作出已知图形关于某条直线的对称图形. 2.能利用轴对称变换设计一些图案,解决简单的实际问题.3.能运用轴对称的性质(将军饮马问题),解决简单的数学问题或实际问题,提高分析问题和解决问题的能力. 【要点梳理】 要点一:对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.特别说明:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称. 要点二:将军饮马问题的基本作图和解题方法 几何模型1:两定一动型(两点之间线段最短)图一 图二111,B P P B 如图一:A 、B 为直线外一点,过点A 作直线的对称点A 连接A 交直线于点,则点为所求,此时 AP+PB=A 最小。

几何模型2:两动一定型(两点之间线段最短)PBAPMN ''''''∆此处M 、N 均为折点,分别作点P 关于OA 、OB 的对称点,化折线段PM+MN+PN 为P M+MN+P N ,当P 、M 、N 、P 共线时,周长最小。

几何模型3(1):两定两动型(两点之间线段最短) 在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。

PQ PM MN NQ P Q OA OB PM MN NQ P M MN NQ P M N Q PMNQ ++++''''++考虑是条定线段,故只需考虑最小值即可,类似,分别作点、关于、对称,化折线段为,当、、、共线时,四边形的周长最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将军饮马问题教案
教学设计
【教材分析】
本节内容的地位与作用
最短路径问题是中考热点问题之一,本课是在初二上学期,学生学完了轴对称、勾股定理、位置与坐标、一次函数等章节后以课本上数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.主要是运用数形结合和思想,综合轴对称、线段的性质和勾股定理以及一些常见的轴对称图形的性质解决线段之和最短问题,该问题的解决为我们提供了一种解题的思路和线索,触类旁通,由此产生了一系列问题的解题思路。

使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣。

【学情分析】从我平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,只懂得机械的重复做题,浪费的大量的时间和精力,再加上来自社会、家长和老师的压力较大,学生学的辛苦,毫无快乐可言.而家长对我们教学的质量的要求较高,不但要学习成绩好,还要孩子学的轻松,玩的高兴.所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,读死书,以达到“教”是为可不教的目的.我班为平行班,代表了年级的平均水平,学生基础尚可,自觉性较强,学习努力,所以本节课设计为一堂学法研究课,旨在让学生学会思考,感受学习的快乐,体验成功.
教学目标:
【知识技能】
1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感
悟转化思想.
2.能利用轴对称变换解决日常生活中的实际问题。

【过程与方法】.培养学生的探究、归纳、分析、解决问题的能力。

【情感与态度】进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中
重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.
难点:在实际题目中会运用最短路径模型灵活解决问题。

【教学关键】
运用好数形结合的思想,特别是从轴对称和线段的性质入手,获得求线段之和最短问题的直观形象,以便准确理解本节课的内容。

【教学策略】利用教学资源,通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

【学法指导】:自主学习,小组合作、交流探究。

相关文档
最新文档