九年级点与圆的位置关系练习含答案(精选典题)
九年级点与圆的位置关系练习含答案(精选典题)

2018年10月05日数学40的初中数学组卷一.选择题(共22小题)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断2.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC 与∠BOC互补,则弦BC的长为()A.4B.3C.2D.3.⊙O的直径为15cm,O点与P点的距离为8cm,点P的位置()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定4.已知⊙O的半径为4cm,点A到圆心O的距离为3cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定5.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,﹣3).则经画图操作可知:△ABC的外心坐标应是()A.(0,0)B.(1,0)C.(﹣2,﹣1)D.(2,0)6.⊙O的半径为4,圆心到点P的距离为d,且d是方程x2﹣2x﹣8=0的根,则点P与⊙O的位置关系是()A.点P在⊙O内部 B.点P在⊙O上C.点P在⊙O外部 D.点P不在⊙O上7.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm8.已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定9.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)10.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P 与⊙O的位置关系是()A.点P在⊙O内B.点P的⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.612.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O 与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定13.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°14.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cm C.5.5cm D.2.5cm或5.5cm15.下列语句中,正确的有()个.(1)三点确定一个圆(2)平分弦的直径垂直于弦(3)相等的弦所对的弧相等(4)相等的圆心角所对的弧相等.A.0个B.1个C.2个D.3个16.若点B(a,0)在以点A(1,0)为圆心,以3为半径的圆内,则a的取值范围为()A.﹣2<a<4 B.a<4 C.a>﹣2 D.a>4或a<﹣217.下列说法正确的是()A.一个点可以确定一条直线B.两个点可以确定两条直线C.三个点可以确定一个圆D.不在同一直线上的三点确定一个圆18.在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点B在⊙D内C.点C在⊙D上D.无法确定19.⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为()A.B.C.D.20.若一个三角形的外心在它的一条边上,那么这个三角形一定是()A.等腰三角形 B.直角三角形 C.等边三角形 D.钝角三角形21.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4,则⊙O的直径等于()A.B.3C.5D.722.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°二.填空题(共7小题)23.已知三角形三边长分别为1cm、cm和cm,则此三角形的外接圆半径为cm.24.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.25.直角三角形的两直角边长分别为6和8,它的外接圆的半径是.26.如图,在直角坐标系中,点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),则△ABC外接圆的圆心坐标为.27.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是= 度.28.三角形的外心是三角形的交点.29.如图,点O是△ABC的外心,且∠BOC=110°,则∠A= .三.解答题(共1小题)30.已知:如图,△ABC的外接圆⊙O的直径为4,∠A=30°,求BC的长.2018年10月05日数学40的初中数学组卷参考答案与试题解析一.选择题(共22小题)1.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,2.【解答】解∵∠BAC与∠BOC互补,∴∠BAC+∠BOC=180°,∵∠BAC=∠BOC,∴∠BOC=120°,过O作OD⊥BC,垂足为D,∴BD=CD,∵OB=OC,∴OB平分∠BOC,∴∠DOC=∠BOC=60°,∴∠OCD=90°﹣60°=30°,在Rt△DOC中,OC=2,∴OD=1,∴DC=,∴BC=2DC=2,故选:C.3.【解答】解:∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选:A.4.【解答】解:∵圆的半径是4cm,点A到圆心的距离是3cm,小于圆的半径,∴点A在圆内.故选:A.5.【解答】解:∵△ABC的外心即是三角形三边垂直平分线的交点,∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选:C.6.【解答】解:解方程x2﹣2x﹣8=0,得x=4或﹣2,∵d>0,∴d=4,∵⊙O的半径为4,∴点P在⊙O上.故选:B.7.【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选:C.8.【解答】解:∵OP=10,A是线段OP的中点,∴OA=5,小于圆的半径6,∴点A在圆内.故选:C.9.【解答】解:如图所示:∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2),∴△ABC为直角三角形,∠BAC=90°,∴△ABC的外接圆的圆心是斜边BC的中点,∴△ABC外接圆的圆心坐标是(,),即(3,1).故选:D.10.【解答】解:∵圆心O的坐标为(0,0),点P的坐标为(4,2),∴OP==<5,因而点P在⊙O内.故选:A.11.【解答】解:由勾股定理,得BD==5.在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C 中至少有一个点在圆内,且至少有一个点在圆外,得3<r<5,故选:B.12.【解答】解:∵圆心P的坐标为(5,12 ),∴OP==13,∴OP=r,∴原点O在⊙P上.故选:B.13.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.14.【解答】解:当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.15.【解答】解:(1)不在同一直线上的三点确定一个圆,故本小题错误;(2)平分弦的直径,当被平分的弦是直径是直径不垂直于弦,故本小题错误;(3)相等的弦不在同圆或等圆中,所对的弧不一定相等,故本小题错误;(4)相等的圆心角不在同圆或等圆中所对的弧不一定相等,故本小题错误;综上所述,正确的有0个.故选:A.16.【解答】解:∵点B(a,0)在以点A(1,0)为圆心,以3为半径的圆内,∴|a﹣1|<3,∴﹣2<a<4.故选:A.17.【解答】解:A、根据两点确定一条直线可知说法错误;B、两点可以确定两条直线,故说法错误;C、不在同一直线上的三点确定一个圆,故说法错误;D、正确;故选:D.18.【解答】解:∵D是BC的中点,即DC=BC÷2=3cm,而圆的半径为3cm,∴点C在⊙D上.故选C.19.【解答】解:连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB?cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故选:C.20.【解答】解:锐角三角形的外心在三角形的内部,直角三角形的外心是其斜边的中点,钝角三角形的外心在其三角形的外部;由此可知若三角形的外心在它的一条边上,那么这个三角形是直角三角形.故选:B.21.【解答】解:作直径AE,连接BE,∵AD⊥BC,∴△ADC是直角三角形,由勾股定理得AD==4.∵∠ACD=∠AEB,(同弧圆周角相等)∠ABE=90°,(半圆上的圆周角是直角)∴△ADC∽△ABE,AE:AC=AB:AD,∴AE==5,则直径AE=5.故选:C.22.【解答】解:连接OC,由圆周角定理,得∠AOC=2∠B=120°,△OAC中,OA=OC,∴∠CAO=∠ACO=30°.故选:B.二.填空题(共7小题)23.【解答】解:∵三角形的三条边长分别为1cm、cm和cm,12+()2=()2,∴此三角形是以cm为斜边的直角三角形,∴这个三角形外接圆的半径为÷2=(cm).故答案为:.24.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.25.【解答】解:∵直角边长分别为6和8,∴斜边是10,∴这个直角三角形的外接圆的半径为5.故答案为:5.26.【解答】解:根据垂径定理的推论,则即为圆心,作弦AB、AC的垂直平分线,交点O1∵点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),∴O的坐标是(2,1).1故答案为:(2,1).27.【解答】解:连接OC,∴∠AOC=2∠B=120°,∵OA=OC,∴∠CAO=∠ACO==30°.故答案为:30.28.【解答】证明:如图,∵OA=OB=OC,∴点O是△ABC三边垂直平分线的交点;(线段的垂直平分线上的点到线段两端点的距离相等)故答案为:三条边垂直平分线.29.【解答】解:如图所示:∵∠BOC=110°,∴∠A=∠BOC=×110°=55°.故答案为:55°.三.解答题(共1小题)30.【解答】解:作直径CD,连接BD.∵CD是直径,∴∠CBD=90°.又∠D=∠A=30°,CD=4,∴BC=2,答:BC的长为2.。
点与圆的位置关系精选题37道

点与圆的位置关系精选题37道一.选择题(共11小题)1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.2.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣3.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.84.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ,则线段OQ的最大值是()A.3B.C.D.45.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F6.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.37.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.B.C.D.8.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连接CE,BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+11.如图,点M坐标为(0,2),点A坐标为(2,0),以点M为圆心,MA为半径作⊙M,与x轴的另一个交点为B,点C是⊙M上的一个动点,连接BC,AC,点D是AC的中点,连接OD,当线段OD取得最大值时,点D的坐标为()A.(0,)B.(1,)C.(2,2)D.(2,4)二.填空题(共16小题)12.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为.13.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D是半径为2的⊙A上一动点,点M是CD的中点,则BM的最大值是.14.如图,圆O的半径为3,点A在圆O上运动,ABCD为矩形,AC与BD交于点M,MO =5,则AB2+AD2的最小值为.15.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O 的半径是.16.已知以AB为直径的圆O,C为AB弧的中点,P为BC弧上任意一点,CD⊥CP交AP 于D,连接BD,若AB=6,则BD的最小值为.17.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.18.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为.19.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=4,点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是.20.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点D是半径为1的⊙A上的一个动点,点E为CD的中点,连接BE,则线段BE长度的最小值为.21.如图,直角△ABC的直角顶点C,另一顶点A及斜边AB的中点D都在⊙O上,已知:AC=6,BC=8,则⊙O的半径为.22.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.23.如图,已知⊙O的半径是2,点A,B在⊙O上,且∠AOB=90°,动点C在⊙O上运动(不与A,B重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是.24.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,当OM取最大值时,点M的坐标为.25.已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是.26.在菱形ABCD中,∠D=60°,CD=4,以A为圆心,2为半径作⊙A,交对角线AC于点E,点F为⊙A上一动点,连接CF,点G为CF中点,连接BG,取BG中点H,连接AH,则AH的最大值为.27.如图,在矩形ABCD中,AB=2,AD=1,以顶点D为圆心作半径为r的圆.若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.三.解答题(共10小题)28.如图,已知直角坐标系中,A(0,4)、B(4,4)、C(6,2),(1)写出经过A、B、C三点的圆弧所在圆的圆心M的坐标:(,);(2)判断点D(5,﹣2)与圆M的位置关系.29.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的位置;(2)点M的坐标为;(3)若DM=2,判断点D与⊙M的位置关系.30.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(网格小正方形边长为1)(1)请写出该圆弧所在圆的圆心P的坐标;⊙P的半径为(结果保留根号);(2)判断点M(﹣1,1)与⊙P的位置关系.31.阅读下列材料:平面上两点P1(x1,y1),P2(x2,y2)之间的距离表示为|P1P2|=,称为平面内两点间的距离公式,根据该公式,如图,设P(x,y)是圆心坐标为C(a,b)、半径为r的圆上任意一点,则点P适合的条件可表示为=r,变形可得:(x﹣a)2+(y﹣b)2=r2,我们称其为圆心为C(a,b),半径为r的圆的标准方程.例如:由圆的标准方程(x﹣1)2+(y﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C(3,4),半径为2的圆的标准方程为:;(2)若已知⊙C的标准方程为:(x﹣2)2+y2=22,圆心为C,请判断点A(3,﹣1)与⊙C的位置关系.32.如图,网格纸中每个小正方形的边长为1,一段圆弧经过格点.(1)该图中弧所在圆的圆心D的坐标为;.(2)根据(1)中的条件填空:①圆D的半径=(结果保留根号);②点(7,0)在圆D(填“上”、“内”或“外”);③∠ADC的度数为.33.如图,矩形ABCD中,AB=3,AD=4.作DE⊥AC于点E.(1)求DE的长;(2)若以点A为圆心作圆,B、C、D、E四点中至少有1个点在圆内,且至少有1个点在圆外,求⊙A的半径r的取值范围.34.已知AB为⊙O的直径,点C位于AB上方的半圆上,点E在AB上且AE=AC,过点C作CD⊥AB于点D.(1)如图所示,当点D与点O重合时,求tan∠DCE.(2)在(1)的条件下,延长CE交于⊙O点F,若OE=6,求△BEF与△ACE的面积之比.(3)以DE为边在⊙O内构造正方形DEPM,点M在直线CD上,连接AM并延长交⊙O于点N,试猜想PN与PE的数量关系,并说明理由.35.如图,⊙O与x轴的负半轴交于点A,与y轴的负半轴交于点B,M(﹣4,3)在⊙O 上.(1)求⊙O的半径长及△AMB的面积;(2)已知N(0,t),且以O、M、N为顶点的三角形是锐角三角形,请直接写出t的取值范围.36.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC 于点D,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE.(1)求证:PD=CE;(2)求证:点P、D、C、E在同一个圆上.37.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C,以点O为原点,建立如图所示的平面直角坐标系.(1)根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为;点(6,﹣2)在⊙D (填“上”、“内”、“外”);∠ADC的度数为.点与圆的位置关系精选题37道参考答案与试题解析一.选择题(共11小题)1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在Rt△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选:B.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.2.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣【分析】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD 与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.3.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【解答】解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.4.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ,则线段OQ的最大值是()A.3B.C.D.4【分析】连接BP,如图,先解方程x2﹣4=0得A(﹣4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【解答】解:连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选:A.【点评】此题是点与圆的位置关系,主要考查了网格中计算两点间的距离,比较线段长短的方法,计算距离是解本题的关键.点到圆心的距离小于半径,点在圆内,点到圆心的距离大于半径,点在圆外,点到圆心的距离大于半径,点在圆内.6.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3【分析】根据抛物线y=﹣1与x轴交于A,B两点,可得A、B两点坐标,D是以点C(0,4)为圆心,根据勾股定理可求BC的长为5,E是线段AD的中点,再根据三角形中位线,BD最小,OE就最小.【解答】解:∵抛物线y=﹣1与x轴交于A,B两点,∴A、B两点坐标为(﹣3,0)、(3,0),∵D是以点C(0,4)为圆心,根据勾股定理,得BC=5,∵E是线段AD的中点,O是AB中点,∴OE是三角形ABD的中位线,∴OE=BD,即点B、D、C共线时,BD最小,OE就最小.如图,连接BC交圆于点D′,∴BD′=BC﹣CD′=5﹣1=4,∴OE′=2.所以线段OE的最小值为2.故选:A.【点评】本题考查了点与圆的位置关系、抛物线与x轴的交点、三角形中位线定理,解决本题的关键是点B、D、C共线问题.7.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.B.C.D.【分析】先解方程组得P点坐标为(3a﹣1,4a+2),则可确定点P为直线y=x+上一动点,设直线y=x+与坐标轴的交点为A、B,如图,则A(﹣,0),B(0,),利用勾股定理计算出AB=,过M点作MP⊥直线AB于P,交⊙M 于Q,此时线段PQ的值最小,证Rt△MBP∽Rt△ABO,利用相似比计算出MP=,则PQ=,即线段PQ的最小值为.【解答】解:解方程组得,∴P点坐标为(3a﹣1,4a+2),设x=3a﹣1,y=4a+2,∴y=x+,即点P为直线y=x+上一动点,设直线y=x+与坐标轴的交点为A、B,如图,则A(﹣,0),B(0,),∴AB==,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,∵∠MBP=∠ABO,∴Rt△MBP∽Rt△ABO,∴MP:OA=BM:AB,即MP:=:,∴MP=,∴PQ=﹣1=,即线段PQ的最小值为.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了一次函数的性质和相似三角形的判定与性质.8.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点评】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选:A.【点评】本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.10.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连接CE,BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+【分析】连接AC,DE,如图,利用圆周角定理可判定点D在AC上,易得A(0,1),B(﹣1,0),C(1,0),AC=,D(,),设E(m,n),利用两点间的距离公式得到则EB2+EC2=2(m2+n2)+2,由于m2+n2表示E点到原点的距离的平方,则当OE 为直径时,E点到原点的距离最大,由于OD为平分∠AOC,则m=n,利用点E在圆上得到(m﹣)2+(n﹣)2=()2,则可计算出m=n=1,从而得到EB2+EC2的最大值.【解答】解:连接AC,DE,如图,∵∠AOC=90°,∴AC为⊙D的直径,∴点D在AC上,∵AO=BO=CO=1,∴A(0,1),B(﹣1,0),C(1,0),AC=,D(,),设E(m,n),∵EB2+EC2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2,而m2+n2表示E点到原点的距离,∴当OE为直径时,E点到原点的距离最大,∵OD为平分∠AOC,∴m=n,∵DE=AC=,∴(m﹣)2+(n﹣)2=()2,即m2+n2=m+n∴m=n=1,∴此时EB2+EC2=2(m2+n2)+2=2×(1+1)+2=6,即CE2+BE2的最大值是6.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了圆周角定理、勾股定理和坐标与图形性质.11.如图,点M坐标为(0,2),点A坐标为(2,0),以点M为圆心,MA为半径作⊙M,与x轴的另一个交点为B,点C是⊙M上的一个动点,连接BC,AC,点D是AC的中点,连接OD,当线段OD取得最大值时,点D的坐标为()A.(0,)B.(1,)C.(2,2)D.(2,4)【分析】根据垂径定理得到OA=OB,然后根据三角形中位线定理得到OD∥BC,OD=BC,即当BC取得最大值时,线段OD取得最大值,根据圆周角定理得到CA⊥x轴,进而求得△OAD是等腰直角三角形,即可得到AD=OA=2,得到D的坐标为(2,2).【解答】解:∵OM⊥AB,∴OA=OB,∵AD=CD,∴OD∥BC,OD=BC,∴当BC取得最大值时,线段OD取得最大值,如图,∵BC为直径,∴∠CAB=90°,∴CA⊥x轴,∵OB=OA=OM,∴∠ABC=45°,∵OD∥BC,∴∠AOD=45°,∴△AOD是等腰直角三角形,∴AD=OA=2,∴D的坐标为(2,2),故选:C.【点评】本题考查了点和圆的位置关系,垂径定理、圆周角定理以及三角形中位线定理,明确当BC为直径时,线段OD取得最大值是解题的关键.二.填空题(共16小题)12.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为2﹣2.【分析】连接CE,取BC的中点F,作直径为BC的⊙F,连接EF,AF,证明∠CEB=90°,说明E点始终在⊙F上,再由在整个变化过程中,AE≤AF﹣EF,当A、E、F三点共线时,AE最小值,求出此时的值便可.【解答】解:连接CE,取BC的中点F,作直径为BC的⊙F,连接EF,AF,∵BC=4,∴CF=2,∵∠ACB=90°,AC=10,∴AF=,∵CD是⊙O的直径,∴∠CED=∠CEB=90°,∴E点在⊙F上,∵在D的运动过程中,AE≥AF﹣EF,且A、E、F三点共线时等号成立,∴当A、E、F三点共线时,AE取最小值为AF﹣EF=2﹣2.故答案为:2﹣2.【点评】本题主要考查了圆的基本性质,圆周角定理,勾股定理,三角形的三边关系,关键是确定AE取最小值的位置.13.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D是半径为2的⊙A上一动点,点M是CD的中点,则BM的最大值是.【分析】如图,取AC的中点N,连接MN,BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,MN,再利用三角形的三边关系即可解决问题.【解答】解:如图,取AC的中点N,连接MN,BN.∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AN=NC,∴BN=AC=,∵AN=NC,DM=MC,∴MN=AD=1,∴BM≤BN+NM,∴BM≤1+,∴BM≤,∴BM的最大值为.【点评】本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.14.如图,圆O的半径为3,点A在圆O上运动,ABCD为矩形,AC与BD交于点M,MO =5,则AB2+AD2的最小值为16.【分析】如图,连接OA.首先判断出BD最小时,AB2+AD2的值最小,求出AM的最小值即可解决问题.【解答】解:如图,连接OA.∵四边形ABCD是矩形,∴AC=BD,AM=MC=BM=MD,∠BAD=90°,∴AB2+AD2=BD2,∴BD的值最小时,AB2+AD2的值最小,∵AM≥OM﹣OA,OM=5,OA=3,∴AM≥2,∴AM的最小值为2,∴BD的最小值为4,∴AB2+AD2的最小值为16,故答案为16.【点评】本题考查点与圆的位置关系,勾股定理,矩形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O 的半径是 6.5cm或2.5cm.【分析】点P应分在位于圆的内部与外部两种情况讨论:①当点P在圆内时,直径=最小距离+最大距离;②当点P在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=4+9=13(cm),∴半径r=6.5cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=9﹣4=5(cm),∴半径r=2.5cm.综上所述,圆O的半径为6.5cm或2.5cm.故答案为:6.5cm或2.5cm.【点评】本题主要考查了点与圆的位置关系,注意到分两种情况进行讨论是解决本题的关键.16.已知以AB为直径的圆O,C为AB弧的中点,P为BC弧上任意一点,CD⊥CP交AP 于D,连接BD,若AB=6,则BD的最小值为3﹣3.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=6,C为的中点,∴△ACB是等腰直角三角形,∴AC=3,∴△ACQ中,AQ=3,∴BQ==3,∵BD≥BQ﹣DQ,∴BD的最小值为3﹣3.故答案为3﹣3.【点评】本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确寻找点D的运动轨迹是解决问题的关键.17.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.【分析】当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,由于P为切点,得出MP垂直于切线,进而得出PM⊥AC,根据勾股定理先求得AC的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得.【解答】解:当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵过P的直线是⊙D的切线,∴DP垂直于切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故答案为:.【点评】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大.18.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为+.【分析】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD 与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=+,即OM的最大值为+;故答案为.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.19.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=4,点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是2.【分析】首先证明点P在以AC为直径的⊙O上,连接OB与⊙O交于点P,此时PB最小,利用勾股定理求出OB即可解决问题.【解答】解:∵∠ACB=90°,∴∠ACP+∠PCB=90°,∵∠P AC=∠PCB∴∠CAP+∠ACP=90°,∴∠APC=90°,∴点P在以AC为直径的⊙O上,连接OB交⊙O于点P,此时PB最小,在Rt△CBO中,∵∠OCB=90°,BC=4,OC=3,∴OB==5,∴PB=OB﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.20.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点D是半径为1的⊙A上的一个动点,点E为CD的中点,连接BE,则线段BE长度的最小值为2.【分析】取AC的中点N,连接AD、EN、BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,EN,再利用三角形的三边关系即可解决问题.【解答】解:如图,取AC的中点N,连接AD、EN、BN.∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC===5,∵AN=NC,∴BN=AC=,∵AN=NC,DE=EC,∴EN=AD=,∴BN﹣EN≤BE≤BN+EN,∴﹣≤BE≤+,∴2≤BE≤3,∴BE的最小值为2,故答案为:2.【点评】本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.21.如图,直角△ABC的直角顶点C,另一顶点A及斜边AB的中点D都在⊙O上,已知:AC=6,BC=8,则⊙O的半径为.【分析】如图连接CD、OD、OC,延长DO交AC于E,设半径为R,先证明DE⊥AC,DE=CB,在Rt△OCE中,利用勾股定理即可解决问题.【解答】解:如图连接CD、OD、OC,延长DO交AC于E,设半径为R.在RT△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB===10,∵BD=AD=5,∴CD=AD=5,∵DC=DA,=,∴DO⊥AC,EC=AE=3,∴ED∥BC,∵BD=AD,∴EC=EA,∴DE=BC=4,在RT△COE中,∵∠OEC=90°,∴CO2=OE2+CE2,∴R2=(4﹣R)2+32,∴R=.【点评】本题考查点与圆的位置关系,三角形的中位线的性质,垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是68.【分析】设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时PH取最小值,根据矩形的性质得到CD=AB,EO=AD,求得OP=CE=AB=10过H作HG⊥AB于G,根据矩形的性质得到HG=12,OG=5,于是得到结论.【解答】解:设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时PH取最小值,∵AB=20,四边形ABCD为矩形,∴CD=AB,BC=AD,∴OP=CE=AB=10,∴CP2+EP2=2(PH2+CH2).过H作HG⊥AB于G,∴HG=12,OG=5,∴OH=13,∴PH=3,∴CP2+EP2的最小值=2(9+25)=68,故答案为:68.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三边关系,利用三角形三边关系找出PE的最小值是解题的关键.23.如图,已知⊙O的半径是2,点A,B在⊙O上,且∠AOB=90°,动点C在⊙O上运动(不与A,B重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是+1.【分析】取OB中点E得DE是△OBC的中位线,知DE=OC=1,即点D是在以E为圆心,1为半径的圆上,从而知求AD的最大值就是求点A与⊙E上的点的距离的最大值,据此求解可得.【解答】解:如图1,连接OC,Q取OB的中点E,连接DE.则OE=EB=OB=1.在△OBC中,DE是△OBC的中位线,∴DE=OC=1,∴EO=ED=EB,即点D是在以E为圆心,1为半径的圆上,∴求AD的最大值就是求点A与⊙E上的点的距离的最大值,如图2,当D在线段AE延长线上时,AD取最大值,∵OA=OB=2,∠AOB=90°,OE=EB=1,∴AE=,D'E=1,∴AD取最大值为AD'=,故答案为:.【点评】本题主要考查点与圆的位置关系,解题的关键是判断出点D的运动轨迹是以E 为圆心,1为半径的圆.24.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,当OM取最大值时,点M的坐标为(2+,2+).【分析】根据同圆的半径相等可知:点C在半径为2的⊙B上,根据三角形的中位线定理可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据平行线分线段成比例定理求得C的坐标,进而即可求得M的坐标.【解答】解:如图,∵点C为坐标平面内一点,BC=2,∴C在⊙B上,且半径为2,取OD=OA=4,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=4,∠BOD=90°,∴BD=4,∴CD=4+2,作CE⊥x轴于E,∵CE∥OB,∴,即,∴CE=DE=4+,∴OE=DE﹣OD=,∴C(,4+),∵M是AC的中点,∴M(2+,2+),故答案为:(2+,2+).【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.25.已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是在圆外.【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;若设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:∵⊙O的直径为6,∴⊙O的半径为3,∵点M到圆心O的距离为4,∴4>3,∴点M在⊙O外.故答案为:在圆外.【点评】本题考查了点与圆的位置关系的判断.解决此类题目的关键是首先确定点与圆心的距离,然后与半径进行比较,进而得出结论.26.在菱形ABCD中,∠D=60°,CD=4,以A为圆心,2为半径作⊙A,交对角线AC于点E,点F为⊙A上一动点,连接CF,点G为CF中点,连接BG,取BG中点H,连接AH,则AH的最大值为+.【分析】如图,连接BE,AF,EG,取BE的中点J,连接HJ,AJ.想办法求出JH,AJ 即可.【解答】解:如图,连接BE,AF,EG,取BE的中点J,连接HJ,AJ.。
九年级数学上册第二十四章圆典型例题(带答案)

九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。
九年级数学上册 (24.2.1 点和圆的位置关系) 同步达标训练习题(含答案)

达标训练基础·巩固·达标1.若⊙A 的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P( ) A.在⊙A 内 B.在⊙A 上 C.在⊙A 外 D.提示:本题两种方法,既可以画图,也可以计算A P 的长.∵A P=()()204248352222==+-+-<5,所以点P 在圆内.答案:A2.圆心为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A( )A.甲圆内B.乙圆外C.甲圆外,乙圆内D.提示:点A 在两圆组成的圆环内.答案:C3.已知⊙O 的半径为3.6 cm ,线段OA =257 cm ,则点A 与⊙O 的位置关系是( )A.A 点在⊙OB.A 点在⊙OC.A 点在⊙OD.提示:用“点到圆心的距离d 与半径r 的大小关系”来判定点与圆的位置关系.答案:C4.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O( )A.点P 在⊙OB.点P 在⊙OC.点P 在⊙OD.点P 在⊙O 上或⊙O提示:比较O P 与半径r 的关系.∵O P=5=22422+,O P 2=20. ∵r 2=25,∴O P <r.∴点P 在⊙O 内.答案:A5.在△ABC 中,∠C =90°,AC =BC =4 cm ,D 是AB 边的中点,以C 为圆心,4 cm 长为半径作圆,则A 、B 、C 、D 四点中在圆内的有( ) A.1 B.2 C.3 D.4提示:如右图,连接CD .∵D 为AB 的中点,∴CD =21AB .∵AB =24BC AC 22=+,∴CD =22<4.∵AC =BC =4C 和点D 在以C 为圆心,4 cm的圆的内部.答案:B6.已知a 、b 、c 是△ABC 三边长,外接圆的圆心在△ABC ( )A.a =15,b =12,c =1 B.a =5,b =12,c =12C.a =5,b =12,c =13D.a =5,b =12,c =14 提示:只有直角三角形的外心在边上(斜边中点).答案:C7.在R t △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,则它的外心与顶点C ( ) A.5cm B.6 cmC.7 cmD.8 cm提示:AB =2286 =10,它的外心是斜边中点,外心与顶点C 的距离是斜边的中线长为21AB =5 cm. 答案:A8.点A 在以O 为圆心,3 cm 为半径的⊙O 内,则点A 到圆心O 的距离d 的范围是_________.提示:根据点和圆的位置关系判定.答案:0≤d <39.如图24-2-5,在△ABC 中,∠ACB =90°,AC =2 cm ,BC =4 cm ,CM 为中线,以C 为圆心,5 cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有_________,在圆上的有________,在圆内的有__________.图24-2-5提示:AB =25 cm ,C M=5 cm.答案:点B 点M 点A 、C10.已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判定点P 与圆的位置关系,并说明理由.提示:利用点与圆的位置关系,由点到圆心距离与半径的大小比较.解:(1)当d=4 cm 时,∵d <r ,∴点P 在圆内.(2)当d=5 cm 时,∵d=r ,∴点P 在圆上.(3)当d=6 cm 时,∵d >r ,∴点P 在圆外.综合·应用·创新11.(经典回放)阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.图24-2-6①中的三角形被一个圆所覆盖,图24-2-6②中的四边形被两个圆所覆盖.图24-2-6(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是________cm (2)边长为1 cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是________cm ;(3)边长为2 cm ,1 cm 的矩形被两个半径都为r 的图所覆盖,r 的最小值是_________cm ,这两个圆的圆心距是____________cm .提示:图形被圆覆盖,圆一定大于图形的外接圆,它的最小半径就是外接圆半径.解:(1)正方形的外接圆半径,是对角线的一半,因此r 的最小值是22 cm.(2)等边三角形的外接圆半径是其高的23,故r 的最小值是33 cm. (3)r 的最小值是22 c m ,圆心距是1 cm.答案:(1)22 (2)33 (3)22 1 12.已知R t △ABC 的两直角边为a 和b ,且a 、b 是方程x 2-3x +1=0的两根,求R t △ABC积.提示:由a 、b 是直角三角形的两直角边,所以可求出斜边是22b a +,这样就得外接圆半径.根据直角三角形的外心是斜边中点,因此,其外接圆直径就是直角三角形的斜边.解:设Rt △ABC 的斜边为c ,∵a 、b 为方程x 2-3x +1=0∴a +b=3ab=1.由勾股定理,得c 2=a 2+b 2=(a +b )2-2ab=9-2=7.∴△ABC 的外接圆面积S=π·22⎪⎭⎫ ⎝⎛c =π∏=⨯∏=∏=47744422c c . 回顾·热身·展望13.(湖南常德模拟)有一个未知圆心的圆形工件(如图24-2-7).现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.图24-2-7提示:因为三角板有一个角是直角,所以可利用直角画90°的圆周角,由此可得直径,再画一个90°的圆周角,也能得到一直径,两直径的交点为圆心.答案:画法:(1)用三角板的直角画圆周角∠BDC =90°,∠EF H=90(2)连接BC 、E H ,它们交于点O .BC 为直径,点O 为圆心.14.(经典回放)电脑CP U 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄圆形片,叫“晶圆片” .现在为了生产某种CP U 芯片,需要长、宽都是1 cm 的正方形小硅片若干,如图24-2-8所示.如果晶圆片的直径为10.05 cm ,问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由.图24-2-8答案:可以切割出66个小正方形.方法一:(1)我们把10个小正方形排成一排,看成一个的矩形,这个矩形刚好能放入直径为10.05 m.题图中矩形ABCD .∵AB =1,BC =10,∴对角线AC 2=100+1=101<(10.05)2.(2)我们在矩形ABCD 的上方和下方可以分别放入9个小正方形.∵新加入的两排小正方形连同ABCD 的一部分可看成矩形EF GH矩形EF GH 的长为9,高为3,对角线E G 2=92+32=81+9<(10.05)2,但是新加入的这两排小正方形不能每排10个,因为:102+32=100+9>(10.05)2.(3)同理,∵82+52=64+25<(10.05)2,92+52=81+25=106>(10.05)2,∴可以在矩形EF GH 的上面和下面分别再排下8个小正方形,那么现在小正方形已有了5层.(4)再在原来的基础上,上下再加一层,共7层,新矩形的高可以看成是7,那么新加入的这两排,每排可以是7个,但不能是8个.∵72+72=49+49=98<(10.05)2,82+72=64+49=113>(10.05)2.(5)在第7层的基础上,上下再加一层,新矩形的高可以看成是9,这两层每排可以是4个,但不能是5个.∵42+92=16+81=97<(10.05)2,52+92=25+81=106>(10.05)2.现在总共排了9层,高度达到了9,上下各剩下约0.5 cm ABCD置不能调整,故再也放不下一个小正方形了.所以10+2×9+2×8+2×7+2×4=66(个).。
人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
华师大版初中数学九年级下册《27.2.1 点与圆的位置关系》同步练习卷(含答案解析

华师大新版九年级下学期《27.2.1 点与圆的位置关系》同步练习卷一.选择题(共16小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定2.下列说法:①过三点可以作圆;②同弧所对的圆周角度数相等;③一条对角线平分一组对角的平行四边形是菱形;④三角形的外心到三角形的三个顶点的距离相等.其中正确的有()A.1 个B.2 个C.3 个D.4 个3.在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是()A.10B.5C.4D.34.如图,已知⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,则∠C为()A.60°B.30°C.45°D.90°5.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是()A.3<r<4B.3<r<5C.3≤r≤5D.r>46.如图,△ABC为⊙O的内接等边三角形,BC=12,点D为上一动点,BE⊥OD于E,当点D由点B沿运动到点C时,线段AE的最大值是()A.2+2B.2﹣2C.6D.+27.如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外,⊙O内,⊙O上,则原点O的位置应该在()A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点8.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP 的周长的最小值为()A.5B.5+5C.10D.159.如图,△ABC外接圆的半径长为3,若∠OAC=∠ABC,则AC的长为()A.4B.2C.3D.310.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P 经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)11.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,)B.(,0)C.(0,2)D.(2,0)12.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能13.下列四边形:①平行四边形;②矩形;③菱形;④正方形,其中四个顶点一定能在同一个圆上的有()A.①②③④B.②③④C.②④D.③④14.如图,△ABC内接于⊙O,AD是△ABC边BC上的高,D为垂足.若BD=1,AD=3,BC=7,则⊙O的半径是()A.B.C.D.15.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC 的长为()A.B.C.D.16.如图,AE是△ABC的外接圆⊙O的直径,AD是△ABC的高,若AB=8,AC=10,AD=8,则AE的值为()A.10B.10C.12D.12二.填空题(共2小题)17.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件.18.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE于F,连接DF.若OE=2,DF=1,则△ABC的周长为.三.解答题(共22小题)19.如图,四边形ABCD中,∠A=90°,AB=5,BC=8,CD=6,AD=5,试判断点A、B、C、D是否在同一个圆上,并证明你的结论.20.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.21.如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD 为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.23.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段.(2)①在损矩形ABCD内是否存在点O,使得A、B、C、D四个点都在以O为圆心的同一圆上?如果有,请指出点O的具体位置;②如图,直接写出符合损矩形ABCD的两个结论(不能再添加任何线段或点).24.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.25.如图,直线l1、l2相交于点A,点B、点C分别在直线l1、l2上,AB=k•AC,连接BC,点D是线段AC上任意一点(不与A、C重合),作∠BDE=∠BAC=α,与∠ECF的一边交于点E,且∠ECF=∠ABC.(1)如图1,若k=1,且∠α=90°时,猜想线段BD与DE的数量关系,并加以证明;(2)如图2,若k≠1,且∠α≠90°时,猜想线段BD与DE的数量关系,并加以证明.26.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.27.如图,△ABC为⊙O的内接三角形.点D为劣弧上一点,连接AD、CD、CO、BO,延长CO交AB于点F,CD=BC.(1)求证:∠DAC=∠ACO+∠ABO;(2)点E在OC上,连接EB,若∠DAB=∠OBA+∠EBA,求证:EF=EB.28.已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,BC=6,AC=8,OE⊥AE,垂足为E,交⊙O于点P,连结BP交AC于D.(1)求PE的长;(2)求△BOP的面积.29.如图,在钝角△ABC中,∠C=45°,AE⊥BC,垂足为E点,且AB与AC的长度为方程x2﹣9x+18=0的两个根,⊙O是△ABC的外接圆.求:(1)⊙O的半径;(2)BE的长.30.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB.求证:AC=2DE.31.如图:△ABC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.32.如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、F,连接DE,CD,DE与BC相交于点G.(1)求证:DE是△ABC的外接圆的直径;(2)设OG=3,CD=2,求⊙O的半径.33.如图,⊙O是△ABC的外接圆,AC是直径,过O作OD∥BC交AB于点D.延长DO交⊙O于点E,作EF⊥AC于点F.连接DF并延长交直线BC于点G,连接EG.(1)求证:FC=GC;(2)求证:四边形EDBG是矩形.34.如图,⊙O为△ABC的外接圆,∠BAC=60°,H为边AC,AB上的高BD,CE 的交点,在BD上取点M,使BM=CH.(1)求证:∠BOC=∠BHC;(2)求证:△BOM≌△COH;(3)求的值.35.如图,△ABC内接于半圆O,AB为⊙O直径,点D是的中点,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:AP=DP.(2)若⊙O的半径为5,AD=6,求DP的长.36.已知,△ABC内接于⊙O,∠BAC=60°,AE⊥BC,CF⊥AB.AE,CF相交于点H,点D为弧BC的中点,连接HD,AD.求证:△AHD为等腰三角形.37.如图,AB是⊙O的直径,C为⊙O上的一点,CD⊥AB于点D,E为上一点,=,AE与CD相交于点F,与CB相交于点G.(1)求证:AE=2CD,(2)求证:点F是△ACG的外心.38.如图,已知锐角△ABC的外心为O,线段OA和BC的中点分别为点M、N,若∠OBN=2∠OMN,的度数为90°,求∠OMN的大小.39.如图.⊙O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交⊙O于点D,连接BD,CD.求证:BD=CD=DI.40.如图,在⊙O中,两条弦AC,BD垂直相交于点E,等腰△CFG内接于⊙O,FH为⊙O直径,且AB=6,CD=8.(1)求⊙O的半径;(2)若CF=CG=9,求图中四边形CFGH的面积.华师大新版九年级下学期《27.2.1 点与圆的位置关系》同步练习卷参考答案与试题解析一.选择题(共16小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】先根据勾股定理求出OP的长,再与⊙O的半径为5相比较即可.【解答】解:∵圆心P的坐标为(﹣3,4),∴OP==5.∵⊙O的半径为5,∴点P在⊙O上.故选:B.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.2.下列说法:①过三点可以作圆;②同弧所对的圆周角度数相等;③一条对角线平分一组对角的平行四边形是菱形;④三角形的外心到三角形的三个顶点的距离相等.其中正确的有()A.1 个B.2 个C.3 个D.4 个【分析】根据确定圆的条件,圆周角定理,菱形的判定,三角形外心的性质即可一一判断;【解答】解:①过三点可以作圆;错误,应该是过不在同一直线上的三点可以作圆;②同弧所对的圆周角度数相等;正确;③一条对角线平分一组对角的平行四边形是菱形;正确;④三角形的外心到三角形的三个顶点的距离相等.正确;故选:C.【点评】本题考查圆、圆周角定理、菱形的判定、三角形的外接圆的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是()A.10B.5C.4D.3【分析】首先根据勾股定理,得其斜边是10,再根据直角三角形的外接圆的半径是斜边的一半,得其半径是5.【解答】解:∵∠C=90°,AC=6,BC=8,∴BA===10,∴其外接圆的半径为5.故选:B.【点评】本题考查三角形的外接圆与外心、勾股定理等知识,解题的关键是记住直角三角形的斜边就是外接圆的直径.4.如图,已知⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,则∠C为()A.60°B.30°C.45°D.90°【分析】连接AO与BO,根据等边三角形的性质求出∠AOB的度数,再根据圆周角定理求出∠C的度数.【解答】解:连接AO和BO,∵⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,∴△AOB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=×60°=30°,故选:B.【点评】本题主要考查了三角形的外接圆与外心的知识,解题的关键是正确作出辅助线,此题难度一般.5.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是()A.3<r<4B.3<r<5C.3≤r≤5D.r>4【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故选:B.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.6.如图,△ABC为⊙O的内接等边三角形,BC=12,点D为上一动点,BE⊥OD于E,当点D由点B沿运动到点C时,线段AE的最大值是()A.2+2B.2﹣2C.6D.+2【分析】E在以M为圆心,BM为半径的圆上,由△ABC是等边三角形可得AH=BH=6,BH=6,BO=MH=4,BM=2,根据勾股定理可得AM的长即可求AE的最大值.【解答】解:如图连接BO,取BO中点M,连接ME∵DE⊥BE,M是BO中点∴ME=BO∴E在以M为圆心,BM为半径的圆上∴当A,M,E共线且E在AM的延长线上时,AE的值最大延长BO交AC于H∵△ABC为⊙O的内接等边三角形∴HB⊥AC,且△ABC是等边三角形,BC=12∴CH=AH=6∴AH=6,AO=4,OM=2,MH=4∴AM==2∴AE的最大值为2+2故选:A.【点评】本题考查了三角形外接圆和外心,等边三角形的性质,关键是找到E 的运动轨迹.7.如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外,⊙O内,⊙O上,则原点O的位置应该在()A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点【分析】画出图象,利用图象法即可解决问题;【解答】解:如图,观察图象可知,原点O的位置应该在点B与点C之间靠近B点,故选:C.【点评】本题考查点与圆的位置关系,解题的关键是理解题意,学会利用图象法解决问题.8.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP 的周长的最小值为()A.5B.5+5C.10D.15【分析】连接:OC,PC.先证明EF为OC的垂直平分线,从而可得到PC=OP,然后依据三角形的三边关系可知当点A、P、C在一条直线上时,AP+OP有最小值,然后由OA为定值可知当AP+OP最小时,△APO的周长最小.【解答】解:连接:OC,PC.∵AC=BC,AO=OB,OC=OC,∴△AOC≌△BOC,∴OC⊥AB.∵点E,F分别是边AC,BC的中点,∴EF∥AB.∴OC⊥EF,且CG=OG.∴GP为CO的垂直平分线,∴CP=OP.∴AP+OP=AP+CP.∴当点A、P、C在一条直线上时(点P与点E重合时),AP+OP有最小值.又∵OA为定值,∴当AP+OP最小时,△APO的周长有最小值.∴△APO的周长最小值=AO+AC=AO+OA=5+5.故选:B.【点评】本题主要考查的是三角形的外接圆与外心、找出△APO周长取得最小值的条件是解题的关键.9.如图,△ABC外接圆的半径长为3,若∠OAC=∠ABC,则AC的长为()A.4B.2C.3D.3【分析】延长AO交圆于H,连接CH、OC,根据圆周角定理、结合题意得到∠OAC=∠CHO,得到∠OAC=45°,CO⊥AN,根据余弦的概念计算即可.【解答】解:延长AO交圆于H,连接CH、OC,由圆周角定理得,∠AHC=∠ABC,∠ACH=90°,∵∠OAC=∠ABC,∴∠OAC=∠CHO,∴CA=CH,又AO=OH,∴∠OAC=45°,CO⊥AN,故选:D.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、解直角三角形的知识是解题的关键.10.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P 经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)【分析】根据题意可知点P的横坐标为4,设点P的坐标为(4,y),根据PA=PC 列出关于y的方程,解方程得到答案.【解答】解:∵⊙P经过点A、B、C,∴点P在线段AB的垂直平分线上,∴点P的横坐标为4,设点P的坐标为(4,y),作PE⊥OB于E,PF⊥OC与F,由题意得,=,解得,y=,故选:C.【点评】本题考查的是确定圆的条件,解题的关键是理解经过不在同一直线上的三点作圆,圆心是过任意两点的线段的垂直平分线的交点.11.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,)B.(,0)C.(0,2)D.(2,0)【分析】直接根据相交弦定理得出OC2=OA•OB,即可求出OC的长,即可得出C 点坐标.【解答】解:如图,连结AC,CB.依相交弦定理的推论可得:OC2=OA•OB,即OC2=1×3=3,解得:OC=或﹣(负数舍去),故C点的坐标为(0,).故选:A.【点评】本题考查了确定圆的条件,坐标与图形性质,注意辅助线的作法.12.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【点评】本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.13.下列四边形:①平行四边形;②矩形;③菱形;④正方形,其中四个顶点一定能在同一个圆上的有()A.①②③④B.②③④C.②④D.③④【分析】根据四个点共圆的条件:对角互补,进行判断.【解答】解:平行四边形、菱形的对角不一定互补,不一定能够四个点共圆;矩形、正方形的对角互补,四点一定共圆.故选:C.【点评】掌握四点共圆的条件以及特殊四边形的性质.14.如图,△ABC内接于⊙O,AD是△ABC边BC上的高,D为垂足.若BD=1,AD=3,BC=7,则⊙O的半径是()A.B.C.D.【分析】过点A作直径AH,连接CH,根据勾股定理分别求出AB、AC,证明△ABD∽△AHC,根据相似三角形的性质列出比例式,计算即可.【解答】解:过点A作直径AH,连接CH,∵BD=1,BC=7,∴CD=6.∵AD⊥BC,∴AB==,AC==3,∵AH为⊙O的直径,∴∠ACH=90°,∴∠ADB=∠ACH,由圆周角定理得,∠B=∠H,∴△ABD∽△AHC,∴=,即=,解得,AH=5,∴⊙O的半径=,故选:C.【点评】本题考查的是三角形的外接圆与外心,掌握相似三角形的判定和性质、圆周角定理是解题的关键.15.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC 的长为()A.B.C.D.【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.【解答】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故选:D.【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.16.如图,AE是△ABC的外接圆⊙O的直径,AD是△ABC的高,若AB=8,AC=10,AD=8,则AE的值为()A.10B.10C.12D.12【分析】根据圆周角定理得到∠ABE=90°,证明△ABE∽△ADC,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵AE是△ABC的外接圆⊙O的直径,∴∠ABE=90°,∵AD是△ABC的高,∴∠ADC=90°,∴∠ABE=∠ADC,又∠E=∠C,∴△ABE∽△ADC,∴=,∴AE==10,故选:B.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.二.填空题(共2小题)17.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件5m+2n≠9.【分析】能确定一个圆就是不在同一直线上,首先确定直线AB的解析式,然后点C不满足求得的直线即可.【解答】解:设直线AB的解析式为y=kx+b,∵A(1,2),B(3,﹣3),∴解得:k=﹣,b=,∴直线AB的解析式为y=﹣+,∵点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,∴点C不在直线AB上,∴5m+2n≠9,故答案为:5m+2n≠9.【点评】本题考查了确定圆的条件及坐标与图形的性质,能够了解确定一个圆时三点不共线是解答本题的关键.18.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE于F,连接DF.若OE=2,DF=1,则△ABC的周长为6+2.【分析】由BC、OE互相平分可证明四边形BECO为平行四边形,由OC=OB可得BECO为菱形,可得∠BOD=60°,∠BAE=∠EAC=30°,CF⊥AE于F,可证△AGC 为等边三角形,F为中点,则由中位线性质可得BG=2DF.在Rt△BHC中利用勾股定理可求GH,进而得到AB、AC,得到△ABC的周长.【解答】解:延长CF交AB于点G,过C作CH⊥AB于H,连BO.∵BC、OE互相平分∴四边形BECO为平行四边形∵OB=OC∴四边形BECO为菱形∴=∵OE=2∴Rt△BOD中,tan∠BOD=∴∠BOD=60°∴∠BAE=∠EAC=30°∵CF⊥AE∴F为GC中点,△AGC为等边三角形∴BG=2DF=2在Rt△BCH中BH2+HC2=BC2∴(2+GH)2+()2=62解得GH=(舍去)或GH=,∴AG=AC=﹣1+,∴△ABC的周长为6+2.故答案为:6+2.【点评】本题是圆的综合题,考查了圆的有关计算、菱形判定和性质、中位线性质以及勾股定理,解答关键是时数形结合.三.解答题(共22小题)19.如图,四边形ABCD中,∠A=90°,AB=5,BC=8,CD=6,AD=5,试判断点A、B、C、D是否在同一个圆上,并证明你的结论.【分析】连接BD,在△ABD中,利用勾股定理求得BD的长,然后利用勾股定理的逆定理证明△BCD是直角三角形即可证得.【解答】解:A、B、C、D在同一个圆上.证明:连接BD.在直角△ABD中,BD==10,在△BCD中,∵82+62=100,即BC2+CD2=BD2,∴△BCD是直角三角形.∴B、C、D在以BD为直径的圆上.又∵△ABD是直角三角形,则A、B、D在以BD为直径的圆上.∴点A、B、C、D在以BD为直径的圆上.【点评】本题考查了直角三角形的性质,直角三角形的三个顶点在以斜边为直径的圆上.20.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.【分析】(1)根据题中给出的定义,由于∠DAB和∠DCB不是直角,因此AC就是损矩形的直径.(2)根据直角三角形斜边上中线的特点可知:此点应是AC的中点,那么可作AC的垂直平分线与AC的交点就是四边形外接圆的圆心.(3)本题可用面积法来求解,具体思路是用四边形ABCD面积的不同表示方法来求解,四边形ABCD的面积=三角形ABD的面积+三角形BCD的面积=三角形ABC的面积+三角形ADC的面积;三角形ABD的面积已知了AB的长,那么可过D作AB边的高,那么这个高就应该是BD•sin45°,以此可得出三角形ABD 的面积;三角形BDC的面积也可用同样的方法求解,只不过AB的长,换成了BC;再看三角形ABC的面积,已知了AB的长,可用含BC的式子表示出ABC的面积;而三角形ACD的面积,可用正方形面积的四分之一来表示;而正方形的边长可在直角三角形ABC中,用勾股定理求出.因此可得出关于BC 的方程,求解即可得出BC的值.【解答】解:(1)只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.因此AC是该损矩形的直径;(2)作图如图:∵点P为AC中点,∴PA=PC=AC.∵∠ABC=∠ADC=90°,∴BP=DP=AC,∴PA=PB=PC=PD,∴点A、B、C、D在以P为圆心,AC为半径的同一个圆上;(3)∵菱形ACEF,∴∠ADC=90°,AE=2AD,CF=2CD,∴四边形ABCD为损矩形,∴由(2)可知,点A、B、C、D在同一个圆上.∵BD平分∠ABC,∴∠ABD=∠CBD=45°,∴,∴AD=CD,∴四边形ACEF为正方形.∵BD平分∠ABC,BD=,∴点D到AB、BC的距离h为4,=AB×h=2AB=6,∴S△ABDS△ABC=AB×BC=BC,S△BDC=BC×h=2BC,S△ACD=S正方形ACEF=AC2=(BC2+9),=S△ABC+S△ADC=S△ABD+S△BCD∵S四边形ABCD∴BC+(BC2+9)=6+2BC∴BC=5或BC=﹣3(舍去),∴BC=5.【点评】本题主要考查了菱形的性质,正方形的判定,圆的内接四边形等知识点.(3)中如果无法直接求出线段的长,可通过特殊的三角形用面积法来求解.21.如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD 为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.【分析】(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,那么就求得了点N的坐标;(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.【解答】解:(1)从图中我们可以发现四边形ADMB就是一个损矩形.∵点M是正方形对角线的交点,∴∠BMD=90°,∵∠BAD=90°,∴四边形ADMB就是一个损矩形.(2)取BD中点H,连接MH,AH.∵四边形OABC,BDEF是正方形,∴△ABD,△BDM都是直角三角形,∴HA=BD,HM=BD,∴HA=HB=HM=HD=BD,∴损矩形ABMD一定有外接圆.(3)∵损矩形ABMD一定有外接圆⊙H,∴∠MAD=∠MBD,∵四边形BDEF是正方形,∴∠MBD=45°,∴∠MAD=45°,∴∠OAN=45°,∵OA=1,∴ON=1,∴N点的坐标为(0,﹣1).(4)延长AB交MG于点P,过点M作MQ⊥x轴于点Q,设点MG=x,则四边形APMQ为正方形,∴PM=AQ=x﹣1,∴OG=MQ=x﹣1,∵△MBP≌△MDQ,∴DQ=BP=CG=x﹣2,∴MN2=2x2,ND2=(2x﹣2)2+12,MD2=(x﹣1)2+(x﹣2)2,∵四边形DMGN为损矩形,∴2x2=(2x﹣2)2+12+(x﹣1)2+(x﹣2)2,∴2x2﹣7x+5=0,∴x=2.5或x=1(舍去),∴OD=3,∴D点坐标为(3,0).【点评】解决本题的关键是理解损矩形的只有一组对角是直角的性质,综合考查了四点共圆的判定及勾股定理的应用.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【分析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.【解答】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)【点评】本题主要考查等弧对等弦,及确定一个圆的条件.23.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC.(2)①在损矩形ABCD内是否存在点O,使得A、B、C、D四个点都在以O为圆心的同一圆上?如果有,请指出点O的具体位置;②如图,直接写出符合损矩形ABCD的两个结论(不能再添加任何线段或点).【分析】△ADC和△ABC都是直角三角形,且有共同的斜边,直角三角形的三个顶点在以斜边为直径的圆上.因而ABCD四个顶点共圆.【解答】解:(1)线段AC;(2)①在损矩形ABCD内存在点O,使得A、B、C、D四个点都在以O为圆心的同一个圆上,O是线段AC的中点.②ABCD是圆内接四边形;∠ADB=∠ACB.【点评】本题主要考查了直角三角形的性质,三个顶点在以斜边为直径的圆上.24.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.【分析】要求证:点E是过A,B,D三点的圆的圆心,只要证明AE=BE=DE即可,可以根据等角对等边可以证得.【解答】证明:∵点D在∠BAC的平分线上,∴∠1=∠2.(1分)又∵DE∥AC,∴∠2=∠3,∴∠1=∠3.(2分)∴AE=DE.(3分)又∵BD⊥AD于点D,∴∠ADB=90°.(4分)∴∠EBD+∠1=∠EDB+∠3=90°.(5分)∴∠EBD=∠EDB.(6分)∴BE=DE.(7分)∴AE=BE=DE.(8分)∵过A,B,D三点确定一圆,又∠ADB=90°,∴AB是A,B,D所在的圆的直径.(9分)∴点E是A,B,D所在的圆的圆心.(10分)【点评】本题主要考查了等腰三角形的判定方法,等角对等边.25.如图,直线l1、l2相交于点A,点B、点C分别在直线l1、l2上,AB=k•AC,连接BC,点D是线段AC上任意一点(不与A、C重合),作∠BDE=∠BAC=α,与∠ECF的一边交于点E,且∠ECF=∠ABC.(1)如图1,若k=1,且∠α=90°时,猜想线段BD与DE的数量关系,并加以证明;(2)如图2,若k≠1,且∠α≠90°时,猜想线段BD与DE的数量关系,并加以证明.【分析】(1)连接BE.若k=1,且∠α=90°时,要求线段BD与DE的数量关系,可以通过证明△BED∽△BCA得出;(2)连接BE.若k≠1,且∠α≠90°时,要求线段BD与DE的数量关系,可以通过证明△BED∽△BCA得出.【解答】证明:(1)连接BE.∵∠ECF=∠ABC,∠ECF+∠BCE+∠BCA=∠ABC+∠BAC+∠BCA=180°,∴∠BCE=∠BAC;∵∠BDE=∠BAC=α=90°,∴B、E、D、C四点共圆,。
(华师大版)九年级数学下:27.2.1点与圆的位置关系(含答案)

27.2.1点与圆的位置关系一.选择题(共8小题)1.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是()A.点到A在⊙O上B.点A在⊙O内 C.点A在⊙O外 D.点A与圆心O重合3.已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A.在⊙O外 B.在⊙O上 C.在⊙O内 D.不能确定4.在⊙O中,圆心O在坐标原点上,半径为,点P的坐标为(4,5),那么点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.不能确定5.关于半径为5的圆,下列说法正确的是()A.若有一点到圆心的距离为5,则该点在圆外B.若有一点在圆外,则该点到圆心的距离不小于5C.圆上任意两点之间的线段长度不大于10D.圆上任意两点之间的部分可以大于10π6.已知⊙O的半径为3cm,点A到圆心O的距离为4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上 C.点A在⊙O外 D.不能确定7如图,动点M、N分别在直线AB与CD上,且AB∥CD,∠BMN与∠MND的角平分线相交于点P,若以MN 为直径作⊙O,则点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O内 C.点P在⊙O上 D.以上都有可能8.在Rt△ABC中,∠C=90°,AC=3,BC=4,CP、CM分别是AB上的高和中线,如果圆A是以点A为圆心,半径长为2的圆,那么下列判断正确的是()A.点P,M均在圆A内B.点P、M均在圆A外C.点P在圆A内,点M在圆A外D.点P在圆A外,点M在圆A内二.填空题(共6小题)9.已知⊙O的半径为5,点A在⊙O外,那么线段OA的取值范围是_________.10.已知⊙P在直角坐标平面内,它的半径是5,圆心P(﹣3,4),则坐标原点O与⊙P的位置关系是_________.11.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,分别以A、B为圆心的两圆外切,如果点C在圆A内,那么圆B 的半径长r的取值范围是_________.12.直角三角形的两直角边分别3,4;则它的外接圆半径R=_________.13.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是_________.14.已知⊙A的半径为5,圆心A(3,4),坐标原点O与⊙A的位置关系是_________.三.解答题(共6小题)15.如图,已知AD既是△ABC的中线,又是角平分线,请判断:(1)△ABC的形状;(2)AD是否过△ABC外接圆的圆心O,⊙O是否是△ABC的外接圆,并证明你的结论.16.如图,点B在y轴上,BA∥x轴,点A的坐标为(5.5,4),⊙A的半径为2.现有点P从点B出发沿射线BA 运动.(1)当点P在⊙A上时,请直接写出它的坐标;(2)设点P的横坐标为x,连接OP,试探究射线OP与⊙A的位置关系,并说明理由.17.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.18.如图,AE是△ABC外接圆O的直径,AD是△ABC的边BC上的高,EF⊥BC,F为垂足.(1)求证:BF=CD;(2)若CD=1,AD=3,BD=6,求⊙O的直径.19.如图,将△AOB置于直角坐标系中,O为原点,A(3,0),∠ABO=60°.若△AOB的外接圆与y轴交于点D.(1)直接写出∠ADO的度数.(2)求△AOB的外接圆半径r.20.如图,△ABC中,点C的坐标为(2,0),点A坐标为(6,3)(1)点B关于x轴的对称点B′坐标为_________(2)连接AB′,线段AB′的长为_________(3)△ABB′外接圆的圆心坐标为_________.27.2.1点与圆的位置关系参考答案与试题解析一.选择题(共8小题)1.解答:解:∵M(2,0),P(﹣2,3),∴MP==5,∵圆M的半径为4,∴点P在圆外,故选C.2.解答:解:∵⊙O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.3.解答:解:根据⊙O的直径为3cm,∴半径为1.5cm,点P到圆心O的距离OP=2cm>1.5cm,所以点P在⊙O外.故选:A.4.解答:解:∵点P的坐标为(4,5),∴PO==,∵半径为,∴半径<,∴点P在圆外,故选A.5.解答:解:A、关于半径为5的圆,有一点到圆心的距离为5,则该点在圆上,故此选项错误;B、关于半径为5的圆,若有一点在圆外,则该点到圆心的距离大于5,故此选项错误;C、圆上任意两点之间的线段长度不大于10,此选项正确;D、圆上任意两点之间的部分不可以大于10π,故此选项错误;故选:C.6.解答:解:OA>3cm,则点A与⊙O的位置关系是:点A在圆外.故选C.7.解答:解:∵AB∥CD,∴∠BMN+∠MND=180°,∵∠BMN与∠MND的平分线相交于点P,∴∠PMN=∠BMN,∠PNM=∠MND,∴∠PMN+∠PNM=90°,∴∠MPN=180°﹣(∠PMN+∠PNM)=180°﹣90°=90°,∴以MN为直径作⊙O时,OP=MN=⊙O的半径,∴点P在⊙O上.故选C.8.解答:解:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵CP、CM分别是AB上的高和中线,∴AB•CP=AC•BC,AM=AB=2.5,∴CP=,∴AP==1.8,∵AP=1.8<2,AM=2.5>2,∴点P在圆A内、点M在圆A外故选C.二.填空题(共6小题)9.解答:解:∵⊙O的半径为5,点A在⊙O外,∴线段OA的取值范围是OA>5.故答案为:OA>5.10.解答:解:由勾股定理得:OP==5,∵⊙P的半径为5,∴点O在⊙P上.故答案为点O在⊙P上.11.解答:解:∵Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,AC==,∵以A、B为圆心的两圆外切,∴两圆的半径的和为2,∵点C在圆A内,∴圆B的半径长r的取值范围是<r<2,故答案为:<r<2.12.解答:解:∵由勾股定理得:斜边==5,∴直角三角形的外接圆的半径R=×5=2.5,故答案为:2.5.解答:解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,故能够完全覆盖这个三角形的最小圆面的半径是:.故答案为:.14.解答:解:∵点A的坐标为(4,3),∴OA==5,∵半径为5,而5=5,∴点O在⊙A上.故答案为:在⊙A上.三.解答题(共6小题)15.解答:(1)答:△ABC是等腰三角形.证明:过点D作DE⊥AB于点E,DF⊥AC于点F.∵AD是角平分线,∴DE=DF.又∵AD是△ABC的中线,∴BD=CD,在Rt△BDE与Rt△CDF中,,∴△BDE≌△CDF(HL).∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形;(2)答:AD过△ABC的外接圆圆心O,⊙O是△ABC的外接圆.证明:∵AB=AC,AD是角平分线,∴AD⊥BC,又∵BD=CD,∴AD过圆心O.作边AB的中垂线交AD于点O,交AB于点M,则点O就是△ABC的外接圆圆心,∴⊙O是△ABC的外接圆.解答:解:(1)点P的坐标为(3.5,4)或(7.5,4);(2)过点O作圆A的切线OM,切点为M,连接AM,则AM⊥OM,由题意可知:OM与BA的交点为P,BP=x,当点P在点A的左侧时,x<5.5点A的坐标为(5.5,4),AP=5.5﹣x,OB=4,圆A的半径为2,∴AM=2,BA∥x轴,∴∠OBP=90°,∴∠AMP=∠OBP∠APM=∠OPB,∴△OBP∽△AMP,∴得OP=11﹣2x,Rt△OBP中,(11﹣2x)2=42+x2,解得:x=3或x=(舍去)当点P在点A的右侧时,x>5.5,同理可解得x=3(舍去)或x=,∴当x=3或时,直线OP与圆A相切;当0<x<3或x>时相离;当3<x<直线与圆相交.17.解答:(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)18.解答:(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM﹣DM=BM﹣MF,即BF=CD.(2)解:连接BE,则∠ABE=90°;在Rt△ABD中,AD=3,BD=6,由勾股定理得:AB==3;同理可求得:AC=.∵∠C=∠AEB,∠ADC=∠ABE=90°,∴△ADC∽△ABE,∴,即,解得AE=5;即⊙O的直径为5.19.解答:解:(1)∠ADO=60°;(2)设三角形AOB外接圆的圆心为M,连接OM,过M作MN⊥OA于N,那么∠OMN=∠OBA=60°,ON=OA=;直角三角形OMN中,OM=ON÷sin60°=÷=,因此三角形AOB外接圆的半径r=.20.解答:解:(1)根据A、C的坐标画出平面直角坐标系,如图,∵A(6,3),C(2,0),∴B的坐标是(2,3),∴点B关于x轴的对称点B′的坐标是(2,﹣3),故答案为:(2,﹣3);(2)在Rt△ABB′中,AB=6﹣2=4,BB′=3+3=6,由勾股定理得:AB′==2,故答案为:2;(3)∵△ABB′是直角三角形,∴△ABB′外接圆的圆心D在AB′的中点上,∵AB∥x轴,BB′∥y轴,A(6,3),B(2,3),B′(2,﹣3),∴D点的横坐标是×(6﹣2)+2=4,D点的纵坐标是0,即△ABB′外接圆的圆心坐标是(4,0),故答案为:(4,0).。
人教版九级上《点和圆的位置关系》专题练习题含答案

人教版九年级数学上册第二十四章圆24.2点和圆、直线和圆的位置关系点和圆的位置关系专题练习题1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( )A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( )A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定5.过一点可以作_________个圆;过两点可以作_______个圆,这些圆的圆心在两点连线的___________________上;过不在同一条直线上的三点可以作________个圆.6.下列关于确定一个圆的说法中,正确的是( )A.三个点一定能确定一个圆B.以已知线段为半径能确定一个圆C.以已知线段为直径能确定一个圆D.菱形的四个顶点能确定一个圆7.下列命题中,错误的有( )①三角形只有一个外接圆;②三角形的外心是三角形三条边的垂直平分线的交点;③等边三角形的外心也是其三边的垂直平分线、高与角平分线的交点;④任何三角形都有外心.A.3个B.2个C.1个D.0个8.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点PB.点QC.点RD.点M9.直角三角形的外心是________的中点,锐角三角形的外心在三角形的_________,钝角三角形的外心在三角形的__________.10.如图,一只猫观察到一老鼠洞的三个洞口A,B,C,这三个洞口不在同一条直线上,请问这只猫应该在什么地方才能最省力地同时顾与三个洞口?作出这个位置.11.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°12.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,当点B在⊙A 内时,实数a的取值范围在数轴上表示正确的是( )13.在Rt△ABC中,AB=6,BC=8,则这个三角形的外接圆的直径为( )A.5 B.10C.5或4 D.10或814.(2016·宜昌)在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为( )A.E,F,G B.F,G,HC.G,H,E D.H,E,F15.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是_____________.16.已知⊙O的半径为1,点P与圆心O的距离为d,且方程x2-2x+d=0没有实数根,则点P 与⊙O的位置关系是_________________.17.已知⊙O1过坐标原点O,点O1的坐标为(1,1),试判断点P(-1,1),Q(1,0),R(2,2)与⊙O1的位置关系,并说明理由.18.如图,在△ABC中,∠ACB=90°,AB=10,BC=8,CD⊥AB于D,O为AB的中点.(1)以C为圆心,6为半径作圆C,试判断A,D,B与⊙C的位置关系;(2)⊙C的半径为多少时,点O在⊙C上?(3)⊙C的半径为多少时,点D在⊙C上?19.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,DB长为半径的圆上,并说明理由.答案:1. D2. A3. 24. O B ,D C5. 无数 无数 垂直平分线 一6. C7. D8. B9. 斜边内部外部10. 解:图略.连接AB ,BC ,分别作线段AB ,BC 的垂直平分线,其交点O 即为所求11. D12. D13. D14. A15. 3<r<516. 点P 在⊙O 外17. 解:⊙O 1的半径r =2,PO 1=2>2,QO 1=1<2,RO 1=2,故点P 在⊙O 1外,点Q 在⊙O 1内,点R 在⊙O 1上18. 解:(1)∵CA=6,CD =245<6,CB =8>6,∴点A 在⊙C 上,点D 在⊙C 内,点B 在⊙C 外 (2)∵OC =12AB =5,∴⊙C 的半径为5时,点O 在⊙C 上 (3)∵C D =245,∴⊙C 的半径为245时,点D 在⊙C 上 19. 解:(1)∵AD 为圆的直径,AD ⊥BC ,∴BD ︵=CD ︵,∴BD =CD(2)B ,E ,C 三点在以D 为圆心,DB 长为半径的圆上,理由:∵BE 平分∠ABC ,∴∠ABE =∠EBF ,∵∠BED =∠BAD+∠ABE ,∠EBD =∠EBF +∠CBD ,又∵∠CBD=∠CAD=∠BAD ,∴∠BED =∠EBD ,∴DE =DB ,又∵DB=DC ,∴DB =DE =DC ,∴B ,E ,C 三点在以D 为圆心,DB 长为半径的圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点与圆的位置关系练习一.选择题(共22小题)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断2.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC 与∠BOC互补,则弦BC的长为()A.4 B.3 C.2 D.3.⊙O的直径为15cm,O点与P点的距离为8cm,点P的位置()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定4.已知⊙O的半径为4cm,点A到圆心O的距离为3cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定5.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,﹣3).则经画图操作可知:△ABC的外心坐标应是()A.(0,0) B.(1,0) C.(﹣2,﹣1)D.(2,0)6.⊙O的半径为4,圆心到点P的距离为d,且d是方程x2﹣2x﹣8=0的根,则点P与⊙O的位置关系是()A.点P在⊙O内部 B.点P在⊙O上C.点P在⊙O外部 D.点P不在⊙O上7.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm8.已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定9.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3) B.(3,2) C.(1,3) D.(3,1)10.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P 与⊙O的位置关系是()A.点P在⊙O内B.点P的⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.612.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O 与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定13.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°14.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cm C.5.5cm D.2.5cm或5.5cm15.下列语句中,正确的有()个.(1)三点确定一个圆(2)平分弦的直径垂直于弦(3)相等的弦所对的弧相等(4)相等的圆心角所对的弧相等.A.0个 B.1个 C.2个 D.3个16.若点B(a,0)在以点A(1,0)为圆心,以3为半径的圆内,则a的取值范围为()A.﹣2<a<4 B.a<4 C.a>﹣2 D.a>4或a<﹣217.下列说法正确的是()A.一个点可以确定一条直线B.两个点可以确定两条直线C.三个点可以确定一个圆D.不在同一直线上的三点确定一个圆18.在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点B在⊙D内C.点C在⊙D上D.无法确定19.⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为()A.B.C.D.20.若一个三角形的外心在它的一条边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形21.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4,则⊙O的直径等于()A.B.3 C.5 D.722.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°二.填空题(共7小题)23.已知三角形三边长分别为1cm、cm和cm,则此三角形的外接圆半径为cm.24.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.25.直角三角形的两直角边长分别为6和8,它的外接圆的半径是.26.如图,在直角坐标系中,点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),则△ABC外接圆的圆心坐标为.27.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是=度.28.三角形的外心是三角形的交点.29.如图,点O是△ABC的外心,且∠BOC=110°,则∠A=.三.解答题(共1小题)30.已知:如图,△ABC的外接圆⊙O的直径为4,∠A=30°,求BC的长.点与圆的位置关系练习参考答案与试题解析一.选择题(共22小题)1.【解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P 在⊙0内,故选:A.2.【解】∵∠BAC与∠BOC互补,∴∠BAC+∠BOC=180°,∵∠BAC=∠BOC,∴∠BOC=120°,过O作OD⊥BC,垂足为D,∴BD=CD,∵OB=OC,∴OB平分∠BOC,∴∠DOC=∠BOC=60°,∴∠OCD=90°﹣60°=30°,在Rt△DOC中,OC=2,∴OD=1,∴DC=,∴BC=2DC=2,故选:C.3.【解】∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选:A.4.【解】∵圆的半径是4cm,点A到圆心的距离是3cm,小于圆的半径,∴点A 在圆内.故选:A.5.【解】∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选:C.6.【解】解方程x2﹣2x﹣8=0,得x=4或﹣2,∵d>0,∴d=4,∵⊙O的半径为4,∴点P在⊙O上.故选:B.7.【解】分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选:C.8.【解】∵OP=10,A是线段OP的中点,∴OA=5,小于圆的半径6,∴点A在圆内.故选:C.9.【解】如图所示:∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2),∴△ABC为直角三角形,∠BAC=90°,∴△ABC的外接圆的圆心是斜边BC的中点,∴△ABC外接圆的圆心坐标是(,),即(3,1).故选:D.10.【解】∵圆心O的坐标为(0,0),点P的坐标为(4,2),∴OP==<5,因而点P在⊙O内.故选:A.11.【解】由勾股定理,得BD==5.在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C 中至少有一个点在圆内,且至少有一个点在圆外,得3<r<5,故选:B.12.【解】∵圆心P的坐标为(5,12 ),∴OP==13,∴OP=r,∴原点O在⊙P上.故选:B.13.【解】如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.14.【解】当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.15.【解】(1)不在同一直线上的三点确定一个圆,故本小题错误;(2)平分弦的直径,当被平分的弦是直径是直径不垂直于弦,故本小题错误;(3)相等的弦不在同圆或等圆中,所对的弧不一定相等,故本小题错误;(4)相等的圆心角不在同圆或等圆中所对的弧不一定相等,故本小题错误;综上所述,正确的有0个.故选:A.16.【解】∵点B(a,0)在以点A(1,0)为圆心,以3为半径的圆内,∴|a﹣1|<3,∴﹣2<a<4.故选:A.17.【解】A、根据两点确定一条直线可知说法错误;B、两点可以确定两条直线,故说法错误;C、不在同一直线上的三点确定一个圆,故说法错误;D、正确;故选:D.18.【解】∵D是BC的中点,即DC=BC÷2=3cm,而圆的半径为3cm,∴点C在⊙D上.故选C.19.【解】连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB•cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故选:C.20.【解】锐角三角形的外心在三角形的内部,直角三角形的外心是其斜边的中点,钝角三角形的外心在其三角形的外部;由此可知若三角形的外心在它的一条边上,那么这个三角形是直角三角形.故选:B.21.【解】作直径AE,连接BE,∵AD⊥BC,∴△ADC是直角三角形,由勾股定理得AD==4.∵∠ACD=∠AEB,(同弧圆周角相等)∠ABE=90°,(半圆上的圆周角是直角)∴△ADC∽△ABE,AE:AC=AB:AD,∴AE==5,则直径AE=5.故选:C.22.【解】连接OC,由圆周角定理,得∠AOC=2∠B=120°,△OAC中,OA=OC,∴∠CAO=∠ACO=30°.故选:B.二.填空题(共7小题)23.【解】∵三角形的三条边长分别为1cm、cm和cm,12+()2=()2,∴此三角形是以cm为斜边的直角三角形,∴这个三角形外接圆的半径为÷2=(cm).故答案为:.24.【解】连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.25.【解】∵直角边长分别为6和8,∴斜边是10,∴这个直角三角形的外接圆的半径为5.故答案为:5.26.【解】根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,∵点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),∴O1的坐标是(2,1).故答案为:(2,1).27.【解】连接OC,∴∠AOC=2∠B=120°,∵OA=OC,∴∠CAO=∠ACO==30°.故答案为:30.28.【解答】证明:如图,∵OA=OB=OC,∴点O是△ABC三边垂直平分线的交点;(线段的垂直平分线上的点到线段两端点的距离相等)故答案为:三条边垂直平分线.29.【解】如图所示:∵∠BOC=110°,∴∠A=∠BOC=×110°=55°.故答案为:55°.三.解答题(共1小题)30.【解】作直径CD,连接BD.∵CD是直径,∴∠CBD=90°.又∠D=∠A=30°,CD=4,∴BC=2,答:BC的长为2.第11页(共11页)。