冷挤压工艺
冷挤压工艺

冷挤压工艺
冷挤压工艺是一种金属成形工艺,它通过压缩来形成金属件的外形和尺寸。
这种工艺只适用于软的金属材料,如铜、铝等,因为它们可以通过冷挤压工艺改变形状而不受破坏。
此外,这种工艺可以在短时间内制造出平整、均匀的产品。
在冷挤压工艺的操作过程中,首先将铝件(或其他金属材料)放入模具中,然后将模具夹具连接在一起,最后使用压模机来压缩模具内金属件。
在压模过程中,金属件会发生变形、锻炼和拉伸等过程,使其形状和尺寸符合模具的要求。
冷挤压工艺的应用范围极为广泛,它可以用于制造各种各样的金属件、元件和装配,其中包括电子产品、电器、机械件、汽车零件、建筑产品、包装和装修材料等等。
它是一种低成本、高效率的成形方式,可以大大节省时间、费用和材料,并且制造出的产品精度高、性能稳定,有助于提高产品质量。
冷挤压工艺有一些缺点,其中最明显的就是对模具的要求较高。
由于这种工艺要求连续进行压模,模具必须能够维持一定程度的均匀度,这样才能保证产品的质量。
另外,由于工艺要求从不同的角度来看都较为复杂,因此操作工艺也比较复杂,操作者必须具备相应的技能,以保证操作的正确性。
从总体上来说,冷挤压工艺是一种金属成形工艺,它通过压缩来形成金属件的外形和尺寸。
这种工艺有很多优点,如低成本、高效率、可以制造出平整、均匀的产品,并可以制造出高质量的产品。
但是,
它也存在一些弊端,如要求较高的模具性能和较复杂的操作工艺。
因此,使用冷挤压工艺制造产品时,首先要考虑到它的优缺点,以更好地发挥它的优势。
冷挤压工艺流程

冷挤压工艺流程冷挤压工艺是指将金属或其他材料通过模具的力学加工,把原材料变形成各种形状的加工工艺。
冷挤压使金属材料获得一定形状,主要用于生产钣金件,机械件,光伏电池框架等零件,广泛应用于汽车,电子,家具,农机和船舶等行业。
冷挤压工艺流程主要包括:材料称重、材料拉伸、材料加热、模具加热、模具安装、金属加工、工件测量、正模配合、模具开合、冷挤压成空、工件表面处理、模具清理等几个主要环节。
1.料称重:材料称重是指将冷挤压所需的不同形状的原材料备好,根据模具的设计尺寸和车间工艺要求做一定数量称重,通过专用称重仪器对材料进行称量,确保材料称量到位,保证冷挤压成型质量。
2.料拉伸:通过拉伸原料,能使其内部的晶粒发生改变,使材料的组织变得更加紧密,也可以除去材料中的内应力。
冷挤压中,材料拉伸约占材料损失的4%,因此需要精确的拉伸技术,以确保冷挤压的均匀性。
3.料加热:热处理技术是冷挤压工艺中重要的环节,可以改善材料的组织结构,以提高冷挤压成形品质和模具使用寿命。
材料加热可以使金属材料更容易变形,同时可以减少模具温度,提高材料模具分离程度,从而节省冷挤压过程中材料的损失。
4.具加热:模具加热是为了满足冷挤压时,模具间隙能充满材料,缩短成型时间,保证工件的完整性,提高工件性能和表面质量,以及模具的使用寿命。
模具的加热温度取决于材料的热弹性,而模具的加热热量应根据工艺要求控制在合理范围内。
5.模具安装:将模具安装在冷挤压机上,并经过严格的检查,确认模具的准确性和完整性,以确保冷挤压工件的精度和完整性,并按照冷挤压机设计要求和生产要求,调整模具的间距和尺寸,使其能够满足成型件的要求。
6.金属加工:金属加工是指通过冷挤压或开口冷挤压,将金属材料进行变形,以获得所需的形状和尺寸。
冷挤压的金属加工要求高压下的均匀加载,以确保工件的精度和模具的使用寿命,并避免材料破裂和冲击力过大。
7.工件测量:挤压工艺中,测量件是非常重要的,需要根据工件的要求,使用测量仪器检测出偏差,并用于精确调整模具,确保成型件的精度和质量。
第五章冷挤压工艺及模具设计

PPT文档演模板
2020/12/11
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
•5.1 冷挤压工艺
•5.2 冷挤压模具设计 • •5.3 冷挤压模的典型结构
PPT文档演模板
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
•5.1 冷挤压工艺
• 冷挤压是一种先进的少无切削加工工艺之一。它是在 常温下,使固态的金属在巨大压力和一定的速度下,通过模 腔产生塑性变形而获得一定形状零件的一种加工方法。冷挤 压的工艺过程是:先将经处理过的毛坯料放在凹模内,借助 凸模的压力使金属处于三向受压应力状态下产生塑性变形, 通过凹模的下通孔或凸模与凹模的环形间隙将金属挤出。它 是一种在许多行业广泛使用的金属压力加工工艺方法。
• (3) 冷挤压的变形方式 在变形程度相同的条件下, 反挤压的力大于正挤压的力。反挤压的许用变形程度比正挤 压小。
PPT文档演模板
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
• (4) 毛坯表面处理与润滑 毛坯表面处理越好,润滑 越好,许用变形程度也就越大。
• (5) 冷挤压模具的几何形状 冷挤压模具工作部分的 几何形状对金属的流动有很大影响。形状合理时,有利于挤 压时的金属流动,单位挤压力降低,许用变形程度可以大些。
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
•5.1.4.2 许用变形程度
• 冷挤压时,一次挤压加工所容许的变形程度,称为许 用变形程度。不同材料有不同的许用变形程度。在工艺上, 每道冷挤压工序的变形程度应尽量小于许用值,使模具承受 的单位挤压力不超过模具材料许用应力(目前一般模具材料 的许用应力为2500~3000N/mm2),确定许用变形程度数值 是冷挤压工艺计算的一个重要依据,因为冷挤压许用变形程 度的大小决定了制件所需的挤压次数。若计算出的冷挤压变 形程度超过许用值、则必须用多次挤压完成,以延长模具寿 命,避免损坏模具。
冷挤压工艺第二章

讲师:王冰鸿
四. 冷挤压力的计算及压力机的选择
4.1.冷挤压压力的阶段性
由图可知冷挤压与行程的关系可以分为三个阶段表达。
第一阶段:凸模下行,凸模接触工件,先使金属变形充满
模腔,由于金属开始产生塑性变形,在由接触工件到工件充满
模腔压力逐渐上升,紧接着挤压力急剧增高。当正挤压时,到
图4-3反挤压时钢中含C、Cr元素 对单位挤压力的影响
4.2.2挤压变形方式的影响
对于同一种材料来说,冷挤压变形方 式的不同,所需单位挤压力也不同。 如图4-4对15号进行冷挤压时,由于 变形方式的不同,其单位挤压力与挤 压的变形程度ψF之间的关系是不同 的。曲线①表示反挤压杯形件时的单 位挤压力的变化,曲线②表示实心件 正挤压时的单位挤压力的变化,曲线 ③表示空心件正挤压时的单位挤压力 的变化。由图可知不同的挤压方式单 位挤压力是不同的,反挤压的单位挤 压力最大。正挤实心与正挤空心件的 单位挤压力比较接近,且低于反挤压 的单位挤压力。在复合挤压中,由于 金属流动的出路较多,因此它的挤压 力最低。
图4-7 各类材料反挤压时的单位挤压力 与断面缩减率的关系
图4-8 复合挤压时的单位挤压力特性
表4-2 常用材料的许用变形程度ψF(%)
4.2.4冷挤压模具几何形状对挤压力的影响
图4-9 锥形进口凹模
图4-10 反挤凸模
4. 2.5挤压毛坯的相对高度对挤压力的影响
毛坯高度的变化影响摩擦阻力的变化,因此毛坯的高度的变化对单位挤压 力有一定的影响。
在冷挤压过程中影响冷挤压压力的主要因素有: ①变形金属的化学成分、组织结构与机械性能; ②冷挤压的变形方式; ③冷挤压变形程度大小; ④模具的几何形状; ⑤挤压毛坯的相对高度; ⑥摩擦条件; ⑦变形速度。
冷挤压工艺第二章

对于反挤压而言,变形区只在毛坯的高度上改变位置,它们的
大小和形状都保持不变。在这个阶段挤压力比较稳定,故称为
稳定变形阶段。对于正挤压而言,挤压力从a到b略有下降,原
因是由于在挤压中,坯料与模具接触面积愈来愈小。对于反挤
压而言,压力从a’到b'基本上保持稳定不变,变形区主要集中 在凸模端面下一定距离的区域内,对于已成形的侧壁部分分别
用于挤压的液压机最主要的优点是能在全行程内提供公称压力(如图4-21中曲 线1),而且行程长,很适宜挤压较长、较高的零件。液压机的挤压力,速度和 行程容易改变,调节简单迅速。滑块运动时没有侧向力作用.能保压。如果 发生过载,则液压机会停止工作,或在施加压力过程中,使压力缓慢下降, 而不损坏模具,还有安全阀作保险,比较可靠。这种液压机适合于小批生产 和试制工作。它的缺点主要是一次工作循环时间较长,行程次数较少,生产 效率低。液压机由于没有像压力机可利用的飞轮来储备能量,所以油泵的电 动机功率要比压力机的功率大得多(当然也有用蓄势器的.则油泵大小及电机 功率均可以减小)。它的另个缺点是,当冲头接近工件时有轻微停滞现象产生, 在此瞬间的停滞产生中造成挤压负荷的上升,缩短模具的寿命。其原因是由 于油缸内油的体积在空载和负载时变化较大。
反挤压时.相对高度ho/do与毛坯高度修正系数Kh的关系如图4-9所 示,即ho/do=l作为标准值,即Kh =1,ho/do≤l,则Kh下降,但 ho/do≥l时,单位反挤压力不再随ho/do的增加而增高(此点与正挤 压不同)。在轴承钢的单圈反挤压中,由于变形程度在50%左右,而ho /do又远远小于l,即0.5以下,因此在这样有利条件下,尽管材料强 度很高.冷挤压也得以在小型轴承圈上成功应用。
图4-4不同挤压方式对单位挤压力的影 响
冲压工艺学 第五章 冷挤压工艺及模具设计

240 250 210 165 活塞最 大行程/ mm
620 1020 330 380 机床工 作空间 高度/mm
100 40 100 100 最大工 作压力 /MPa
800 750 500 360 活塞直 径/mm
50000 30000 20000 10000 公称挤 压力/kN
表5-4 冷挤压专用液压机主要技术规格 表5-3 材料单位挤压应力q的值 材料的抗拉强度/ (N/mm2) 单位挤压应力 /MPa 1500~2000 250~300 2000~2500 300~500 2500~3000 500~700 3000~3500 700~800 3500~4000 800~900
(2) 提高零件的力学性能 在冷挤压过程中,金属处于三向挤压应力状态,变形后 材料的组织致密,又有连续的纤维流向,变形中的加工硬化 也使材料的强度和刚度大大提高,从而可用低强度钢材代替 高强度钢。 (3) 可加工形状复杂的零件 对复杂零件可以一次加工成型,加工十分方便,大批大 量生产时,加工成本低。
P KqF 10000
(5-1)
式中
P ——挤压应力,kN; K ——安全系数,取1.2;
F ——型腔在挤压方向上的投影面积,mm2; q ——单位挤压力,。见表5-3。
10 7 4 总功率 /kw
0~0.08 0~0.1 0~0.1 0~0.2 工作行程 速度 /(mm·s-1)
2 4.25 4.25 活塞空 行程速 度/mm/s
表5-1 碳素钢及低合金钢的许用变形程度 材料牌号 10 15 35 45 15Cr 34CrMo 反挤压εF 75~80 70~73 50 40 42~50 40~45 正挤压εF 82~87 80~82 55~62 45~48 53~63 50~60
冷挤压工艺

冷挤压工艺冷挤压工艺是一种常见的金属加工方法,也被广泛应用于其他材料的加工过程中。
通过冷挤压工艺,可以将金属材料或者其他可塑性材料转变为所需形状的制品,具有高效、节能、环保等优点。
在冷挤压工艺中,材料经过加热后在常温下进行挤压成型。
冷挤压相比于热挤压,有着更高的精度和表面质量。
冷挤压能够带来更细致的结构和更好的机械性能,因为在常温下金属的变形能力较强,可以更好地控制产品的尺寸和形状。
冷挤压工艺不仅适用于各类金属材料,也可以应用于塑料、橡胶等材料的加工。
在实际生产中,冷挤压可以用于生产各种零部件、工具、配件等产品,广泛应用于汽车、航空航天、机械制造等领域。
冷挤压工艺的过程包括准备工作、材料预处理、挤压成形和后续加工等阶段。
首先需要对原料进行准备,清理和加热以提高其可塑性。
之后,经过特定模具形状的挤压,将材料挤压成所需形状。
最后,可能需要进行修整、清理、表面处理等后续加工工序,以获得最终符合标准要求的制品。
冷挤压工艺的优势不仅在于产品质量的提升,还体现在生产效率和成本控制方面。
相比传统的加工方法,冷挤压能够减少加工过程中的能源消耗和废料产生,有效降低生产成本。
同时,由于挤压过程中所需设备简单,可以在相对小的空间内进行生产,因此占地面积小,适用于各类规模的生产场景。
冷挤压工艺的发展也受益于科技的进步和创新,不断推动着工艺的提升和改进。
随着材料工程、模具制造等领域的发展,冷挤压工艺愈发成熟,可以实现更复杂、更精细的产品加工需求。
同时,数字化技术的运用也为冷挤压工艺带来新的发展机遇,实现生产过程的智能化管理和优化。
总的来说,冷挤压工艺在现代制造业中扮演着重要角色,为产品的加工提供了高效、环保、精密的解决方案。
随着技术的不断进步和市场需求的提升,冷挤压工艺将继续发挥重要作用,并不断完善和创新,满足不同行业的生产需求。
1。
锻压工艺学-冷挤压

6.4.2 许用变形程度
图6.15 正挤压空心件 变形程度计算图
图6.16 正挤压碳钢实心 件的许用变形程度
图6.17 正挤压碳钢空心 件的许用变形程度
图6.18 碳钢反挤压的许 用变形程度
6.5 冷挤压时的变形力 P=CpF P—总的挤压力,N; p—单位挤压力,MPa; F—凸模工作部分横断面积,mm2; C—安全因数,一般取1.3。 7.5.1 冷挤压力的阶段性 (1)正挤压的阶段性 四个阶段:
F0 F1 F 100% F1
式中,
F0
D 2
4
F1
(D 2 d 2 )
4
d2 F 2 100% D
(2)正挤压实心件的断面缩减率
F0 F1 F 100% F0
F0
D
4
2
F1
d12
4
D 2 d12 F 2 100% 2 D d
2. 板料下料法 3.棒料下料方法 (1)剪切下料
图6.32 全封闭式剪切模
(2)其它下料方法
6.6.2 毛坯的软化热处理 冷挤压前进行软化热处理的目的:通过热处 理降低毛坯的硬度,提高塑性,得到良好的 金相组织和消除内应力等。 (1)完全软化退火 加热到Ac3以上30一50C,在此温 度下保温一定时间,然后随炉缓冷,或在550C以 后从炉中取出空冷。 (2)球化退火 使珠光体中的渗碳体和二次渗碳体球 化而进行的一种退火。 (3)不完全退火 钢加热到高于Ac1而低与Ac3或Acm ,并在此温度停留一定时间,然后缓慢冷却。
6.2 冷挤压的基本原理
6.2.1 主应力状态对冷挤压工艺的影响
图6.2 纯铝零件
图6.3 纯铝件冷挤压工艺