不等式与不等式组_完美课件3
合集下载
第9章-不等式与不等式组-课件(共13张PPT)

导火线燃烧时间大于人转移到 安全区域时间
5.某种商品的进价为800元,出售时 标价为1200元,后来由于该商品积压, 商店准备打折销售,但要保证利润率 不低于5%,则至少可打( ) A.6折 B.7折 C.8折 D.9折
商品问题
直接设打x折:1200 x
10
6.某种植物适宜生长在温度为18℃~ 20℃的山区,已知山区海拔每升高100 米,气温下降0.5℃,现在测出山脚下的平 均气温为22℃,问该植物种在山的哪一 部分为宜?(假设山脚海拔为0米)
由题意得 95mm111117600
解此不等式组得 - 7 <m< 16
59
练习
1、以线段3,4,x-5为边组成三角形,
则x的取值范围是_6_<_x_<_12__
{ 解:由题意,得
X-5> 1 解得 6<x<12
X-5<7
{ 2、满足不等式组 3x - 6 ≤2x-4
2x + 4 >0
都为负数,则 a
的取值范围是
.
已知方程组
x-y=2k ① x+3y=1-5k
②的解x与y
的和是负数,求k的取值范围。
解:由方程组得
x
1 4
k
y
1
7k 4
∵x+y<0 1 k 1 7k 0
44
解之得
m为何值时,关于x、y的方程组
24解xx :53解yy 此3m法m方91程的组解得满xy足=9x5m1m-111016,7y 0?
,所以共有
方案一:订购甲款运动服
套,乙款运动服
套;
种订购方案:
5.某种商品的进价为800元,出售时 标价为1200元,后来由于该商品积压, 商店准备打折销售,但要保证利润率 不低于5%,则至少可打( ) A.6折 B.7折 C.8折 D.9折
商品问题
直接设打x折:1200 x
10
6.某种植物适宜生长在温度为18℃~ 20℃的山区,已知山区海拔每升高100 米,气温下降0.5℃,现在测出山脚下的平 均气温为22℃,问该植物种在山的哪一 部分为宜?(假设山脚海拔为0米)
由题意得 95mm111117600
解此不等式组得 - 7 <m< 16
59
练习
1、以线段3,4,x-5为边组成三角形,
则x的取值范围是_6_<_x_<_12__
{ 解:由题意,得
X-5> 1 解得 6<x<12
X-5<7
{ 2、满足不等式组 3x - 6 ≤2x-4
2x + 4 >0
都为负数,则 a
的取值范围是
.
已知方程组
x-y=2k ① x+3y=1-5k
②的解x与y
的和是负数,求k的取值范围。
解:由方程组得
x
1 4
k
y
1
7k 4
∵x+y<0 1 k 1 7k 0
44
解之得
m为何值时,关于x、y的方程组
24解xx :53解yy 此3m法m方91程的组解得满xy足=9x5m1m-111016,7y 0?
,所以共有
方案一:订购甲款运动服
套,乙款运动服
套;
种订购方案:
人教版数学七年级下册 不等式与不等式组 课件PPT

+ 1 > 0,
②ቊ
− 1 < 0, 两个未知数
> −2,
①ቊ
< 3,
2 + 1 < ,
③ቊ 2
+ 2 > 4,
A. 1 个
最高次为2
B. 2 个
+ 3 > 0,
④ቊ
< −7.
C. 3 个
D. 4 个
x>1
2 − 1 > 1,
2.不等式组 ቊ
的所有整数解的和是 9 .
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
8.一元一次不等式组的解集
解集的公共部分
一般地,几个不等式的_________________,叫做由它们所组成的
不等式组的解集.
“公共部分”是指同时满足不等式组中每一个不等式的解集的
部分.如果组成不等式组的各个不等式的解集没有公共部分,则
18 个学生,就有一名老师少带 4 个学生.为了安全,每辆客车上至
少要有 2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少
人?
解:(1)设老师有 x 人,学生有 y 人.
17 = − 12,
= 16,
依题意得 ቊ
解得 ቊ
= 284.
18 = + 4,
答:此次参加研学旅行活动的老师有 16 人,学生有 284 人.
由题意得获得的利润为 y=50x+45(80-x),
当 x=40时,y=3800;
当 x=41时,y=3805;
当 x=42时,y=3810;
当 x=43时,y=3815;
②ቊ
− 1 < 0, 两个未知数
> −2,
①ቊ
< 3,
2 + 1 < ,
③ቊ 2
+ 2 > 4,
A. 1 个
最高次为2
B. 2 个
+ 3 > 0,
④ቊ
< −7.
C. 3 个
D. 4 个
x>1
2 − 1 > 1,
2.不等式组 ቊ
的所有整数解的和是 9 .
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
8.一元一次不等式组的解集
解集的公共部分
一般地,几个不等式的_________________,叫做由它们所组成的
不等式组的解集.
“公共部分”是指同时满足不等式组中每一个不等式的解集的
部分.如果组成不等式组的各个不等式的解集没有公共部分,则
18 个学生,就有一名老师少带 4 个学生.为了安全,每辆客车上至
少要有 2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少
人?
解:(1)设老师有 x 人,学生有 y 人.
17 = − 12,
= 16,
依题意得 ቊ
解得 ቊ
= 284.
18 = + 4,
答:此次参加研学旅行活动的老师有 16 人,学生有 284 人.
由题意得获得的利润为 y=50x+45(80-x),
当 x=40时,y=3800;
当 x=41时,y=3805;
当 x=42时,y=3810;
当 x=43时,y=3815;
9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知
审
解用 决一
设
实元 际一
列
问次
题不
解
的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型
《不等式的性质》不等式与不等式组PPT课件

不等式基本性质3:不等式的两边都 乘以(或除以)同一个负__数__,不等 号如的果方_a_>改向_b_,变____c__<__0。,那么_a_c_<_b_c_(_或__ac____bc_ )
例1:
我是最棒的 ☞
判断下列各题的推导是否正确?为什么(学生口答)
(1)因为7.5>5.7,所以-7.5<-5.7;
方向不变。
➢如式不果的等a两>式边b,基都c本乘<性0以质(那3或么:除ac以<b)c同(或一ac个负bc数,不)就等是号说的不方等向
改变。
等式性质与不等式性质的区别和联系
• 区别:等式两边都乘以(或除以)同一个数(除数不 为0)时,结果仍相等;不等式两边都乘以(或除以) 同一个数(除数不为0)时,会出现两种情况,若是 正数,不等号方向不改变,若是负数不等号方向要改 变,而且不等式两边同乘以0,结果相等.
5. 8 x 1,两边都乘 7 ,得 _x____87_.
7
8
例 已知a<0 ,试比较2a与a的大小。 解法一:∵2>1,a<0, ∴2a<a(不等式的基本性质3)
解法二: 在数轴上分别表示2a和a的点(a<0), 如图.2a位于a的左边,所以2a<a
∣a∣ ∣a∣
2a
a
想一想:还有其 他比较2a与a的 大小的方法吗?
如果_a_>_b_,那么a±c>b±c _________.
不等式还有什么类似的性质呢? ➢如果 7 > 3
那么 7×5 _>___ 3× 5 , 7÷5 __>__ 3÷ 5 ,
➢如果-1< 3,
那么-1×2<____3×2,
-1÷2__<__3÷2,
不等式基本性质2:不等式的两边都乘以
例1:
我是最棒的 ☞
判断下列各题的推导是否正确?为什么(学生口答)
(1)因为7.5>5.7,所以-7.5<-5.7;
方向不变。
➢如式不果的等a两>式边b,基都c本乘<性0以质(那3或么:除ac以<b)c同(或一ac个负bc数,不)就等是号说的不方等向
改变。
等式性质与不等式性质的区别和联系
• 区别:等式两边都乘以(或除以)同一个数(除数不 为0)时,结果仍相等;不等式两边都乘以(或除以) 同一个数(除数不为0)时,会出现两种情况,若是 正数,不等号方向不改变,若是负数不等号方向要改 变,而且不等式两边同乘以0,结果相等.
5. 8 x 1,两边都乘 7 ,得 _x____87_.
7
8
例 已知a<0 ,试比较2a与a的大小。 解法一:∵2>1,a<0, ∴2a<a(不等式的基本性质3)
解法二: 在数轴上分别表示2a和a的点(a<0), 如图.2a位于a的左边,所以2a<a
∣a∣ ∣a∣
2a
a
想一想:还有其 他比较2a与a的 大小的方法吗?
如果_a_>_b_,那么a±c>b±c _________.
不等式还有什么类似的性质呢? ➢如果 7 > 3
那么 7×5 _>___ 3× 5 , 7÷5 __>__ 3÷ 5 ,
➢如果-1< 3,
那么-1×2<____3×2,
-1÷2__<__3÷2,
不等式基本性质2:不等式的两边都乘以
3-1《不等式与不等关系》课件(共29张PPT)

判断两个实数大小的依据是:
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
不等式与不等式组ppt 人教版

C.
-5
你会找公共部分吗
?
(2)两个不等式的解集在数轴上如图所示:
-3 -2 -1 0 1 2 3 4 5 则由这两个不等式组成的不等式组的解是( D )
A x<4 B x<-1 C x≤4 D x≤-1
你会找公共部分吗
(3)如图, -1 2.5 4 B
?
-1< x ≤ 4
则其解集是( C )
A. -1 < X < 2.5 C. 2.5 < x ≤4
义务教育课程标准实验教科书
数 学
第九章 不等式与不等式组
罗福林 温岭长屿中学
困惑 “五一”的
五一放假时,幼儿园老师给了四根木条,要求做一个三 角形的风筝。我的女儿把两根木条a和b钉在了一起,已知 a长10cm,b长3cm,剩下6cm和14cm的两根,她选了 6cm的,太短了,选了14cm的,又太长了。真不知道该怎么 办?你有办法帮忙解决吗?
庭的实际生活水平,恩格尔系数越小,生活水平越高。各种
类型家庭的恩格尔系数如下表所示:
家庭日常饮食开支 恩格尔系数= 家庭经济总收入
, 它反映了居民家
家庭 类型
贫困 家庭
温饱 家庭
小康 家庭
发达国 家家庭
最富裕国 家的家庭
恩格 75﹪ 50﹪ 40﹪ 尔系 ~ 以上 ~ 75﹪ 49﹪ 数(n)
20﹪ ~ 39﹪
1、聪明的人有长的耳朵和短的舌头。 ——弗莱格 2、重复是学习之母。 ——狄慈根 3、当你还不能对自己说今天学到了什么东西时,你就不要去睡觉。 ——利希顿堡 4、人天天都学到一点东西,而往往所学到的是发现昨日学到的是错的。 ——B.V 5、学到很多东西的诀窍,就是一下子不要学很多。 ——洛 克 6、学问是异常珍贵的东西,从任何源泉吸收都不可耻。 ——阿卜· 日· 法拉兹 7、学习是劳动,是充满思想的劳动。 ——乌申斯基 8、聪明出于勤奋,天才在于积累 --华罗庚 9、好学而不勤问非真好学者。 10、书山有路勤为径,学海无涯苦作舟。 11、人的大脑和肢体一样,多用则灵,不用则废 -茅以升 12、你想成为幸福的人吗?但愿你首先学会吃得起苦 --屠格涅夫 13、成功=艰苦劳动+正确方法+少说空话 --爱因斯坦 14、不经历风雨,怎能见彩虹 -《真心英雄》 15、只有登上山顶,才能看到那边的风光。 16只会幻想而不行动的人,永远也体会不到收获果实时的喜悦。 17、勤奋是你生命的密码,能译出你一部壮丽的史诗。 1 8.成功,往往住在失败的隔壁! 1 9 生命不是要超越别人,而是要超越自己. 2 0.命运是那些懦弱和认命的人发明的! 21.人生最大的喜悦是每个人都说你做不到,你却完成它了! 22.世界上大部分的事情,都是觉得不太舒服的人做出来的. 23.昨天是失效的支票,明天是未兑现的支票,今天才是现金. 24.一直割舍不下一件事,永远成不了! 25.扫地,要连心地一起扫! 26.不为模糊不清的未来担忧,只为清清楚楚的现在努力. 27.当你停止尝试时,就是失败的时候. 28.心灵激情不在,就可能被打败. 29.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 30.成功不是靠梦想和希望,而是靠努力和实践. 31.只有在天空最暗的时候,才可以看到天上的星星. 32.上帝说:你要什么便取什么,但是要付出相当的代价. 33.现在站在什么地方不重要,重要的是你往什么方向移动。 34.宁可辛苦一阵子,不要苦一辈子. 35.为成功找方法,不为失败找借口. 36.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 37.垃圾桶哲学:别人不要做的事,我拣来做! 38.不一定要做最大的,但要做最好的. 39.死的方式由上帝决定,活的方式由自己决定! 40.成功是动词,不是名词! 20、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。
-5
你会找公共部分吗
?
(2)两个不等式的解集在数轴上如图所示:
-3 -2 -1 0 1 2 3 4 5 则由这两个不等式组成的不等式组的解是( D )
A x<4 B x<-1 C x≤4 D x≤-1
你会找公共部分吗
(3)如图, -1 2.5 4 B
?
-1< x ≤ 4
则其解集是( C )
A. -1 < X < 2.5 C. 2.5 < x ≤4
义务教育课程标准实验教科书
数 学
第九章 不等式与不等式组
罗福林 温岭长屿中学
困惑 “五一”的
五一放假时,幼儿园老师给了四根木条,要求做一个三 角形的风筝。我的女儿把两根木条a和b钉在了一起,已知 a长10cm,b长3cm,剩下6cm和14cm的两根,她选了 6cm的,太短了,选了14cm的,又太长了。真不知道该怎么 办?你有办法帮忙解决吗?
庭的实际生活水平,恩格尔系数越小,生活水平越高。各种
类型家庭的恩格尔系数如下表所示:
家庭日常饮食开支 恩格尔系数= 家庭经济总收入
, 它反映了居民家
家庭 类型
贫困 家庭
温饱 家庭
小康 家庭
发达国 家家庭
最富裕国 家的家庭
恩格 75﹪ 50﹪ 40﹪ 尔系 ~ 以上 ~ 75﹪ 49﹪ 数(n)
20﹪ ~ 39﹪
1、聪明的人有长的耳朵和短的舌头。 ——弗莱格 2、重复是学习之母。 ——狄慈根 3、当你还不能对自己说今天学到了什么东西时,你就不要去睡觉。 ——利希顿堡 4、人天天都学到一点东西,而往往所学到的是发现昨日学到的是错的。 ——B.V 5、学到很多东西的诀窍,就是一下子不要学很多。 ——洛 克 6、学问是异常珍贵的东西,从任何源泉吸收都不可耻。 ——阿卜· 日· 法拉兹 7、学习是劳动,是充满思想的劳动。 ——乌申斯基 8、聪明出于勤奋,天才在于积累 --华罗庚 9、好学而不勤问非真好学者。 10、书山有路勤为径,学海无涯苦作舟。 11、人的大脑和肢体一样,多用则灵,不用则废 -茅以升 12、你想成为幸福的人吗?但愿你首先学会吃得起苦 --屠格涅夫 13、成功=艰苦劳动+正确方法+少说空话 --爱因斯坦 14、不经历风雨,怎能见彩虹 -《真心英雄》 15、只有登上山顶,才能看到那边的风光。 16只会幻想而不行动的人,永远也体会不到收获果实时的喜悦。 17、勤奋是你生命的密码,能译出你一部壮丽的史诗。 1 8.成功,往往住在失败的隔壁! 1 9 生命不是要超越别人,而是要超越自己. 2 0.命运是那些懦弱和认命的人发明的! 21.人生最大的喜悦是每个人都说你做不到,你却完成它了! 22.世界上大部分的事情,都是觉得不太舒服的人做出来的. 23.昨天是失效的支票,明天是未兑现的支票,今天才是现金. 24.一直割舍不下一件事,永远成不了! 25.扫地,要连心地一起扫! 26.不为模糊不清的未来担忧,只为清清楚楚的现在努力. 27.当你停止尝试时,就是失败的时候. 28.心灵激情不在,就可能被打败. 29.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 30.成功不是靠梦想和希望,而是靠努力和实践. 31.只有在天空最暗的时候,才可以看到天上的星星. 32.上帝说:你要什么便取什么,但是要付出相当的代价. 33.现在站在什么地方不重要,重要的是你往什么方向移动。 34.宁可辛苦一阵子,不要苦一辈子. 35.为成功找方法,不为失败找借口. 36.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 37.垃圾桶哲学:别人不要做的事,我拣来做! 38.不一定要做最大的,但要做最好的. 39.死的方式由上帝决定,活的方式由自己决定! 40.成功是动词,不是名词! 20、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。
不等式与不等式组ppt

式的不等式,可以利用积分来求解。通 过对函数进行积分,可以求出函数的值域,从而确定不等式 的解集。
几何法
利用数形结合求解不等式
将不等式转化为两个函数的交点问题,利用数形结合的方法可以直观地求解 不等式。
利用平面几何求解不等式
将不等式转化为平面几何中的问题,利用平面几何的知识可以直观地求解不 等式。
不等式的分类
简单不等式
只包含一个不等号,左右两侧的代数式为一次或二次的简单不等式。
不等式组
多个简单不等式组合在一起,形成的不等式组。
不等式的性质
1 2
可加性
不等式的两边同时加上一个数,不等号的方向 不变。
可乘性
不等式的两边同时乘以一个正数,不等号的方 向不变。
3
可乘方性
不等式的两边同时乘以一个正数的方数,不等 号的方向不变。
车辆调度问题
在交通运输中,需要对车辆进行合理调度,以满足不同客户的需求并降低成 本。不等式组可以用来描述车辆调度中的约束条件,帮助企业制定更加高效 的车辆调度方案。
06
不等式发展方向
不等式理论研究
深入研究不等式的本质和特性,探究不等式的基本原理和证 明方法,推动不等式理论的发展和完善。
研究不等式在数学其他分支的应用,例如代数、分析、几何 等领域,揭示不等式的广泛作用和深刻内涵。
非线性规划的优缺点
非线性规划具有能够处理非线性问题的优点,但需要选 择合适的迭代算法和初始点,否则可能导致求解失败或 局部最优解。
动态规划
动态规划简介
动态规划是一种求解多阶段决策过程的最优解的方法,通过将问题分解为多个子问题,逐 个子问题的求解达到整体问题的最优解。
动态规划的应用
动态规划广泛应用于最短路径、最长子序列、背包问题等优化问题中,也用于求解生产计 划、资源分配等问题。
几何法
利用数形结合求解不等式
将不等式转化为两个函数的交点问题,利用数形结合的方法可以直观地求解 不等式。
利用平面几何求解不等式
将不等式转化为平面几何中的问题,利用平面几何的知识可以直观地求解不 等式。
不等式的分类
简单不等式
只包含一个不等号,左右两侧的代数式为一次或二次的简单不等式。
不等式组
多个简单不等式组合在一起,形成的不等式组。
不等式的性质
1 2
可加性
不等式的两边同时加上一个数,不等号的方向 不变。
可乘性
不等式的两边同时乘以一个正数,不等号的方 向不变。
3
可乘方性
不等式的两边同时乘以一个正数的方数,不等 号的方向不变。
车辆调度问题
在交通运输中,需要对车辆进行合理调度,以满足不同客户的需求并降低成 本。不等式组可以用来描述车辆调度中的约束条件,帮助企业制定更加高效 的车辆调度方案。
06
不等式发展方向
不等式理论研究
深入研究不等式的本质和特性,探究不等式的基本原理和证 明方法,推动不等式理论的发展和完善。
研究不等式在数学其他分支的应用,例如代数、分析、几何 等领域,揭示不等式的广泛作用和深刻内涵。
非线性规划的优缺点
非线性规划具有能够处理非线性问题的优点,但需要选 择合适的迭代算法和初始点,否则可能导致求解失败或 局部最优解。
动态规划
动态规划简介
动态规划是一种求解多阶段决策过程的最优解的方法,通过将问题分解为多个子问题,逐 个子问题的求解达到整体问题的最优解。
动态规划的应用
动态规划广泛应用于最短路径、最长子序列、背包问题等优化问题中,也用于求解生产计 划、资源分配等问题。
不等式与不等式组课件

三、知识要点
1.不等式的基本性质: ④不等式的基本性质: A.不等式的两边都加上(或减去)同一个整 式,不等号的方向不变. B.不等式的两边都乘以(或除以)同一个正 数,不等号的方向不变. C.不等式的两边都乘以(或除以)同一个负 数,不等号的方向改变.
不等式的基本性质是对不等式变形与解 不等式的依据.
三、知识要点
2.一元一次不等式及其解法: ①一元一次不等式的概念:
只含有一个未知数,并且未知数的最高 次数是1,系数不为零的不等式叫做一元一次 不等式. ②一元一次不等式的解法:
解一元一次不等式的步骤:A.去分母; B.去栝号;C.移项;D.合并同类项;E.系数 化为1(不等号的改变问题).
三、知识要点
2 m
0,
的解集,解得
,选B.
知识 12 考m 查0 .:平面直角坐标系0的m知识2 、轴对称与
解不等式组以及用数轴表示不等式组的解集,
要求明晰问题中的内在联系.
解:B.
四、典型例题
例2(2006年·运城)若不等式组
x b
a 2
2 x
, 0
的
.
解集是
,则
1x1
ab2006
.
四.典型例题
12x的x一个x22解m ,4
2 x 3 x 8
; 与女孩子聊天技巧
ath85cwb
音如何,约略听到点风声,似乎跟井有关,恐怕不是什么正路好事,老太太没发话,便不敢多谈,静了静,明秀一根、一根的抚过戎琴 弦,笑道:“五弟,宝音姑娘若在这里,必定也劝你从开初便小心些,后头可省多少麻烦。”苏含萩立即点头,叫过青翘训道:“少爷 年轻不知事,你也不知吗?料你向来行事是端正细致的,这才派你到少爷屋里服侍,再过几个月官中算总帐了,要紧时候,这么大马虎 眼你也不提点着!”嘴又快又甜的大丫头这时候也不敢快语、也不敢笑了,低头承训:“姑奶奶教训得是!”明秀恰在此时发出一个轻 轻的诧异声,欢快道:“哎哟,我想到这琴怎么弹了!”众人注意力都被她吸引过来,她取来明蕙手中那竹棍,去刮拨那琴弦。呀!原 来这弦比中原的琴弦硬朗很多,手指拨上去,发音闷闷的,用硬竹棍拨,便立时的激越清昂起来,音势宏大,竟比琵琶还壮丽些。明秀 即兴取琴谱之乐章,在戎琴上奏了一段,便是苏小横在窗边听得的隐隐乐声了。这段奏完,众人皆喝彩不已,明秀丢下竹棍,摇头笑道: “这戎器,响成这样!太失体统。”明柯忙道:“闻说戎境植被丰富、地势崎岖、房屋低陋,他们习惯露天生活,大概因此,乐器什么 的都要响亮些吧!你想,朋友见面,动不动一个在高山上、一个在低谷里,弹个琴给对方听,轻了怎么听得见!”明蕙“吃”的笑出声 来,以帕子掩住了嘴。苏含萩似笑非笑睇着明柯。明柯暗道不好,勾着头住了嘴,苏含萩却过来,抚摩他的肩膀,上下看看,叹了一声: “你这猴儿。你这猴儿!偏是这些事上有聪明。我问你,你买琴的所在,是不是恪思阁?”这是锦城最负盛名的戎商铺。明柯脸上泛起 佩服之色,垂手道:“是。”苏含萩又道:“那个阁里,据我所知,还从没卖过假货。阁主放话说,一个真正的商人,从真货上能赚到 的钱,绝对比在假货上能赚到的多。是不是这样?”第十八章暗度戎琴成新赏(4)明柯眼里,已经有“士逢知己”的笑意:“姑姑知 道得真多。”苏含萩便道:“你信他,所以就问都不多问。因你知道,这几年,连锦城眼力最辣、盘货最多的几个老爷叔们都盛赞他们 信誉,你再小心,也不可能越过那几位爷叔去。若真千万分之一机会,证明了他们拿假货空手套白狼,爷叔们都上当了。那恪思阁商誉 上的损失,比你买一件古董的损失还大。你前思后想清楚,既不必、也无谓跟他们斗眼力,所以索性懒一点,是么?”她滔滔分析完了, 明柯腰杆骄傲的越挺越直,直得无可再直了,苏含萩猛的在他额角上戳一指头,把他打回原型:“可我宁愿你有时候别那么懒!憨一点 儿勤一点儿呢!怕什么?你可知道真正学成大学问、成就大事的,都是有点憨劲儿的人!”明柯悚然一惊,颇有点儿悲伤的应道: “是!”苏含萩