结构力学第10章-结构动力计算基础
结构动力学基础

m l/ 5
m l/ 5
m l/ 5
m l/ 5
0
1
2
3
4
5
l/5
0
l/5
1y = 1 1 φ1(x) 2
l/5
3
l/5
4
l/5
5
0
2 θ1 = 1 1 φ (x) 2
3
4
5
如图10-9a中,梁分为5个单元,取结点位移参数(挠度y 和转角θ)作为 广义坐标。在图10-9a中取中间四个结点的八个位移参数 y1、θ1,y2、θ2,y3、 θ3,y4、θ4 作广义坐标。
T
sin t
(10 3)
(10 4)
0 -y y T
t
y cos t
v v
y A
0
t
v
sin t
T t
0
A sin t
-A
3、结构的自振周期
由式
A
y (t ) A sin(t ) 及图,可见位移方程是一个周期函数。 2 y T 周 期: T
⑶ 是结构动力特性的重要数量标志。
泛美大厦,60层 钢结构,南北方向 的基本固有周期为 2.90秒,
大坝,400英尺高的混凝土重力坝的基 本固有周期由强迫振动试验测得在蓄水 为310英尺和345英尺十分别为0.288秒 和0.306秒,
金门大桥,金门大桥桥墩跨距1280.2米全桥总 长2737.4米的悬索桥,其横向振动的基本基本固 有周期为18.20秒,竖向振动的基本基本固有周期 为10.90秒,纵向振动的基本基本固有周期为3.81 秒,扭转振动的基本基本固有周期为4.43秒
结构动力计算

4
本章计算原理:达朗贝尔原理
达朗贝尔原理表述为:在质点受力运动 的任何时刻,作用于质点的主动力、约束力 和惯性力互相平衡。利用达朗贝尔原理,可 将质点系动力学问题化为静力学问题来解决, 这种动静法的观点对力学的发展产生了积极 的影响。此原理的表达式为:
13
3、动力计算中体系的自由度(degree-of-freedom)
确定运动过程中任意时刻全部质量的位置所需独立几何参 数的个数称为体系的振动自由度。
实际结构的质量都是连续分布的,严格地说来都是无限自
由度体系。计算困难,常作简化如下:
1)集中质量法(method of lumped mess)把连续分布的质量 集中为几个质点,将一个无限自由度的问题简化成有限自由 度问题。
3.结构在动荷载作用下,其内力不仅要平衡动 力荷载,而且要平衡由于结构的变形加速度所 引起的惯性力。
3
动力计算与静力计算的区别
4. 动内力和位移不仅与动荷载有关,而且与结构 的动力特性有关。
结构的动力特性参数:结构本身的自振频率、 周期、振型、阻尼等。结构的动力特性参数是要 通过结构的自由振动来确定。
有三个振动自由度
16
例题3
有两个振动自由度
17
例题4
两个质点,只有一个振动自由度
18
例题5
有三个振动自由度 自由度的数目不完全取决于质点的数目, 也与结构是否静定或超静定无关。
19
例题6
铰化结点质点法:把所有质点与结点包 括支座都变为铰,限制质点运动所需添 加的链杆个数(把铰接体系变为几何不 变所需添加的链杆根数)即为振动自由 度个数。
结构力学第十章习题集

第十章 结构动力计算基础 【练习题】10-1 判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水平位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的自 振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁架ABC 在C 结点处有重物W ,杆重不计,EA 为常数,在C 点的竖向初位移干扰下,W 将作竖向自由振动。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭ ()lh10-2 选择题:1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps i n m y EI =-77683θ t /; B .()()m y EIy l Ps i n /+=19273θ t ; C .()()m y EIy l Ps i n /+=38473θ t ; D .()()()y l Ps i n m yEI =-7963θ t/ 。
ll0.50.52、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大m ; C .增 大 E I ; D .增 大 l 。
第10章 结构动力学基础1

(1)重力 W 为静力荷载
(2)弹性恢复力 S(t) k[ y jw y(t)] 与位移成正比,方向与位移指向相
反的。在k质为点刚上度R所(系t加)数的,c力其y• (意t) 义是使质点沿位移方向产生的单位位移时所需
(3)阻尼力
•• 与质点的速度成正比,方向与速度相反。c为
粘滞阻尼系I (数t) 。 m y(t)
my(t) cy(t) ky(t) 0
当动力位移由质点的静力平衡位置算起时,可不考虑质点的重力。
(二)柔度法:取振动体系为研究对象。
I (t) R(t)
FP 1
m y(t)
δ(柔度 系数)
按动静法,体系的动力位移可看为是由于惯性力和阻尼力静力作 用所引起的可得方程:
y(t) [I(t) R(t)]
10.1 一般概念
一、结构的动力荷载及分类
动力荷载:是指荷载的大小、方向、位置随时间迅速变化的 荷载;它使结构质量产生不容忽视的加速度,使结构发生明 显的振动,即在平衡位置附近往返运动。
静力荷载:是指荷载的大小、方向、位置不随时间变化的荷 载;同时考虑其对结构的影响来看,如果荷载变化极其缓慢, 使结构质量产生的加速度可以忽略不计时,仍属于静力荷载
T
T
T
(二)自振周期与频率
自振频率(圆频率)
自振周期
T 2
k 1 g g m m W st
T 2π m 2π mδ 2π Wδ 2π Δst
动静法 根据达朗贝尔(d’Alembert)原理,设想将惯性力I(t)加
于振动体系的质点上,则任一瞬时体系中的实际各力与惯 性力处于平衡状态。
三、 动力计算简图和动力自由度
动力计算中要引入惯性力,因此计算简图要考虑质量的 分布。
结构力学——结构的动力计算

11
11[ P(t ) m(t )] y
P (t )
y(t ) 11[ P(t ) m(t )] y
l
l3 柔度系数 m(t ) 11 y 3EI 3EI (t ) 3 y (t ) P(t ) my l
二、刚度法
P (t )
l
EI
m m(t ) y y (t )
简谐荷载 周期 非简谐荷载 确定 冲击荷载 非周期 突加荷载 动荷载 其他确定规律的动荷载 风荷载 地震荷载 不确定 其他无法确定变化规律的荷载
§1.2
结构动力学的研究内容和任务
结构动力学是研究动荷作用下结构动力反应规律的学科。 一.结构动力学的研究内容 当前结构动力学的研究内容为: 第一类问题:结构动力荷载的确定
结构力学
傅向荣
第十章 结构的动力 计算
§1. 绪论
§1.1 动荷载及其分类
一.动荷载的定义 大小、方向和作用点随时间变化;在其作用下,结构上的惯性力 与外荷比不可忽视的荷载。
自重、缓慢变化的荷载,其惯性力与外荷比很小,分析时仍视作 静荷载。 静荷只与作用位置有关,而动荷是坐标和时间的函数。
二.动荷载的分类
P (t )
EI
m
EI1
EI
l
1
24 EI k 3 l
11
1
k
EI1
1 11 k
12 EI / l 3 12 EI / l 3
l l
EI EI
k2
EI1
EI EI
k1 ?
k1
k2 ?
24 EI k1 k 2 3 l
层间侧移刚度 对于带刚性横梁的刚架(剪切型刚架), 当两层之间发生相对单位水平位移时,两 层之间的所有柱子中的剪力之和称作该 层的层间侧移刚度. l l
结构力学第10章 结构的动力计算

F k
1
2 1 2
yst sin t
A yst
F F yst F 2 m k
动荷载幅值当作静载 作用时质体的位移
1
2 1 2
A yst
动力系数
§10-3
单自由度体系的强迫振动
动力系数的讨论
0, 1
荷载变化比较慢,可按静载处理。
解
对于竖向振动,柔度系数为
l3 48 EI
ml 3 T 2 m 2 48 EI
1 48 EI ml 3 m
§10-2
单自由度体系的自由振动
例题10-2 求图示悬臂杆的水平和竖向振动时的自振周期
解 (1)水平振动
当杆顶作用水平力W时,杆 顶的水平位移为
Wl 3 st 3EI
杜哈梅积分(Duhamel)
1 t y (t ) 0 FP sin t d m
零初始条件下,单自由度体系在任意荷载下的动位移公式
若 则
y0 0
v0 0 v0
1 y y0 cos t sin t m
t
0
FP ( ) sin t d
y t C1 sin t C2 cos t
F y t y t y * t C1 sin t C2 cos t sin t 2 2 m
§10-3
单自由度体系的强迫振动
代入初始条件
y 0 0 C2 0; F y 0 0 C1 m 2 2
(2)竖向振动
Wl 3 T 2 3EIg
当杆顶作用竖向力W时,杆顶的 竖向位移为
结构力学课后答案第10章结构动力学

10-34试说明用振型分解法求解多自由度体系动力响应的基本思想,这一方法是利用了振动体系的何种特性
10-35试用振型分解法计算题10-32。
解:
刚度矩阵 质量矩阵
其中
由刚度矩阵和质量矩阵可得:
则 应满足方程
其稳态响应为:
同理:
显然最大位移
10-36试用振型分解法计算题10-31结构作有阻尼强迫振动时,质量处的最大位移响应。已知阻尼比ξ1=ξ2=。
得振型方程:
)
,令
,由频率方程D=0
解得: ,
,
(c)
解:
图 图
(1) , ,
(2)振型方程
。
令 ,频率方程为:
(3)当 时,设
当 时,设
绘出振型图如下:
第一振型 第二振型
(d)
解:
#
图 图
频率方程为:
取 代入整理得:
其中
~
振型方程为:
将 代入(a)式中的第一个方程中,得:
绘出振型图如下:
第一振型 第二振型
\
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106Nm2,t1=,FP0=8×104N。
(a)
设 ,
;
使 ,则
(2)
设
如果使速度响应最大,则 最大,设 ,显然要求 最小。使: 得 。
(3)
令 显然要求 最小。
则 解的:
结构力学专题十三(多自由度体系的动力计算)

FP1
m1
l
EI
l
FP 2
m2
l
二、任意荷载作用*
运动方程: M y(t) Ky(t) FP (t) (a)
1、主振型矩阵
1 2 n
2、广义质量、广义刚度
} M * T M 对角阵
K* T K
3、正则坐标
y(t) (t)
(b)
M y(t) Ky(t) FP(t) (a)
4、振型迭加法分析强迫振动
例1:求图示结构的动位移幅值和动内力幅值。
k1 k,k2 2k,
m1
m1 m,m2 2m;
P0 sin t
EI1
k1 m2
h
已知:
2
k m
EI1
k2
h
A
P0 k
1 0
1
1
I
F
0P0
P0
P0
P0 k
动位移幅值图
动荷载图(虚拟)
例2:求图示结构的动位移幅值和动内力幅值。
已知:
i
(t
)
i
(0)
cos
it
i (0) i
sin
it
(i 1, 2)
l
0E.I041
P0 L3 EI
sinP0 stin
m
t
EI
从以上例题的计算中可看出,一般情况下 1l 〉2 〉l〉n
故在振型迭加法中,一般是前几阶振型起主要作用。
思考:用振型叠加法求例1所示结构的位移幅值。
2
k m
2
1 3
k m
2 5 k 3m
2
k m
P0 sin t
P0 sin t