黄酮类化合物的合成

黄酮类化合物的合成
黄酮类化合物的合成

26黄酮类化合物习题.doc.doc

黄酮类化合物习题 1.常见黄酮类化合物的结构类型可分为哪几类。 2. 试述黄酮类化合物的广义概念及分类依据。写出黄酮、黄酮醇、二氢黄酮、异黄酮、查耳酮、橙酮的基本结构。 3. 试述黄酮(醇)、查耳酮难溶于水的原因。 4. 试述二氢黄酮、异黄酮、花色素水溶性比黄酮大的原因。 5. 如何检识药材中含有黄酮类化合物。 6. 为什么同一类型黄酮苷进行PC,以2%~6%醋酸溶液为展开剂,Rf 值大小依次为三糖苷>双糖苷>单糖苷>苷元。 7. 为什么用碱溶酸沉法提取黄酮类化合物时应注意pH的调节。 8. 简述用碱溶酸沉法从槐米中提取芸香苷加石灰乳及硼砂的目的。 判断题 1.黄酮类化合物广泛分布于植物界,大部分以游离形式存在,一部分以苷的形式存在。 2. 黄酮分子中引入7,4′位羟基,促使电子位移和重排,使颜色加深。 3. 以BAW系统进行PC检识黄酮苷与其苷元,展层后苷元的Rf值大于苷。 4. 用2%~6%醋酸/水溶液为展开剂,对黄酮苷与其苷元进行PC,展层后苷元的Rf值大于苷。

提取与分离 中药黄芩中有下列一组化合物,经下述流程分离后,各出现在何部位?简述理由。 A. 黄芩苷(黄芩素-7-O-葡萄糖醛酸苷) B. 黄芩素(5,6,7-三OH黄酮) C. 汉黄芩苷(汉黄芩苷-7-O-葡萄糖醛酸苷) D. 汉黄芩素(5,7-二OH, 8-OCH3黄酮) E. 5,8,2-三OH,7-OCH3黄酮 F. 5,8,2-三OH,6,7-二-OCH3黄酮 G. 5,7,4′-三OH,6-OCH3二氢黄酮)H. 3,5,7,2′,6′-五OH二氢黄酮

结构鉴定题 从某中药中得一黄色结晶Ⅰ,分子式C21H21O11,HCl-Mg粉反应呈淡粉红色,FeCl3反应及α-萘酚-浓H2SO4反应均为阳性,氨性氯化锶反应阴性,二氢氧锆反应呈黄色,加枸橼酸后黄色不退.晶Ⅰ的光谱数据如下: UV λmax nm MeOH 267 348 NaOMe 275 326 398(强度不降) AlCl3274 301 352 AlCl3/HCl 276 303 352 NaOAc 275 305(sh) 372 NaOAc/H3BO3 266 300 353 IR:V KBr max cm-1 3401, 1655, 1606, 1504 1HNMR (DMSD-d6,TMS) δppm 3.2~3.9 (6H, m) 3.9~5.1 (4H, 加D2O后消失) 5.68(1H,d,J=8.0) 6.12 (1H, d, J=2.0) 6.42 (1H, d, J=2.0) 6.86 (2H, d, J=9.0) 8.08 (2H, d, J=9.0) 请根据以上提供的信息填空,写出结晶Ⅰ的结构式,并指出 苷键的构型。

各类中药化学成分的生物合成途径

各类中药化学成分的主要生物合成途径 乙酸-丙二酸途径:脂肪酸类,酚类,醌类;甲戊二羟酸途径:萜类,甾类;莽草酸途径:即桂皮酸途径,苯丙素类,木脂素类,香豆素类;氨基酸途径 :生物碱类 溶剂提取法(常用溶剂及极性) (1)溶剂按极性分类:三类,即亲脂性有机溶剂、亲水性有机溶剂和水。溶剂按极性由弱到强的顺序如下:石油醚<四氯化碳<苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<正丁醇<丙酮<甲醇(乙醇)<水。 甲醇(乙醇)是最常用的溶剂,能用水任意比例混合. 分子大,C多,极性小,反之,大..按相似相溶原理,极性大的溶剂提取极性大的化合物 提取方法 ①煎煮法:挥发性及加热易破坏,多糖类不宜用。 ②浸渍法:不用加热,适用于遇热易破坏或挥发性成分,含淀粉或黏液质多的成分,但效率不高。 ③渗漉法:效率较高。④回流提取法:受热易破坏的成分不宜用。⑤连续回流提取法:有机溶剂,索氏提取器或连续回流装置。⑥水蒸气蒸馏法: 适于具挥发性,能随水蒸气蒸馏而不被破坏的。挥发油、小分子生物碱、酚类、游离醌类等:⑥超临界萃取法:以CO2为溶剂.用于极性低的化合物,室温下工作,几乎不用有机溶剂,环保 分离方法 ①吸附色谱:利用吸附剂对被分离化合物分子的吸附能力的差异,而实现分离的一类色谱。硅胶用于大多数中药成分;氧化铝用于碱性或中性亲脂性成分如生物碱、萜、甾;活性炭用于水溶性物质如氨基酸、糖类和某些苷类;聚酰胺用于酚醌如黄酮、蒽醌及鞣质。②凝胶色谱:主要是分子筛作用,根据凝胶的孔径和被分离化合物分子的大小而达到分离目的。③离子交换色谱:基于各成分解离度的不同而分离。主要用于生物碱、有机酸及氨基酸、蛋白质、多糖等水溶性成分的分离纯化。④大孔树脂色谱:一类没有可解离基团,具有多孔结构,不溶于水的固体高分子物质。它可以通过物理吸附有选择地吸附有机物质而达到分离的目的。是反相的性质,一般被分离物质极性越大,越先被洗脱下来,极性越小,越后洗脱下来。应用于中药有效部位或有效成分的分离富集。⑤分配色谱:利用物质在固定相和流动相之间分配系数不同而达到分离。正相色谱:固定相极性>流动相极性,用于分离极性和中等极性的成分。常用固定相:氰基或氨基键合相;常用流动相为有机溶剂。反相色谱:固定相极性<流动相极性,用于离非极性和中等极性的成分,常用C18或C8键合相。常用流动相为甲醇-水或乙腈-水。 糖和苷类化合物 糖:多羟基醛或多羟基酮及其衍生物、聚合物的总称 苷:糖或糖额衍生物与另一非糖物质通过糖的端基碳原子连接而成,又称配糖体 构型D,L,α,β : 向上D,向下L; 同侧:β异侧:α 苷键酸水解:苷键原子首先发生质子化,然后苷键断裂生成苷元和糖的阳碳离子中间体,在水中阳碳离子经溶剂化,再脱去氢离子形成糖分子。难易顺序:N-苷>O-苷>S-苷>C-苷。强酸水解:得到糖,苷元易破坏;弱酸水解:得到次级苷,确定糖的连接顺序;两相酸水解:保护苷元 酶水解:对难以水解或不稳定的苷,在酶水解条件温和,不会破坏苷元,可得到真正的苷元 显色反应 Molish反应:加入5%α-萘酚乙醇液,沿管壁缓慢滴入浓硫酸,在两层液面间会出现一个紫色环。又称α-萘酚反应.说明含有糖类或苷类. (但碳苷和糖醛酸例外,呈阴性.) 菲林和多伦反应:阳性,有还原糖.可以利用这两个反应来区别还原糖和非还原糖。 单糖:都是还原糖。双糖:麦芽糖、乳糖为还原糖。蔗糖为非还原糖 苷键构型的判断 糖苷的1H-NMR:成苷的端基质子H的耦合常在较低场。如:β构型J H1-H2=6~9Hz(8左右);α构型J H1-H2=2~3.5Hz (4左右) 醌类 酸性(规律) -COOH > 二个β-OH > 一个β-OH >二个α- OH > 一个α–OH 可用PH 梯度萃取分离。 其结果为①和②被5%碳酸氢钠溶液提出;③被5%碳酸钠提出;④被1%氢氧化钠提出;⑤只能被5%氢氧化钠提出 可用PH梯度萃取分离。 颜色反应 1、Feigl反应:全部醌类均阳性。碱性条件加热,紫色 2、Borntrager’s反应:也叫碱液试验,羟基蒽醌阳性。——颜色变化与OH数目及位置有关,红-紫色. 3、醋酸镁反应:含α-酚羟基或邻二酚羟基的蒽醌类阳性。 4、与活性亚甲基试剂反应kesting-Craven和无色亚甲蓝显色反应: 苯醌和萘醌类的专属反应.在碱性条件下 5、对亚硝基-二甲苯胺反应: 蒽酮类的特异性反 应.(唯一).蒽酮就是9或10位没有被取代的羟基 蒽酮类. 醌类化合物的提取与分离 (大题,看书) pH梯度萃取法P82 例:大黄蒽醌苷类的分离 苯丙素类(一个或几个C6-C3) 香豆素:一般具有苯骈α-吡喃酮母核的天然产物 母核(画) 内酯性质和碱水解反应 碱性开环,酸性闭环。但长时间加热,异构化,不可 恢复闭环. 显色反应有荧光性质 1、Gibb’s反应: 试剂:2,6-二氯(溴)苯醌氯 亚胺 C6位没取代,阳性,蓝色 2、Emerson反应试剂:4-氨基安替比林,铁氰化 钾反应 C6位没取代,阳性,红色 木脂素鉴识 Labat反应:具有亚甲二氧基的木脂素加浓硫酸 后,再加没食子酸,可产生蓝绿色 黄酮(C6-C3-C6) 结构与基本骨架(芦丁,槲皮素,鼠李糖,葡萄糖的 结构都要求会写)138页 经典结构是2-苯基色原酮,现在泛指两个苯环通 过三个碳原子相互连接而成的一类化合物 黄酮类:以2-苯基色原酮为母核,且3位上无含 氧基团取代的一类化合物 黄酮醇:在黄酮基本母核的3位上连有羟基或含 氧基团 二氢黄酮:黄酮基本母核的2、3位双键被氢化而 成 二氢黄酮醇:黄酮醇类的2、3位被氢化的基本母 核 交叉共轭体系:黄酮结构中色原酮部分本身无 色,但在2位上引入苯环后,即形成交叉共轭体 系,通过电子转移、重排,使共轭链延长而显出 颜色。在7位或4’位上引入-OH及-OCH3等助色 团后,产生p-π共轭,使化合物颜色加深。 溶解度:游离黄酮一般难溶于水,易溶于甲醇、 乙醇、乙酸乙酯、氯仿、乙醚等有机溶剂及稀碱 水中。引入羟基增多,水溶性增大,脂溶性降 低;而羟基被甲基化后,脂溶性增加。黄酮苷一 般易溶于水、甲醇、乙醇等强极性溶剂中,但难 溶于苯、氯仿、乙醚等有机溶剂中 平面型如黄酮、黄酮醇、查尔酮等溶解度较小, 非平面型如二氢黄酮及二氢黄酮醇的溶解性较 大,异黄酮的也较大 酸性:7,4’-二OH黄酮>7-或4’-OH黄酮>一 般酚羟基>5-OH黄酮 显色反应:(1)HCl-Mg反应:样品溶于甲醇或乙 醇1ml中,加入少许Mg,再加几滴浓HCl,一两 分钟显红~紫红色。(2)AlCl3反应:样品的乙醇 溶液和1%乙醇溶液AlCl3反应,生成黄色络合 物。(3)锆盐-枸橼酸反应:可鉴别黄酮类化合 物是否纯在3-或5-OH。样品的甲醇溶液加2%二氯 氧锆甲醇溶液。黄色不褪,有3-OH或3,5-OH, 如果减褪,无3-OH而有5-OH pH梯度萃取法:5%NaHCO3可萃取7,4’-二羟基 黄酮,5%NaCO3可萃取7-或4‘-羟基黄酮, 2%NaOH可萃取一般酚羟基的黄酮,4%NaOH可以萃 取5-羟基黄酮。 柱色谱分离 硅胶柱:利用极性差异,几乎适用于任何类型黄 酮(主要分离异黄酮、二氢黄酮,二氢黄酮醇及 高度驾机皇或乙酰化的黄酮及黄酮醇) 聚酰胺柱:通过酰胺羰基与黄酮类化合物分子上 的酚羟基形成氢键缔合而产生。化合物结构与Rf 值:酚羟基少>多;易形成分子内氢键>难;芳 香化程度低>高;异黄酮>二氢黄酮醇>黄酮> 黄酮醇;游离黄铜>单糖苷>双糖苷>叁糖苷 (含水移动相做洗脱剂);有机溶剂做洗脱剂反 之。洗脱能力由弱至强;水<甲醇或乙醇(浓度 由低到高)<丙酮<稀氢氧化钠水溶液或氨水< 甲酰胺<二甲基甲酰胺<尿素水溶液 紫外 黄酮类型带II(弱峰) 带I(强峰) 取代) 黄酮醇(3-OH 游离) 250-280 358-385 异黄酮245-270 310-330肩峰 二氢黄酮/醇370-295 300-330 查耳酮220-270低强度340-390 氢谱: 黄酮或黄酮类H-3是一个尖锐的单峰出现在 6.3 处 邻位耦合:耦合常数为8Hz左右 间位耦合:2-3Hz 对位耦合:很弱,数值很小或没有 5,7-二OH黄酮δppm:H-6小于 H-8 . 7- OH 黄酮: δppm:H-6 > H-8 6’δ比较大,5’较小 同时还要看 单峰S,就没有邻,间位双锋d说明有邻位或间位 其中一个双双锋dd就说明有邻,和间两个 生物合成途径 经验异戊二烯法则:基本碳架均是由异戊二烯以 头-尾顺序或非头-尾顺序相连而成;生源异戊二 烯法则:甲戊二羟酸是各种萜类化合物生物合成 的关键前体 单萜:无环,单环,双环,三环,环烯醚。知道 卓酚酮,环烯醚萜,薄荷醇,青蒿素的二级结构 和性质 性质:萜类多具苦味,单萜及倍半萜可随水蒸气 蒸馏,其沸点随其结构中的C5单位数、双键数、 含氧基团数的升高而规律性升高 提取:挥发性萜可用水蒸气蒸馏法;一般萜可用 甲醇或乙醇提取;萜内酯可先用提取萜的方法提 取出总萜,然后利用内酯的特性,用碱水提取酸 化沉淀的方法纯化;萜苷多用甲醇、乙醇或水提 取 柱色谱:吸附剂多用硅胶。中性氧化铝。含双键 者可用硝酸银络合柱色谱分离(利用硝酸银可与 双键形成π络合物,而双键数目位置及立体构型 不同的萜在络合程度及络合稳定性方面有一定差 异)。洗脱剂多以石油醚、正己烷、环己烷分离 萜烯,或混以不同比例的乙酸乙酯分离含氧萜 鉴识:卓酚酮类的检识 (硫酸铜反应:绿色结 晶);环烯醚萜的检识(Weiggering法:蓝色/紫红 色;Shear反应:黄变棕变深绿);薁类的检识 (Ehrlich反应:蓝紫绿;对-二甲胺基苯甲醛) 挥发油 也称精油,是存在于植物体内的一类具有挥发 性、可随水蒸气蒸馏、与水不相容的油状液体。 分为:芳香族,萜类,脂肪族 检识:化学测定常数:酸值、酯值、皂化值 提取方法:①蒸馏法:提取挥发油最常用的方 法,对热不稳定的挥发油不能用。②溶剂萃取 法:脂溶性杂质较多。③吸收法:油脂吸收法, 用于提取贵重挥发油。④压榨法:该方法可保持 挥发油的原有新鲜香味,但可能溶出原料中的不 挥发性物质。⑤二氧化碳超临界流体萃取法:有 防止氧化热解及提高品质的突出优点,用于提取 芳香挥发油 三萜 醋酐-浓硫酸反应(Liebermann-Burchard) 红-紫-蓝-绿色-褪色(甾体皂苷) 黄-红-紫-蓝-褪色(三萜皂苷) 胆甾醇沉淀法:胆甾醇复合物——乙醚回流提 取,去除胆甾醇,得皂苷。因为甾体皂苷比三萜 皂苷形成的复合物稳定. 甾类 C21甾醇C2H5 昆虫变态激素8-10个碳的脂肪烃 强心苷不饱和内酯环 甾体母核的C-17位上均连一个不饱和内酯环。根 据内酯环的不同:五元不饱和内酯环叫甲型强心 苷元;六元不饱和内酯环叫乙型。 苷和糖连接的顺序分: I型强心苷:苷元-(2,6-二去氧糖)x-(D-葡萄

杜仲次生代谢产物及其生物合成途径

杜仲中的次生代谢物及其生物合成途径摘要:本文介绍了杜仲的生物学特征及产地,对杜仲中所含的次生代谢产物及其生物合成途径进行了综述。 关键词:杜仲;次生代谢产物;生物合成途径 1 杜仲概述 杜仲(Eucommia ulmoides Oliver)为杜仲科杜仲属植物,是我国特有名贵药用树种[1],落叶乔木,其高达20m、树皮灰褐色,粗糙,连同枝、叶、根均含胶,折断有银白色细丝。叶椭圆或椭圆伏卵型,长6~18cm,边缘有锯齿,下边脉上有毛,叶柄长1~2cm,果为翅果扁平而薄,内含一种子[2-3]。 杜仲为地质史上第三纪冰川运动残留下来的古生物树种,为国家二级保护植物[4],原产于我国西南诸省山区,喜温暖而凉爽的气候,属喜光树种,在强光、全光条件下才能良好生长。杜仲适生范围较广,我国有丰富的资源,主要分布于甘、陕、晋、豫、湘、鄂、川、滇、黔、桂、苏、皖、浙、赣等省、自治区,垂直分布一般在200~1500m之间,个别地区海拔高度可达2500m,其野生的分布中心是在中国中部地区[5]。在日本、俄罗斯、朝鲜、北欧、北美等国家和地区也有引种[6]。 其皮和叶是我国传统的中药材,具有补肝肾、强筋骨和安胎的作用,用于治疗肾虚腰痛、筋骨无力、胎动不安、高血压、头晕目眩等症。杜仲皮中主要药用成分为松脂醇二葡萄糖苷,杜仲叶中主要药用成分为绿原酸[7]。 2 杜仲的化学成分 , 近年来,各国学者对杜仲的化学成分进行了大量研究,目前经过分离和鉴定的有机化合物约有70种以上,无机矿物元素不少于15 种。研究还发现,杜仲皮、花、叶和枝条等各部分中含有相似的化学成分,主要包括: 苯丙素类、木脂素类、环烯醚萜类、黄酮类、多糖、氨基酸和杜仲胶等有机化合物,及钙、铁等

次生代谢—黄铜的合成通路相关

次生代谢—黄铜的合成通路相关 14应用生物科学,1443204000306,王晓云 摘要:黄酮类化合物是是一类植物中分布很广且非常重要的多酚类天然产物,黄酮足一类具有抗炎,抗菌,抗病毒等作用的化合物.本文综述了黄酮类化合物的重要合成方法及其最 新发展。从黄酮的分子结构,理化性质等方面入手,研究黄酮合成的通路。同时,也阐述了一些黄酮的其他性质及在生产生活中的作用。 关键字:黄酮合成通路苯环Baker—Venkaetaraman法 引言:黄酮几乎存在于所有绿色植物中,尤其以芸香科,唇形科,石南科,玄参科,豆科,苦苣苔科,杜鹃科和菊科等高等植物中分布较多。据估计,经植物光合作用所固定的碳2%转变为黄酮类化合物或与其密切相关的其他化合物。[1] 黄酮类化合物泛指两个苯环(A一与B一环)通过中央三个碳原子相互连结而成的一系列化合物.黄酮类化合物结构中常连有酚羟基、甲氧基、异戊烯基等官能团。由于其具有抗炎,抗菌,抗病毒等作用,长期以来受到很多人的关注。随着取代基及其取代位置的不同,而具有不同的物化性质和药理活性。天然黄酬中,C-5和C-7位有羟基或苯环上有3个羟基的黄酮的活性较高。而在非天然的黄酮类化合物中,7位羟基被其他基团取代之后仍具有很好的活性旧。传统的合成方法足采用Baker—Venkaetaraman法重排来合成黄酮类化合物。[2] 随着科技的发展,黄酮合成的方式趋于多样化。本文通过了解黄酮的基本结构等特征,来总结一些黄酮的传统合成方法及新的合成方法。 1.黄酮化合物的基本结构及生物合成途径 1.1.基本结构 黄酮(flavonoids)是一类其骨架具有15个碳原子组成的化合物(C6—C3—C6),骨架中含有两个苯环,一个苯环由一个C3部分桥连,C3部分可以是脂肪链,也可以是C6部分形成的六元或五元氧杂环,见图1。[1] 图1 黄酮的基本骨架 1.2.黄酮的生物合成 1.经过多年的研究,科学家们认为黄酮类化合物是由莽草酸途径和多酮化途径生物合成的产物,黄酮的基本骨架是由3个丙二酰辅酶A(malonylCoA)和1个香豆酰辅酶A(coumaroylCoA)生合而产生的。经同位素标记实验证明,3个A丙二酰辅酶A来源于多酮化途径并通过环化作用生成黄酮类化合物骨架A环,而B环则来自于香豆酰辅酶A。其中,香豆酰辅酶A是以苯丙氨酸和酪氨酸(两者均来源于莽草酸途径)为前体合成的;已知参与这一过程的相关酶有苯丙氨酸解氨酶(PAL)、肉桂

黄酮类化合物

第五章黄酮类化合物 一、选择题 (一)单项选择题(在每小题的五个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内) 1.构成黄酮类化合物的基本骨架是() A. 6C-6C-6C B. 3C-6C-3C C. 6C-3C D. 6C-3C-6C E. 6C-3C-3C 2.黄酮类化合物的颜色与下列哪项因素有关() A. 具有色原酮 B. 具有色原酮和助色团 C. 具有2-苯基色原酮 D. 具有2-苯基色原酮和助色团 E.结构中具有邻二酚羟基 3.引入哪类基团可使黄酮类化合物脂溶性增加() A. -OCH3 B. -CH2OH C. -OH D. 邻二羟基 E. 单糖 4.黄酮类化合物的颜色加深,与助色团取代位置与数目有关,尤其在()位置上。 A. 6,7位引入助色团 B. 7,4/-位引入助色团 C. 3/,4/位引入助色团 D. 5-位引入羟基 E. 引入甲基 5.黄酮类化合物的酸性是因为其分子结构中含有() A. 糖 B. 羰基 C. 酚羟基 D. 氧原子 E. 双键 6.下列黄酮中酸性最强的是() A. 3-OH黄酮 B. 5-OH黄酮 C. 5,7-二OH黄酮

D. 7,4/-二OH黄酮 E. 3/,4/-二OH黄酮 7.下列黄酮中水溶性性最大的是() A. 异黄酮 B. 黄酮 C. 二氢黄酮 D. 查耳酮 E. 花色素 8.下列黄酮中水溶性最小的是() A. 黄酮 B. 二氢黄酮 C. 黄酮苷 D. 异黄酮 E. 花色素 9.下列黄酮类化合物酸性强弱的顺序为() (1)5,7-二OH黄酮(2)7,4/-二OH黄酮(3)6,4/-二OH黄酮A.(1)>(2)>(3) B.(2)>(3)>(1) C.(3)>(2)>(1)D.(2)>(1)>(3) E.(1)>(3)>(2) 10.下列黄酮类化合物酸性最弱的是() A. 6-OH黄酮 B. 5-OH黄酮 C. 7-OH黄酮 D. 4/-OH黄酮-二OH黄酮 11.某中药提取液只加盐酸不加镁粉,即产生红色的是() A. 黄酮 B. 黄酮醇 C. 二氢黄酮 D. 异黄酮 E. 花色素 12.可用于区别3-OH黄酮和5-OH黄酮的反应试剂是() A. 盐酸-镁粉试剂 B. NaBH4试剂 C.α-萘酚-浓硫酸试剂 D. 锆-枸橼酸试剂 E .三氯化铝试剂 13.四氢硼钠试剂反应用于鉴别() A. 黄酮醇 B. 二氢黄酮 C. 异黄酮

紫草宁生物合成途径中的代谢与调控教学总结

紫草宁生物合成途径中的代谢与调控 1.背景知识介绍 1.1 紫草及紫草宁 紫草(学名:Lithospermum erythrorhizon),为紫草科紫草属植物。又名山紫草、紫丹、紫草根,分布于日本、朝鲜以及中国大陆的辽宁、山西、湖南、甘肃、山东、湖北、广西、四川、陕西、贵州、江西、河北、河南等地,生长于海拔50米至2,500米的地区,多生长在山坡草地,目前尚未由人工引种栽培。紫草是一种重要的药用植物,其功效是凉血,活血,解毒透疹。用于血热毒盛,斑疹紫黑,麻疹不透,疮疡,湿疹,水火烫伤。紫草根部富含红色的萘醌类次生代谢产物——紫草宁及其衍生物。 紫草宁又称紫草素,英文名称:Shikalkin,英文别名: 5,8-Dihydroxy-2-(1-hydroxy-4-methylpent-3-enyl)naphthalene-1,4-dione,即5,8-二羟基-2-[(1R)-1-羟基-4-甲基戊-3-烯基]萘-1,4-二酮,结构式如下: 紫草宁为赤褐色针状晶体(由苯重结晶)。熔点149℃。旋光度-167°±10°(在苯中)。能溶于普通有机溶剂,以及甘油动植物油脂和碱性水溶液。难溶于碳酸氢碱溶液。与氢氧化碱金属作用显蓝色。 由于紫草素具有多种生物学活性,以紫草素为先导化合物开发抗炎、抗肿瘤、抗病毒新药的研究已成为热点课题,除此之外,紫草素还是良好的天然色素,已广泛用于食品、化妆品和印染工业中。 1.2紫草宁及其衍生物的药理作用

1.2.1 抗肿瘤活性 近年来,紫草次生代谢物的抗肿瘤活性倍受关注。紫草素能够抑制肝癌肿瘤细胞增殖[1]、诱导生殖系统肿瘤细胞凋亡[2],并兼具调控机体免疫的功能。紫草素在体外一定浓度范围内能抑制人白血病K562细胞增殖,诱导其凋亡。甲基丙烯酰紫草素具有较好的体内外抗肿瘤作用,作用机制可能与诱导细胞凋亡和抑制NF-zB p50的活性有关[3]。乙酰紫草素可通过诱导细胞凋亡来抑制胃癌SGC-7901细胞在体内外的增殖[4]。 1.2.2 抗炎活性 紫草素能有效减轻由中波紫外线(UVB)引起的表皮角蛋白细胞炎症,起到保护皮肤的作用;还可以减弱小神经胶质细胞的炎症反应,达到保护神经系统的作用。 1.2.3 降胆固醇活性 研究发现,从硬紫草根部氯仿提取物中分离出的三种化合物—乙酰紫草素、异丁基紫草素和β-羟基异戊酰紫草素均具有抑制人类酰基辅酶A-胆固醇酰基转移酶-1和人类酰基辅酶A-胆固醇酰基转移酶-2的活性。酰基辅酶A-胆固醇酰基转移酶是胆固醇生物合成途径的关键酶,乙酰紫草素、异丁基紫草素和β-羟基异戊酰紫草素通过抑制该酶的活性,从而达到降低胆固醇含量,防治动脉粥样化的目的。 紫草的药理作用除了上述内容之外,还有降血糖活性,抗生育、抗免疫缺陷、抗凝血、保肝护肝、抗前列腺素生物合成、抗菌及清除活性氧作用等。 1.3紫草及紫草宁的市场 紫草是我国传统中药材,多家中药饮片厂以紫草为主要原料研制开发生产了约500多种(规格)中成药、特药、新型中药,以及几十种中药饮片。这些产品投入市场后很受消费者欢迎,销量增加,对紫草的需求量也随之逐年大幅攀升。

利用紫外光谱测定黄酮类化合物的结构

之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。 乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。 黄酮和黄酮醇类 黄酮或黄酮醇的带Ⅰ是由B环桂皮酰基系统的电子跃迁所引起的吸收,带Ⅱ是由A环的苯甲酰基系统的电子跃迁所引起的吸收。 黄酮和黄酮醇的UV光谱图形相似,仅带Ⅰ位置不同,黄酮带Ⅰ位于304~350nm,黄酮醇带Ⅰ位于358~385nm。利用带Ⅰ的峰位不同,可以区别这两类化合物。 黄酮、黄酮醇的B环或A环上取代基的性质和位置不同将影响带Ⅰ或带Ⅱ的峰位和形状。例如,7和4'位引入羟基、甲氧基等含氧取代基,可引起相应吸收带向红位移。又如3-或5-位引入羟基,因能与C4=O形成氢键缔合,前者使带Ⅰ向红位移,后者使带Ⅰ、带Ⅱ均向红位移。B环上的含氧取代基逐渐增加时,带Ⅰ向红位移值(nm)也逐渐增加,但不能使带Ⅱ产生位移。有时(例如3',4'-位有2个羟基或2个甲氧基或亚甲二氧基)仅可能影响带Ⅱ的形状,使带Ⅱ歧分为双峰或1个主峰(Ⅱb位于短波处)和1个肩峰(sh)或弯曲(Ⅱa位于长波处)。 A环上的含氧取代基增加时,使带Ⅱ向红位移,而对带Ⅰ无影响,或影响甚微(但5-羟基例外)。 黄酮或黄酮醇的3-,5-或4'-羟基被甲基化或苷化后,可使带Ⅰ向紫位移,3-OH甲基化或 1.甲醇钠(NaOMe),主要是判断是否有4'-OH,3、4'-二OH或3、3'、4'-三OH。

黄酮类化合物

黄酮类化合物 黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物黄酮类化 合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。此外,它还常与糖结合成苷。多数科学家认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的。经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A[1]。1、分类:根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮。2、理化性质:天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。黄酮类化合物不同的颜色为天然色素家族添加

了更多色彩。这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。黄酮苷一般易溶于水、乙醇、甲醇等级性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。糖链越长则水溶度越大。黄酮类化合物因分子中多具有酚羟基,故显酸性。酸性强弱因酚羟基数目、位置而异。3、显色:1.盐酸-镁粉(或锌粉) 反应为鉴定黄酮类化合物最常用的颜色反应,反应机理现在认为是因为生成了阳碳离子缘故[1]。2.四氢硼钠(NaBH4)是对二氢黄酮类化合物专属性较高的一种还原剂,产生红~紫色。而与其它黄酮类化合物均不显色。3. 黄酮类化合分子中常含有下列结构单元,故常可与铝盐、铅盐、锆盐、镁盐、锶盐、铁盐等试剂反应,生成有色络合物。与1%三氯化铝 或硝酸铝溶液反应,生成的络合物多为黄色(λmax=415nm),并有荧光,可用于定性及定量分析。4、黄酮对身体的好处黄酮广泛存在自然界的某些植物和浆果中,总数大约有4千 多种,其分子结构不尽相同,如芸香苷、橘皮苷、栎素、绿茶 多酚、花色糖苷、花色苷酸等都属黄酮。不同分子结构的黄酮可作用于身体不同的器官,如山楂--心血管系统,兰梅-- 眼睛,酸果--尿路系统,葡萄--淋巴、肝脏,接骨木果--免疫系统,平时我们可以通过多食葡萄、洋葱、花椰莱、喝红酒、多饮绿茶等方式来获得黄酮,作为身体的一种补充。 黄酮的功效是多方面的,它是一种很强的抗氧剂,可有效清

黄酮类化合物糖苷化反应的研究

黄酮类化合物糖苷化反应的研究 摘要:黄酮是广泛存在于自然界的一类化合物,多属于植物的次级代谢产物在植物体内大部分与糖结合成苷或以碳糖基的形式存在。但大多都是以苷类的形式存在,多数的黄酮苷属于O-苷,少部分属于C-苷,具有多方面的生理活性。天然黄酮糖苷化合物资源有限,故而使其化学合成成为当今糖化学领域的研究热点之一。本文从各类黄酮类化合物着手,研究其糖苷化反应的条件,并以实例比较同类黄酮类化合物不同结构对糖苷化反应的影响。 关键词:黄酮黄酮苷糖苷化合成 Doi:10.3969/j.issn.1671-8801.2014.06.004 Abstract:Flavonoids are widely exists in the nature of a class of compounds,more belongs to the most of plant secondary metabolites in plant body combined with sugar into glycosides or exists in the form of carbon sugar base.But mostly in the form of glycosides,most of the flavonoid glycosides belong to O-glycosides,a few belong to C-glycosides,has various biological activities.Natural flavonoid glycoside compounds with limited resources,and make the chemical synthesis of sugar today one of the hot research topic in the field

(整理)天然药物化学第4章黄酮类化合物.

第4章黄酮类化合物一、选择题 1.构成黄酮类化合物的基本骨架是() A. 6C-6C-6C B. 3C-6C-3C C. 6C-3C D. 6C-3C-6C E. 6C-3C-3C 2.引入哪类基团可使黄酮类化合物脂溶性增加() A. -OCH3 B. -CH2OH C. -OH D. 邻二羟基 E. 单糖 3.黄酮类化合物的酸性是因为其分子结构中含有() A. 糖 B. 羰基 C. 酚羟基 D. 氧原子 E. 双键 4.下列黄酮中酸性最强的是() A. 3-OH黄酮 B. 5-OH黄酮 C. 5,7-二OH黄酮 D. 7,4/-二OH黄酮 E. 3/,4/-二OH黄酮 5.下列黄酮中水溶性性最大的是() A. 异黄酮 B. 黄酮 C. 二氢黄酮 D. 查耳酮 E. 花色素 6.下列黄酮中水溶性最小的是() A. 黄酮 B. 二氢黄酮 C. 黄酮苷 D. 异黄酮 E. 花色素 7.下列黄酮类化合物酸性强弱的顺序为() (1)5,7-二OH黄酮(2)7,4/-二OH黄酮(3)6,4/-二OH黄酮 A.(1)>(2)>(3) B.(2)>(3)>(1) 精品文档

C.(3)>(2)>(1) D.(2)>(1)>(3) E.(1)>(3)>(2) 8.色原酮环C2、C3间为单键,B环连接在C2位的黄酮类化合物是 A.黄酮醇 B.异黄酮 C.查耳酮 D.二氢黄酮 E.黄烷醇 9.银杏叶中含有的特征成分类型为 A.黄酮醇 B.二氢黄酮 C.异黄酮 D.查耳酮 E.双黄酮 10.黄酮类化合物大多呈色的最主要原因是 A.具酚羟基 B.具交叉共轭体系 C.具羰基 D.具苯环 E.为离子型 11.二氢黄酮醇类化合物的颜色多是 A.黄色 B.淡黄色 C.红色 D.紫色 E.无色 12.二氢黄酮、二氢黄酮醇类苷元在水中溶解度稍大是因为 A.羟基多 B.有羧基 C.离子型 D.C环为平面型 E. C环为非平面型 13.黄酮苷和黄酮苷元一般均能溶解的溶剂为 A.乙醚 B.氯仿 C.乙醇 D.水 E.酸水 14.下列黄酮类酸性最强的是 A.7-OH黄酮 B.4′-OH黄酮 C.3′,4′-二OH黄酮 D.7,4′-二OH黄酮 E.6,8-二OH黄酮 精品文档

黄酮类化合物的鉴别与结构测定

黄酮类化合物的鉴别与结构测定 作者:佚名来源:发表时间:2006-04-12 浏览次数:299 字号:大中小 一、利用紫外光谱测定黄酮类化合物的结构 大多数黄酮类化合物在甲醇中的紫外吸收光谱由两个主要吸收带组成。出现在300~400n m之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。 结构类型峰位(nm)组内区别组间区别 带Ⅰ带Ⅱ(峰位)(峰强) 黄酮310~350250~280 带Ⅰ不同Ⅰ、Ⅱ皆强 黄酮醇350~385250~280 异黄酮310~330(肩峰)245~275 带Ⅱ不同Ⅰ弱Ⅱ强 二氢黄酮(醇)300~330(肩峰)275~295 查耳酮340~390230~270(低强度) 带Ⅰ不同Ⅰ强Ⅱ弱 橙酮380~430230~270(低强度) 当向黄酮类化合物的甲醇(或乙醇)溶液中分别加入甲醇钠(NaOMe)、乙酸钠(N aOAc)、乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。 黄酮和黄酮醇类 (一)黄酮、黄酮醇类在甲醇中的UV光谱特征

黄酮或黄酮醇的带Ⅰ是由B环桂皮酰基系统的电子跃迁所引起的吸收,带Ⅱ是由A环的苯甲酰基系统的电子跃迁所引起的吸收。 黄酮和黄酮醇的UV光谱图形相似,仅带Ⅰ位置不同,黄酮带Ⅰ位于304~350nm,黄酮醇带Ⅰ位于358~385nm。利用带Ⅰ的峰位不同,可以区别这两类化合物。 黄酮、黄酮醇的B环或A环上取代基的性质和位置不同将影响带Ⅰ或带Ⅱ的峰位和形状。例如,7和4′位引入羟基、甲氧基等含氧取代基,可引起相应吸收带向红位移。又如3-或5 -位引入羟基,因能与C4=O形成氢键缔合,前者使带Ⅰ向红位移,后者使带Ⅰ、带Ⅱ均向红位移。B环上的含氧取代基逐渐增加时,带Ⅰ向红位移值(nm)也逐渐增加,但不能使带Ⅱ产生位移。有时(例如3′,4′-位有2个羟基或2个甲氧基或亚甲二氧基)仅可能影响带Ⅱ的形状,使带Ⅱ歧分为双峰或1个主峰(Ⅱb位于短波处)和1个肩峰(sh)或弯曲(Ⅱa位于长波处)。 A环上的含氧取代基增加时,使带Ⅱ向红位移,而对带Ⅰ无影响,或影响甚微(但5-羟基例外)。 黄酮或黄酮醇的3-,5-或4′-羟基被甲基化或苷化后,可使带Ⅰ向紫位移,3-OH甲基化或苷化使带Ⅰ(328~357nm)与黄酮的带Ⅰ的波长范围重叠(且光谱曲线的形状也相似),5-OH甲基化使带Ⅰ和带Ⅱ都向紫位移5~15nm,4′-OH甲基化或苷化,使带Ⅰ向紫位移3~10nm。其他位置上的羟基取代对甲醇中的紫外光谱几乎没有影响。 (二)利用诊断试剂对黄酮、黄酮醇类化合物UV光谱的影响检出羟基位置 1.甲醇钠(NaOMe),主要是判断是否有4′-OH,3、4′-二OH或3、3′、4′-三OH。2.乙酸钠,较为突出的是判断是否有7-OH。[举例说明] 3.乙酸钠/硼酸主要判断A环或B环是否有邻二酚羟基(5,6-二OH除外)。[举例说明]

(整理)黄酮类化合物-

第七章 黄酮类化合物 黄酮类化合物(flavonoids )是广泛存在于自然界的一大类化合物,大多具有颜色。这一类化合物主要存在于双子叶植物和裸子植物中,在菌类、藻类、地衣类等低等植物中较少见。此类化合物在植物体中大部分与糖结合成苷,一部分以游离状态存在。 黄酮类化合物有多方面的生物活性。例如在心血管系统方面,槐米中的芸香苷和陈皮中的橙皮苷等成分有调节血管通透性和维生素P 样作用,可用作防治高血压及动脉硬化的辅助药物;银杏中的银杏黄酮、葛根中的葛根素等成分有明显的扩张冠状动脉作用。在抗肝脏毒方面,水飞蓟素有护肝的作用,可用作治疗急慢性肝炎、肝硬化及多种中毒性肝损伤。在抗菌作用方面,黄芩中的黄芩苷、黄芩素等成分有一定程度的抗菌作用。此外,黄酮类化合物在镇咳、祛痰、解痉等方面也有一定治疗作用。因此黄酮类化合物是天然药物中的一类重要的有效成分。 第一节 黄酮类化合物的结构与分类 以前,黄酮类化合物主要是指基本母核为2-苯基色原酮类化合物,现在则是泛指两个苯环(A 环与B 环)通过中央三碳链相互连接而成,具有6C-3C-6C 基本骨架的一系列化合物。 O O O O H 1 234 5 6 78A B C 1 / 2/ 3/4/ 5/ 6/ 根据中央三碳链的氧化程度、三碳链是否成环及B 环连接位置等特点,可将黄酮类化合物进行分类(表7-1)。 色原酮(苯并-γ-吡喃酮) 2-苯基色原酮(黄酮)

黄酮类化合物多为上述基本母核的衍生物,在A环和B环上常有羟基、甲氧基、异戊烯基等取代基。组成苷的糖类常有D-葡萄糖、D-半乳糖、L-鼠李糖、L-阿拉伯糖、D-木糖及D-葡萄糖醛酸等。也有双糖和三糖,如芸香糖、龙胆二糖、龙胆三糖等。糖多结合在C3、C5、C7位,其它位置也有连接。 下面将黄酮类化合物的主要类型举例如下: 一、黄酮和黄酮醇类 基本结构: O R O R=H 黄酮R=OH 黄酮醇

天然产物:黄酮类化合物

黄酮类化合物 摘要:绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及 抗菌防病等方起着重要的作用,更为重要的是,它有很多药理活性,如心血管系统活性、抗菌及抗病毒活性、抗肿瘤活性、抗氧化自由基活性、抗炎、镇痛活性、保肝活性等。随着生活水平的提高和生活节奏的改变,不管是癌症还是心血管疾病都已成为人类死亡病因的重大杀手,也是人们健康的“无声凶煞”!而抗衰老则是更古至今不变的话题。因此近几年对该类物质的研究如火如荼,并取得重大突破。本文主要阐述几种提取和测定黄酮类化合物的方法及其功能,为工业中从植物中提取黄酮类化合物提供依据。 关键字:黄酮类化合物提取方法功能 正文:黄酮类化合物(flavonoids)泛指两个具有酚羟基的苯环(A-与B-环)通过中央三 碳原子相互连结而成的一系列化合物,以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素。其中包括黄酮的同分异构体及其氢化的还原产物,也即以C6-C3-C6为基本碳架的一系列化合物。黄酮类化合物在植物界分布很广,在植物体内大部分与糖结合成苷类或碳糖基的形式存在,也有以游离形式存在的。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成盐而表现为弱碱性,因此曾称为黄碱素类化合物。在了解黄酮类化合物化学结构的基础上,科研工作者创造了多种黄酮类化合物提取和测定方法。 1提取方法 1.1碱液提取法 黄酮类化合物大多具有酚羟基,易溶于碱水,酸化后又可沉淀析出其原因一是由于黄酮酚羟基的酸性,二是由于黄酮母核在碱性条件下开环形成 2 -羟基查耳酮,极性增大而溶解因此可用碱性水( 碳酸钠氢氧化钠氢氧化钙水溶液) 或碱性稀醇( 50%乙醇) 浸出,浸出液经酸化后析出黄酮类化合物氢氧化钠水溶液的浸出能力高,但杂质较多,不利于纯化当植物材料( 如花和果实) 含有较多的果胶黏液质及水溶性杂质时,宜采用石灰水,使它们与氢氧化钙生成钙盐沉淀滤除但浸出效果不如氢氧化钠水溶液好,同时有些黄酮类化合物能与钙结合成不溶性物质被滤除,一般可以根据不同的原料使用不同碱性溶液在用碱酸法提取纯化时,但应避免用强碱,用强碱尤其在加热时易破坏黄酮母核在加酸酸化时,酸性也不宜过强,以免生成盐使析出的黄酮类化合物重新溶解影响产率,pH 值为 10的氢氧化钠溶液从菊花中提取黄酮类物质时,效果较好 1.2水提法 水提法适于黄酮贰物质提取该法成本低对环境及人类无毒害设备简单,适合工业化大生产,但提取率低,提取物中杂质较多( 如无机盐蛋白质糖类等),后续分离麻烦,但如果直接用提取液作原料生产制剂或饮料等,因消耗溶剂的费用比其他方法低,仍为一种可取的提取方法胡敏等[4]研究水浸提银杏叶黄酮苷并用树脂精制的工艺,探讨了影响黄酮苷浸出的主要因素以及最适的精制方法结果表明: 以水为提取剂,在 90℃水溶回流浸提银杏叶 2 次, 4 h /次,经沉淀过滤浓缩后,用树脂精制,冷冻干燥后,制得总黄酮苷含量高的提取物,产品得率为银杏叶干重1. 2% ~ 1. 5% 1.3酶解法

黄酮类化合物

黄酮类化合物1.分类

几种重要黄酮类化合物: 黄芩苷甘草素 O O 876 5 4 3 25'1'6' 2'4'3' 1 OH HO O O COOH OH OH OH O O 8 6 5 4 325' 1'6' 2'4'3'1 HO OH 7 牡荆素葛根素 O 7 6 54 325'1'6' 2'4'3'1 OH HO 8 O HO HO CH 2OH HO O O 6 5 425' 1' 6' 2' 3'1 3 OH HO O HO HO CH 2OH HO 78 4' 槲皮素(+)-儿茶素 O O 8 7 6 54 325'1'6' 2'4'3' 1 OH HO OH OH OH 2. UV 谱 1)黄酮类化合物在甲醇溶液中的UV 谱

识别诀窍: 1.单纯黄酮在带Ⅱ最大吸收波长为250nm,如红移将近20nm考虑 5位有羟基取代,一旦红移不超过10nm,则一定5位无羟基取代,如果稍稍红移,则6、7、8位可能有羟基取代; 2.带Ⅱ强,带Ⅰ弱(肩峰),考虑异黄酮、二氢黄酮和二氢黄酮 醇,二氢黄酮和二氢黄酮醇最大吸收波长比异黄酮大; 3.带Ⅱ弱(近乎肩峰),带Ⅰ强,考虑查耳酮和橙酮,橙酮最大 吸收波长比查耳酮大; 4.带Ⅱ带Ⅰ都有一定程度的峰(此时可能带Ⅱ弱,带Ⅰ强,但不同于 查耳酮和橙酮,不是肩峰),此时考虑黄酮和黄酮醇,黄酮醇带Ⅰ最大吸收波长比黄酮大(还是由于羟基的影响而红移);当带Ⅰ>350

nm,则多为黄酮醇或其苷类; 5.如果带Ⅰ最大吸收波长超过了400nm,极少可能为上述黄酮类, 有可能为橙酮类或花青素类; 6.3-OH甲基化或苷化使带Ⅰ(328—357nm)与黄酮的带Ⅰ波长范 围重叠,5-OH甲基化使带Ⅰ和带Ⅱ紫移5—15nm,4’-OH甲基化或苷化使带Ⅰ紫移3—10nm。 2)加入诊断试剂的黄酮类化合物在甲醇溶液中的UV谱 因黄酮及其苷类均可溶于甲醇(MeOH)和乙醇,而乙醇中含有的痕迹量水 分可以抑制诊断试剂三氯化铝(AlCl3)与黄酮上邻二酚羟基(OH)形成络合物,故多选用MeOH做紫外-可见光谱测定用的溶剂;然后在溶有样品的MeOH溶液中,分别加入五种诊断试剂:甲醇钠(NaOMe)、醋酸钠(NaOAc)、醋酸钠/硼酸(NaOAc/H3BO3)、三氯化铝(AlCl3)、三氯化铝/盐酸(AlCl3/HCl),将测得的各种谱图进行对比分析,解析该类化合物的结构。 1加入NaOMe后立即测定。 如带Ⅰ红移40—60 nm,且强度不降,示有4’-OH;如带Ⅰ红移50—60 nm,强度下降,示有3-OH而无4’-OH;如5 min后测得的图谱带Ⅰ、带Ⅱ均衰减,示有对碱敏感的取代图式,如3’,4’-、3,3’,4’-、5,6,7-、5,7,8-、3’,4’,5’-OH取代等。 原因:母核上的所有酚OH在NaOMe强碱性下均可解离,故可引起相应峰带大幅度红移。 2加入NaOAc(未熔融)。 带Ⅱ红移5—20 nm时,示有7-OH;如带Ⅰ在长波一侧有明显肩峰时,示有4’-OH,但无3-及/或7-OH。

相关文档
最新文档