LMS类自适应算法参考文档
(完整word版)自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1.2自适应滤波发展前景 (2)1.2.1小波变换与自适应滤波 (2)1.2.2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2.1最小均方自适应滤波器 (4)2.1.1最速下降算法 (4)2.1.2最小均方算法 (6)2.2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别:第二小组组员:黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上,一个滤波器可以看成是一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号,即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时,该滤波器称为线性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。
1.1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。
LMS类自适应滤波算法的研究

LMS类自适应滤波算法的研究LMS类自适应滤波算法的研究自适应滤波算法是一种可以根据输入信号的特性自动调整滤波器参数的方法。
它在信号处理、通信系统、控制系统等领域得到了广泛的应用。
LMS(Least Mean Square)是一种常用的自适应滤波算法,它通过最小化均方差来更新滤波器的权重,以实现滤波器的自适应性。
LMS算法的基本原理是通过梯度下降法来调整滤波器的权重。
假设输入信号为 x(n),期望输出信号为 d(n),滤波器的输出信号为 y(n),滤波器的权重为 w(n)。
算法的更新公式如下:w(n+1) = w(n) + μe(n)x(n)其中,w(n+1)是下一时刻的权重,w(n)是当前时刻的权重,μ是步进因子,e(n)是误差信号,x(n)是输入信号。
误差信号可以通过期望输出信号和滤波器的输出信号之间的差异计算得到:e(n) = d(n) - y(n)LMS算法的核心思想是根据误差信号的大小来更新滤波器的权重,使得误差信号逐渐趋近于零,从而实现滤波器的自适应。
步进因子μ的选择对算法的性能有着重要的影响。
当μ过小时,算法的收敛速度较慢;当μ过大时,算法可能发散。
因此,在实际应用中需要根据具体情况选择适当的步进因子。
除了LMS算法,还有一些与之类似的自适应滤波算法,如NLMS(Normalized Least Mean Square)算法和RLS (Recursive Least Squares)算法。
NLMS算法是一种对LMS算法的改进,通过归一化步进因子来改善收敛速度和稳定性。
RLS算法是一种基于递推最小二乘法的自适应滤波算法,相对于LMS算法具有更好的性能,但计算量较大。
LMS类自适应滤波算法广泛应用于信号降噪、自适应控制、信号预测等领域。
在信号降噪方面,LMS算法可以根据输入信号的特性实时调整滤波器的权重,抑制噪声,提高信号的质量。
在自适应控制方面,LMS算法可以根据目标系统的反馈信息实时调整控制器的参数,使得控制系统能够自动适应不同的工况,提高控制精度和稳定性。
NLMSLMS算法介绍参考

NLMSLMS算法介绍参考NLMS(Normalized Least Mean Squares)算法是一种自适应滤波算法,是LMS(Least Mean Squares)算法的一种改进版本。
可以应用于许多信号处理应用领域,例如声音增强、自适应滤波、自适应降噪等。
LMS算法是一种采用最小均方误差准则的自适应滤波算法。
它通过最小化输入信号与期望输出信号之间的均方误差来调整滤波器的系数,实现自适应滤波。
然而,LMS算法存在一个缺陷,就是它对输入信号的动态范围非常敏感,需要较小的步长参数才能保证算法的收敛性。
为了解决LMS算法的不足,NLMS算法在每次迭代中对步长参数进行了归一化处理。
具体来说,在更新滤波器系数时,NLMS算法除以输入信号的功率来归一化步长。
这样可以有效地改善算法的收敛速度和稳定性,提高算法的适应性。
NLMS算法的更新公式如下:w(k+1)=w(k)+μ/(α+x(k)*x(k)')*e(k)*x(k)其中,w(k)表示第k个迭代步骤时的滤波器系数向量,μ是步长参数,α是一个小的正常数,x(k)表示第k个迭代步骤时的输入信号向量,e(k)表示第k个迭代步骤时的误差信号。
NLMS算法的优点是可以自动调节步长参数,能够快速适应信号的变化。
此外,由于步长参数的归一化处理,算法对输入信号的幅度变化不敏感,能够更好地处理动态范围大的信号。
然而,NLMS算法也存在一些问题。
首先,算法的收敛速度可能会受到输入信号的动态范围变化的影响。
当信号的动态范围较大时,步长参数的归一化处理会导致算法的收敛速度变慢,甚至可能导致算法无法收敛。
其次,算法对输入信号的变化有一定的延迟响应,可能导致一些误差信号被忽略。
总而言之,NLMS算法是一种改进的自适应滤波算法,通过归一化步长参数来提高算法的收敛速度和稳定性。
它在许多信号处理应用领域都有广泛应用,同时也存在一些局限性。
毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]
![毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]](https://img.taocdn.com/s3/m/e45ae55891c69ec3d5bbfd0a79563c1ec4dad715.png)
前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。
1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
(完整word版)自适应滤波LMS算法及RLS算法及其仿真

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1. 2自适应滤波发展前景 (2)1. 2. 1小波变换与自适应滤波 (2)1. 2. 2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2. 1最小均方自适应滤波器 (4)2. 1. 1最速下降算法 (4)2.1.2最小均方算法 (6)2. 2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别: 第二小组组员: 黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上, 一个滤波器可以看成是一个系统, 这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号, 即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时, 该滤波器称为线性滤波器, 当滤波器的输出为输入的非线性函数时, 该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时, 或是输入过程的统计特性发生变化时, 能够自动调整自己的参数, 以满足某种最佳准则要求的滤波器。
1. 1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener. Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初, 卡尔曼(Kalman)突破和发展了经典滤波理论, 在时间域上提出了状态空间方法, 提出了一套便于在计算机上实现的递推滤波算法, 并且适用于非平稳过程的滤波和多变量系统的滤波, 克服了维纳(Wiener)滤波理论的局限性, 并获得了广泛的应用。
毕业论文-基于LMS算法的自适应线性均衡器设计

基于LMS算法的自适应线性均衡器设计摘要:在信息业快速发展的今天,进行快速准确的通信是各个行业的基本要求。
影响移动通信质量和通信速度的一个重要因素是码间干扰,即串扰。
在一个实际的通信系统中,基带传输系统不可能完全满足理想的波形传输无失真条件,因而串扰几乎是不可避免的。
对串扰进行校正的电路称为均衡器,其实质是信道的一个逆滤波器。
信道均衡器是通信系统中一项重要的技术,它能够很好的补偿信道的非理想特性,从而减轻信号的畸变,降低误码率。
在高速通信、无线通信领域,信道对信号的畸变将更加的严重,因此信道均衡技术是不可或缺的。
本文介绍了自适应均衡器的基本理论、最小均方(LMS)算法的原理与设计、自适应的基本原理、线性均衡器的基本理论与设计,并结合归一化(NLMS)算法、递归最小二乘法(RLS)算法对最小均方(LMS)算法作了进一步说明,最终用MATLAB对基于LMS算法的自适应线性均衡器进行了仿真设计。
关键词:LMS算法;自适应;线性均衡器;(NLMS)算法;(RLS)算法LMS Algorithm Based on Adaptive LinearEqualizer DesignAbstract:The rapid development of information industry today, for fast and accurate communication is the basic requirement of various industries. Affect the quality of mobile communications and the communication speed is an important factor in inter-symbol interference, that is, crosstalk. In a practical communication system, base-band transmission system can not fully meet the ideal conditions for wave transmission without distortion, thus crosstalk is almost inevitable. The crosstalk correction circuit called equalizer, and its essence is an inverse channel filter. Channel equalizer is an important communication systems technology, it can be well compensated non-ideal characteristics of the channel, thereby reducing the signal distortion, reduce the error rate. In the high-speed communications, wireless communications, channel distortion of the signal will be more serious, so the channel equalization is indispensable.This article describes the basic theory of adaptive equalizer, the minimum mean square (LMS) algorithm and design principles, basic principles of adaptive linear equalizer of the basic theory and design, combined with normalized (NLMS) algorithm, recursive least squares (RLS) algorithm for least-mean-square (LMS) algorithm was further described, and ultimately using MA TLAB LMS algorithm based adaptive linear equalizer for simulation design.Key words:LMS algorithm; Adaptive; Linear equalizer; (NLMS) Algorithm; (RLS) Algorithm目录第1章绪论 (1)1.1均衡器研究背景及意义 (1)1.2国内外对均衡技术的研究动态 (3)1.3本文研究内容和主要工作 (4)第2章自适应均衡器基本理论 (5)2.1通信系统中的失真分析 (5)2.1.1、数字基带传输系统模型 (5)2.1.2通信系统中的噪声干扰 (5)2.1.3、通信系统的传输特性 (7)2.1.4、均衡技术 (8)2.2自适应滤波原理 (8)2.2.1、自适应滤波器的分类 (8)2.2.2、自适应滤波器的基本构成 (9)2.2.3、与普通滤波器的区别 (9)2.2.4、自适应过程 (10)2.3自适应滤波结构 (10)2.3.1、滤波器的实现结构 (11)第3章基于LMS算法自适应均衡原理 (14)3.1最小均方(LMS)算法基本原理 (14)3.1.1、最佳滤波器准则 (14)3.1.2MMSE准则 (14)3.1.3LMS迭代算法 (16)3.2最小均方(LMS)算法的性能分析 (18)3.2.1LMS算法的稳定性 (18)3.2.2LMS算法的收敛速度 (20)3.2.3LMS算法的性能学习曲线及稳态误差 (21)第4章基于LMS自适应均衡算法仿真 (23)4.1MATLAB简介 (23)4.2LMS算法的自适应均衡的计算机仿真实现 (23)4.2.1信道失真参数W(特征值分散)对系统的收敛性和稳态性的影响 (25)4.2.2迭代步长 对系统的收敛性和稳态性的影响 (27)4.2.3横向自适应滤波器的抽头数M对系统的收敛性和稳态性的影响 (28)第5章归一化LMS算法与RLS算法 (31)5.1基于LMS算法的归一化LMS算法 (31)5.1.1NLMS算法基本理论简介 (31)5.2.2RLS算法与LMS算法仿真比较 (31)5.2RLS算法的自适应均衡的计算机仿真实现 (32)5.2.1RLS算法基本理论简介 (32)5.2.2RLS算法与LMS算法仿真比较 (33)第6章结论 (35)致谢 (37)参考文献 (38)附录1 (39)第1章绪论1.1 均衡器研究背景及意义在信息业快速发展的今天,进行快速准确的通信是各个行业的基本要求。
(完整word版)自适应滤波器(LMS算法)

用于消除工频干扰自适应滤波器的设计与仿真一、背景及意义脑科学研究不仅是一项重要的前沿性基础研究,而且是一项对人类健康有重要实际意义的应用研究。
随着社会的发展、人类寿命的延长,因脑衰老、紊乱或损伤而引起的脑疾患,对社会财富消耗和家庭的负担日益增大。
许多国家纷纷将脑科学的研究列入国家规划,并且制订长远的研究计划。
人们把21 世纪看成是脑科学研究高潮的时代。
在脑电信号的实际检测过程中,往往含有心电、眼动伪迹、肌电信号、50Hz工频干扰以及其它干扰源所产生的干扰信号,这给脑电分析以及脑电图的临床应用带来了很大的困难。
因此如何从脑电中提取出有用的信息是非常具有挑战性,且又很有学术价值、实用价值的研究课题。
本论文从信号处理的角度出发,采集脑电波,使得在强干扰背景下的脑电信号得以提取,还原出干净的脑电波,用于临床医学、家庭保健等。
医生可以利用所采集到的脑电波来进行对病人神经松弛训练,通过脑电生物反馈技术实现自我调节和自我控制。
运用生物反馈疗法,就是把求治者体内生理机能用现代电子仪器予以描记,并转换为声、光等反馈信号,因而使其根据反馈信号,学习调节自己体内不遂意的内脏机能及其他躯体机能、达到防治身心疾病的目的。
这种反馈疗法是在一定程度上发掘人体潜能的一种人—机反馈方法。
有研究表明脑电生物反馈对多种神经功能失调疾病有明显疗效。
对于有脑障碍或脑疾病的人,也可以随时监测其脑电信号,及早地发现问题,避免不必要的损失。
二、脑电数字信号处理的研究现状脑电的监护设备在国内外品种繁多,高新技术含量高,技术附加值高,相比而言,我国的产品较国际高水平产品落后10-15 年。
但近年来,国内产品也逐步利用高新技术使产品向自动化、智能化、小型化、产品结构模块化方向发展。
国内产品在抗干扰、数字处理、实时传输数据等方面已有很大进展,使脑电检测不再是只能在屏蔽室进行。
目前,脑电信号的数字滤波从原理上来看,主要有FIR滤波器和IIR滤波器。
FIR滤波器可以提供线性滤波,但存在阶数较高,运算较为复杂的缺点[11];而IIR滤波器是一种非线性滤波器,它可以用较少的阶数实现性能良好的滤波,是目前运用较广泛的一种滤波器[10]。
RLS和LMS自适应算法分析

RLS 和LMS 自适应算法分析摘要:本文主要介绍了自适应滤波的两种算法:最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法。
我们对这两种基本的算法进行了原理介绍,并进行了Matlab 仿真。
通过仿真结果,我们对两种自适应算法进行了性能分析,并对其进行了比较。
用Matlab 求出了LMS 自适应算法的权系数,及其学习过程曲线,和RLS 自适应权系数算法的学习过程。
关键词:自适应滤波、LMS 、RLS 、Matlab 仿真Abstract: this article mainly introduces two kinds of adaptive filtering algorithms: Least Mean square (LMS), further Mean Squares) and Recursive Least Squares (RLS, Recursive further Squares) two basic adaptive algorithm. Our algorithms of these two basic principle is introduced, and Matlab simulation. Through the simulation results, we have two kinds of adaptive algorithm performance analysis, and carries on the comparison. Matlab calculate the weight coefficient of the LMS adaptive algorithm, and its learning curve, and the RLS adaptive weight coefficient algorithm of the learning process.Keywords:, LMS and RLS adaptive filter, the Matlab simulation课题简介:零均值、单位方差的白噪声通过一个二阶自回归模型产生的AR 过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11电工 樊辉
2
1
自适应算法的提出
个人理解:传统系统设计均是在某种情况下按 照某些特定参数推导得出,是系统设计完成后运行 在该类特定情况效果最佳。系统一旦发生某些参数 变化,则系统输出效果一般会明显变差。诚如PID这 类控制系统中使用最广最常用的控制算法,也只具 有一定的鲁棒性。提出自适应算法,通过某些系统 参数的在线学习,适应改变的系统,优化系统性能, 就显得有必要了。
a(n)
uH (n 1)u(n) uH (n 1)u(n 1)
若 =1,则称u(n)是u(n-1)的相干信号; =0,则 u(na)(与n)u(n-1)不相关;0 < <1,称u(n)与a(nu)(n-1)相关。
a(n)
2020/4/7
12
解相关LMS算法
现用解相关的结果v(n)作为更新方向向量:
之前最优滤波理论中可知,代价函数相对于滤波器 的抽头权向量w的梯度为:
k J (n) 2E{u(n k)e *(n)} 2E{u(n k)[d (n) wHu(n)]*}, k 0,1,…,M-1
则对应的梯度向量为:
J (n)
a0
(n)
j
J (n) b0 (n)
J (n) J (n)
(1)[r Rw(n 1)]为误差向量,代表了抽头权向量的校 正量; (2)参数µ(n)称为在时间n的“步长参数”,决定 了更新算法的收敛速度; (3)当自适应算法趋于收敛是,有
r Rw(n 1) 0 n , lim w(n 1) R1r n0
即抽头权向量收敛为之前所说的Wiener滤波器。
2020/4/7
8
LMS算法及其基本变型
在式6中,将数学期望分别用相应的瞬时值代替,便 得到了瞬时梯度:
^
J (n) 2[u(n)d *(n) u(n)uH (n)w(n)]
进而,将真是梯度向量用瞬时梯度向量代替,既得 瞬时梯度算法:w(n) w(n 1) (n)u(n)[d (n) uT (n)w*(n 1)]*
则式3可改写为向量式:
J (n) 2E{u(n)[d *(n) uH (n)w(n)]} 2r 2Rw(n)
式中,
R E{u(n)uH (n)} r E{u(n)d *(n)}
2020/4/7
5
自适应实现在滤波器中的引入
使用中最广泛的形式是:“下降算法”
w(n) w(n 1) (n)v(n)
w(n 1) (n)e *(n)u(n)
式中, e(n) d (n) uT (n)w*(n 1) d (n) wH (n 1)u(n)
式11,即为最小均方差自适应算法,简称LMS算法。 易证:瞬时梯度向量是真实梯度向量的无偏估计。
2020/4/7
9
LMS算法及其基本变型
LMS自适应算法:
2020/4/7
2
自适应实现在滤波器中的引入
自适应实现:N阶FIR滤波器的抽头权系数可以 根据估计误差e(n)的大小自动调节,使得某个代价 函数最小。
2020/4/7
3
自适应实现在滤波器中的引入
MMSE准则是滤波器设计最常用的准则。故在设计 中采用均方误差为代价函数:
J (n) @E{| (n) |2} E{| d (n) wHu(n) |2}
2020/4/7
10
解相关LMS算法
解相关算法的提出:
在LMS算法中,有一个独立性假设:假定滤波 器的输入向量是彼此独立的向量序列。当他 们之间有耦合时,算法性能下降,尤其是收 敛速度。因此需要解除各时刻输入向量之间 的相关(解相关),使其保持统计独立。Biblioteka 2020/4/711
解相关LMS算法
1、时域解相关LMS算法 思路一:在输入量中根据实际剔除相关量 定义u(n)与u(n-1)在n时刻的相关系数为:
w(n) w(n 1) 1 (n)J (n 1)
2
其中,系数1/2是为了使得到的更新公式更简单。将 更新公式中的部分用之前结论带入,既得抽头权向 量w(n)的更新公式为:
w(n) w(n 1) (n)[r Rw(n 1)], n 1, 2,L
由更新公式式9得到:
2020/4/7
7
LMS算法及其基本变型
v(n) u(n) a(n)u(n 1)
另步长参数µ(n)应该是满足下列最小化问题的解:
(n) arg min J[w(n 1) v(n)]
(n)
uH
e(n) (n)v(n)
2020/4/7
13
解相关LMS算法
综上所述,提出解相关算法:
步骤一: 初始化 w(0)=0; 步骤二:更新:
e(n) d (n) wH (n 1)u(n)
式中,w(n)为第n步迭代(即时刻n)的权向量,µ(n) 为第n次迭代的更新步长,而v(n)为第n次迭代的 更新方向。
依据下降算法的两种主要实现方式,分为自适应梯 度算法和自适应高斯-牛顿算法。 下面主要讲:自适应梯度算法,其包括LMS类自适 应算法
2020/4/7
6
LMS算法及其基本变型
自适应梯度下降算法中,更新方向向量v(n)取 自第n-1次迭代的代价函数J[w(n-1)]的负梯度,即统 一形式为:
J (n)
@[0 J (n), 1J (n),…, M 1J (n)]T
a1
(n)
j b1(n)
M
J (n)
aM 1(n)
j
J (n) bM 1(n)
2020/4/7
4
自适应实现在滤波器中的引入
在导出梯度向量后,再定义:
u(n) [u(n),u(n 1),L ,u(n M 1)]T w(n) [w0 (n), w1(n),L , wM 1(n)]T
a(n)
u
u
H
H (n 1)u(n) (n 1)u(n 1)
v(n) u(n) a(n)u(n 1)
w(n) w(n 1) u(n)v(n)
(n)
e(n)
uH (n)v(n)
上述算法中,参数 称为修正因子
步骤1:初始化权抽头向量:w(0)=0;
步骤2:更新:
e(n) d (n) wH (n 1)u(n)
w(n)=w(n-1)+µ(n)u(n)e*(n)
注:1、µ(n)=c(c取常值),则为基本LMS算法
2、µ(n)=
uH (n)u(n)
,
(0, 2),
0
,则为归一化LMS算法
3、当期望信号未知时,可直接用滤波器输出y(n)代替d(n)