高中数学向量专项练习(含答案)
高三向量练习题及答案

高三向量练习题及答案向量是数学中重要的概念之一,它广泛应用于各个领域,尤其在几何学和物理学中。
本文将为高三学生提供一些向量练习题,并附上详细的答案和解析,以帮助他们更好地理解和掌握向量的相关知识。
1. 练习题一已知向量A = (3, -2) 和向量B = (-1, 4),求向量A + B的结果。
答案解析:向量A + B的结果等于将A和B的对应分量相加,所以A +B = (3 + (-1), -2 + 4) = (2, 2)。
2. 练习题二已知向量C = (5, -3) 和向量D = (-2, 1),求向量C - D的结果。
答案解析:向量C - D的结果等于将C和D的对应分量相减,所以C -D = (5 - (-2), -3 - 1) = (7, -4)。
3. 练习题三已知向量E = (2, 5),求向量E的模长。
答案解析:向量E的模长等于它的分量平方和的平方根,所以|E| = √(2^2 + 5^2) = √(4 + 25) = √29。
4. 练习题四已知向量F = (3, -4),求向量F的单位向量。
答案解析:向量F的单位向量等于将F除以它的模长,所以F的单位向量 = (3/|F|, -4/|F|) = (3/5, -4/5)。
5. 练习题五已知向量G = (1, 2) 和向量H = (3, -1),求向量G和向量H的数量积。
答案解析:向量G和向量H的数量积等于将G和H的对应分量相乘,然后再相加,所以G·H = (1 * 3) + (2 * (-1)) = 3 - 2 = 1。
6. 练习题六已知向量I = (2, -3) 和向量J = (-4, 5),求向量I和向量J的向量积。
答案解析:向量I和向量J的向量积等于将I和J的对应分量相乘,然后再相减,所以I × J = (2 * 5) - ((-3) * (-4)) = 10 - 12 = -2。
通过以上的练习题,我们可以看到向量的运算方法和性质。
高中数学平面向量经典练习题(附答案)

D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3
则
=
。
=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角
平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。
2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。
3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。
5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。
6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。
7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。
8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。
9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。
二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。
A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。
A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。
高中数学向量专项练习(含答案)

高中数学向量专项练习一、选择题1.已知向量(1,),(1,),a x b x ==-若(2).a b b -⊥则a =( ) A .2 B .3 C .2 D .4 2.化简+++的结果是( )A .B .C .D .3.已知向量(1,2),(4,)a b m ==-,若2a b +与a 垂直,则m =( ) A .-3 B .3 C .-8 D .84.已知向量(1,1)a =-,(1,)b m =,若(2)4a b a -⋅=,则m =() A .1- B .0 C .1 D .25.设向量(12)a =-,,(1)b m =,,若向量a 与b 平行,则a b ⋅= A .27-B .21-C .23D .256.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ⋅=( ) A .8 B .10 C .12 D .14 7.在△ABC 中,若点D 满足2BD DC =,则AD =( ) A .1233AC AB + B .5233AB AC - C .2133AC AB - D .2133AC AB + 8.在ABC ∆中,已知90BAC ∠=,6AB =,若D 点在斜边BC 上,2CD DB =,则AB AD ⋅的值为 ( ).A .6B .12C .24D .489.已知向量(1,1),(2,2),m n λλ→→=+=+若()()m n m n →→→→+⊥-,则=λ( ) A .4- B .3- C .2- D .1-10.已知向量(12)=,a ,(4)x =,b ,若向量//a b ,则实数的x 值为 A .2 B .2- C .8 D .8- 11.已知向量()()2,1,3,4==-a b ,则2+=a bA .()1,5-B .()1,5C .()1,6-D .()1,6 12.已知向量()()2,1,3,4==-a b ,则+=a bA .()1,5-B .()1,5C .()1,3--D .()1,313.ABC ∆的外接圆圆心为O ,半径为2,0OA AB AC ++=,且OA AB =,则CB 在CA 方向上的投影为A .1B .2C .3D .314.已知向量(1,2)a =,向量(,2)b x =-,且()a a b ⊥-,则实数x 等于( ) A 、4- B 、4 C 、0 D 、915.已知平面向量(1,2),(2,)a b m ==-,且//a b ,则实数m 的值为 ( ) A .1 B .4 C .1- D .4-16.C ∆AB 是边长为2的等边三角形,已知向量a 、b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )A 、1b =B 、a b ⊥C 、1a b ⋅=D 、()4C a b +⊥B 17.已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅= ( ) A 、232a -B 、234a -C 、234aD 、232a 18.已知向量a ,b 满足(5,10)=-a +b ,(3,6)-=a b ,则a,b 夹角的余弦值为( )A .1313-B .1313C .21313-D .2131319.已知向量a =(1,3),b =(-2,-6),|c |=,若(a +b )·c =5,则a 与c 的夹角为( )A .30°B .45°C .60°D .120° 20.已知向量(2,1),(5,3)a b →→==-,则a b →→⋅的值为A .-1B .7C .13D .1121.如图,平行四边形ABCD 中,)2,3(),0,2(-==AD AB ,则=⋅AC BD ( )A .6-B .4C .9D .13 22.若向量(2,4)AB =,(1,3)AC =,则BC =( ) A .(1,1) B .(1,1)-- C .(3,7) D .(3,7)--的取值范围为 (A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424.已知平面向量AB ()1,2=,AC ()3,4=,则向量CB =( ) A .(4,6)-- B .(4,6) C .(2,2)-- D .(2,2) 25.已知向量(2,4)a =,(1,1)b =-,则2a b -=A . (5,7)B . (5,9)C . (3,7)D . (3,9) 26.已知向量(,2),(1,1)m a n a =-=-,且//m n ,则实数a =( ) A .-1 B .2或-1 C .2 D .-227.在ABC ∆中,,AB c =AC b =若 点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b - C .2133c b - D .2233b c + 28.已知点(5,6)M -和向量(1,2)a =-,若3MN a =-,则点N 的坐标为( ) A .(3,6)- B .(2,0) C .(6,2) D .(2,0)- 29.在矩形ABCD 中,4,2,AB AD ==则BA BD BC ++=( ) A .12 B.6 C ..30.已知向量(1,2)a = ,(3,1)b = ,则b a -=( ). A .(2,1)- B .(2,1)- C .(2,0) D .(4,3)31.若向量)1 , ( n a =与) , 4( n b =共线且方向相同,则=n ( ) A .21B .1C .2D .2± 32.设,,a b c 是单位向量,且0,a b ⋅=则()()a c b c -⋅-的最小值是() A .1B1 C .1133.如图所示,D 是ABC 的边AB 上的中点,记,BC a BA c ==,,则向量DC ( )ACBA .12a c --B .12a c -+C .12a c - D .12a c + 34.如图,在4,30,ABC AB BC ABC AD ∆==∠=中,是边BC 上的高,则AD AC ⋅的值等于 ( )A .0B .4C .8D .4- 35.已知平面向量b a 与的夹角为3π,1,223,b a b a =+==且则( ) A .1 B .3 C .2 D .336.已知向量()()3,4,sin ,cos ,a b αα==且a 与b 共线,则tan α=( )A .34 B .34- C .43 D .43- 二、填空题37.在△ABC 中,AB =2,AC =1,D 为BC 的中点,则AD BC ⋅=_____________. 38.设(1,2)a =,(2,)b k =,若(2)a b a +⊥,则实数k 的值为( ) A .2- B .4- C .6- D .8-39.空间四边形OABC 中,OB OC =,60AOB AOC ∠=∠=︒,则cos ,OA BC <>=( ) A .21 B .22 C .12- D .040.已知向量a ,b ,c 满足||=2a ,||3b a b =⋅=,若(2)(23)0c a b c -⋅-=,则||b c -的最大值是 . 41.化简:= .42.在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 3cos cos b C a B c B =-,2BA BC ⋅=,则ABC ∆的面积为 .43.已知向量=(1,2),•=10,|+|=5,则||= .44.如图,在ABCD 中,E 是CD 中点,BE x AB y AD =+,则x y += .EDCB45.若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则a 与b 的夹角为________。
(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析)一.选择题1.已知 M 、N 分别是周围体 OABC的棱 OA,BC的中点,点 P 在线 MN 上,且 MP=2PN,设向量= ,= ,= ,则=()A.+ +B.+ +C.+ +D.+ +2.已知=( 2,﹣ 1,2),=(﹣ 1, 3,﹣ 3),=(13,6,λ),若向量,,共面,则λ=()A.2B.3C. 4D.63.空间中,与向量同向共线的单位向量为()A.B.或C.D.或4.已知向量,且,则x的值为()A.12 B.10 C.﹣ 14D. 145.若 A,B,C 不共线,对于空间任意一点O 都有=++,则P,A,B,C四点()A.不共面B.共面C.共线D.不共线6.已知平面α的法向量是( 2,3,﹣ 1),平面β的法向量是( 4,λ,﹣ 2),若α∥β,则λ的值是()A.B.﹣ 6 C.6D.7.已知,则的最小值是()第 1页(共 40页)8.有四个命题:①若 =x +y ,则与、共面;②若与、共面,则 =x +y ;③若 =x +y,则 P,M ,A,B 共面;④若 P,M, A,B 共面,则=x +y .其中真命题的个数是()A.1 B.2 C. 3 D.49.已知向量 =(2,﹣1,1), =(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D. 810.以以下图,在长方体ABCD﹣A1B1C1D1中, AD=AA1=1,AB=2,点 E 是棱 AB 的中点,则点 E 到平面 ACD1的距离为()A.B.C.D.11.正方体 ABCDA1B1C1D1中,直线 DD1与平面 A1BC1所成角的正弦值为()A.B.C.D.二.填空题(共 5 小题)12.已知向量=( k, 12,1), =(4,5,1),=(﹣ k, 10,1),且 A、 B、 C 三点共线,则 k=.13.正方体 ABCD﹣ A1B1C1D1的棱长为 1,MN 是正方体内切球的直径,P 为正方体表面上的动点,则?的最大值为.14.已知点 P 是平行四边形 ABCD所在的平面外一点,若是=( 2,﹣ 1,﹣ 4),=(4,2,0),=(﹣ 1, 2,﹣ 1).对于结论:① AP⊥AB;② AP⊥ AD;③是平面ABCD的法向量;④∥.其中正确的选项是.15.设空间任意一点 O 和不共线三点 A,B,C,且点 P 满足向量关系,若P,A,B,C 四点共面,则 x+y+z=.16.已知平面α⊥平面β,且α∩β =l,在 l 上有两点 A,B,线段 AC? α,线段 BD? β,并且 AC ⊥ l,BD⊥l, AB=6,BD=24, AC=8,则 CD=.17.如图,在四棱锥P﹣ABCD中, PA丄平面 ABCD, AB 丄 BC,∠ BCA=45°,PA=AD=2,AC=1,DC=(Ⅰ)证明 PC丄 AD;(Ⅱ)求二面角 A﹣PC﹣ D 的正弦值;(Ⅲ)设 E 为棱 PA上的点,满足异面直线BE与 CD所成的角为 30°,求 AE的长.18.如图,在四棱锥 P﹣ABCD中,底面 ABCD为直角梯形, AD∥BC,∠ ADC=90°,平面PAD⊥底面 ABCD, Q 为 AD 的中点, M 是棱 PC上的点, PA=PD=2,BC= AD=1,CD= .(Ⅰ)求证:平面 PQB⊥平面 PAD;(Ⅱ)若 M 为棱 PC的中点,求异面直线AP 与 BM 所成角的余弦值.19.如图,在四棱锥S﹣ABCD中, SD⊥底面 ABCD,底面 ABCD是正方形,且 SD=AD,E 是 SA 的中点.(1)求证:直线 BA⊥平面 SAD;(2)求直线 SA与平面 BED的夹角的正弦值.20.如图,四棱锥 P﹣ABCD中,底面 ABCD是直角梯形,∠ DAB=90°AD∥BC, AD⊥侧面 PAB,△ PAB是等边三角形, DA=AB=2, BC=,E是线段AB的中点.(Ⅰ)求证: PE⊥CD;(Ⅱ)求 PC与平面 PDE所成角的正弦值.21.如图,在四棱锥 P﹣ABCD中,平面 PAD⊥平面 ABCD,E 为 AD 的中点, PA⊥AD,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1.(Ⅰ)求证:平面 PAD⊥平面 PCD;(Ⅱ)求二面角 C﹣PB﹣ E 的余弦值;(Ⅲ)在线段 PE上可否存在点 M ,使得 DM∥平面 PBC?若存在,求出点M 的地址;若不存在,说明原由.22.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直. AB∥CD,AB⊥BC,AB=2CD=2BC, EA⊥EB.(Ⅰ)求证: AB⊥DE;(Ⅱ)求直线 EC与平面 ABE所成角的正弦值;(Ⅲ)线段 EA 上可否存在点 F,使 EC∥平面 FBD?若存在,求出;若不存在,说明原由.23.如图,三棱柱 ABC﹣A1B1C1中,AB=AC=CC1,平面 BAC1⊥平面 ACC1A1,∠ACC1=∠BAC1=60°, AC1∩ A1C=O.(Ⅰ)求证: BO⊥平面 AA1C1C;(Ⅱ)求二面角 A﹣BC1﹣B1的余弦值.24.如图,在四棱锥P﹣ ABCD中, PA⊥平面,四边形ABCD为正方形,点M, N 分别为线段PB,PC上的点, MN⊥PB.(Ⅰ)求证: MN⊥平面 PAB;(Ⅱ)当 PA=AB=2,二面角 C﹣AN﹣D 大小为时,求PN的长.上的点,且 CD=DE=,CE=2EB=2.(Ⅰ)证明: DE⊥平面 PCD(Ⅱ)求二面角 A﹣PD﹣ C 的余弦值.26.如图,在几何体 ABCDE中,四边形 ABCD是矩形, AB⊥平面 BEC,BE⊥ EC,AB=BE=EC=2,G, F 分别是线段 BE,DC的中点.(1)求证: GF∥平面 ADE;(2)求平面 AEF与平面 BEC所成锐二面角的余弦值.27.如图,在四棱锥P﹣ABCD中, PD⊥平面 ABCD,四边形 ABCD是菱形, AC=2,BD=2,E 是 PB 上任意一点.(Ⅰ)求证: AC⊥DE;(Ⅱ)已知二面角 A﹣PB﹣D 的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.28.如图,三棱柱 ABC﹣ A1B1C1中,侧面 BB1C1C 为菱形, AB⊥B1C.(Ⅰ)证明: AC=AB1;(Ⅱ)若 AC⊥ AB1,∠ CBB1=60°, AB=BC,求二面角 A﹣A1B1﹣ C1的余弦值.29. 已知四棱锥P— ABCD , PB⊥ AD,侧面 PAD 为边长等于 2 的正三角形,底面ABCD 为菱形,侧面PAD 与底面 ABCD 所成的二面角为120°.(1)求点 P 到平面 ABCD 的距离;(2)求面 APB 与面 CPB 所成二面角的余弦值.PCDBA30 如图,在三棱柱ABC ﹣ A 1B 1C1中, AA 1⊥底面ABC ,∠ ACB=90°,AC=BC=1 , AA 1=2,D 是棱AA 1的中点.(Ⅰ)求证:B1C 1∥平面 BCD ;(Ⅱ)求三棱锥B﹣ C1CD 的体积;(Ⅲ)在线段BD 上可否存在点Q,使得 CQ ⊥ BC 1?请说明原由.31 如图,在三棱锥A﹣ BCD中, O、 E 分别为 BD、 BC中点, CA=CB=CD=BD=4,AB=AD=2(1)求证: AO⊥面 BCD(2)求异面直线 AB 与 CD所成角的余弦值(3)求点 E 到平面 ACD的距离.32 在三棱柱ABC﹣ A1B1C1中,侧面ABB1A1为矩形, AB=2, AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明: BC⊥AB 1;(2)若 OC=OA,求直线 CD与平面 ABC所成角的正弦值.2018 年 01 月 20 日 shu****e168的高中数学组卷参照答案与试题解析一.选择题(共11 小题)1.已知 M 、N 分别是周围体 OABC的棱 OA,BC的中点,点 P 在线 MN 上,且 MP=2PN,设向量= ,= ,= ,则=()A.+ +B.+ +C.+ +D.+ +【解答】解:以以下图,= +,=(+),=,=﹣,=.∴= += +=+ (﹣)=+=×( + ) + ×=++=+ + .应选: C.2.已知=( 2,﹣ 1,2),=(﹣ 1, 3,﹣ 3),=(13,6,λ),若向量,,共面,则λ=()A.2B.3C. 4D.6【解答】解:∵=(2,﹣ 1, 2),=(﹣ 1,3,﹣ 3),=(13,6,λ),三个向量共面,∴,∴( 2,﹣ 1,2)=x(﹣ 1,3,﹣ 3)+y(13,6,λ)∴解得:应选: B.3.空间中,与向量同向共线的单位向量为()A.B.或C.D.或【解答】解:∵,∴与同向共线的单位向量向量,第10页(共 40页)4.已知向量,且,则x的值为()A.12 B.10 C.﹣ 14D. 14【解答】解:由于向量,且,属于=﹣8﹣6+x=0,解得 x=14;应选: D.5.若 A,B,C 不共线,对于空间任意一点O 都有=++,则P,A,B,C四点()A.不共面B.共面C.共线D.不共线【解答】解: A,B,C 不共线,对于空间任意一点O 都有=x +y +z,则 P,A,B,C 四点共面的充要条件是x+y+z=1,而=++,因此P,A,B,C四点不共面.应选: A.6.已知平面α的法向量是( 2,3,﹣ 1),平面β的法向量是( 4,λ,﹣ 2),若α∥β,则λ的值是()A.B.﹣ 6 C.6D.【解答】解:∵α∥β,且平面α的法向量是 =(2,3,﹣ 1),平面β的法向量是 =( 4,λ,﹣ 2),∴即存在实数μ使得,即( 2,3,﹣ 1)=(4μ,λμ,﹣ 2μ),解得μ=,λ=6应选 C.7.已知,则的最小值是()A.B.C.D.【解答】解:=(﹣ 1﹣t, t﹣1,﹣ t),∴==≥,当且仅当t=0时取等号.∴的最小值是.应选: A.8.有四个命题:①若 =x +y ,则与、共面;②若与、共面,则=x +y;③若=x +y,则 P,M ,A,B 共面;④若 P,M, A,B 共面,则=x +y.其中真命题的个数是()A.1B.2C. 3D.4【解答】解:若=x +y ,则与,必然在同一平面内,故①对;若=x +y ,则、、三向量在同一平面内,∴ P、M、A、B 共面.故③对;若=x +y ,则与、共面,但若是,共线,就不用然能用、来表示,故②不对;同理④也不对.∴真命题的个数为 2 个.应选: B.9.已知向量=(2,﹣1,1), =(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4D. 8【解答】解:设向量,的夹角为θ,=,=,∴ cosθ===.∴ sin θ==.∴以,为邻边的平行四边形的面积S=??sin θ==,应选: B.10.以以下图,在长方体ABCD﹣A1B1C1D1中, AD=AA1=1,AB=2,点 E 是棱 AB 的中点,则点 E 到平面 ACD1的距离为()A.B.C.D.【解答】解:如图,以 D 为坐标原点,直线DA,DC, DD1分别为 x,y,z 轴建立空间直角坐标系,则D1( 0, 0,1),E(1,1,0), A( 1, 0, 0),C(0,2,0).=( 1, 1,﹣ 1), =(﹣ 1,2,0),=(﹣ 1, 0, 1),设平面 ACD1的法向量为=(a,b,c),则,取 a=2,得=( 2, 1, 2),点 E 到平面 ACD1的距离为:h===.应选: C.11.正方体 ABCDA1B1C1D1中,直线 DD1与平面 A1BC1所成角的正弦值为()A.B.C.D.【解答】解:∵△ A1BC1是等边三角形, A1B1=BB1=B1C1,∴B1在平面 A1BC1上的射影为△ A1 BC1的中心 O,设正方体棱长为 1,M 为 A1C1的中点,则 A1B= ,∴ OB= BM==,∴ OB1==,∴ sin∠B1BO==,即BB1与平面A1BC1所成角的正弦值为,∵DD1∥BB1,∴直线 DD1与平面11 所成角的正弦值为.A BC应选: A.二.填空题(共 5 小题)12.已知向量=( k, 12,1),=(4,5,1),=(﹣ k, 10,1),且 A、 B、 C 三点共线,则 k=.【解答】解:∵向量=( k, 12,1), =(4,5,1),=(﹣ k,10,1),∴=(4﹣k,﹣ 7,0), =(﹣ 2k,﹣ 2, 0).又 A、B、C 三点共线,∴存在实数λ使得,∴,解得.故答案为:﹣.13.正方体 ABCD﹣ A1B1C1D1的棱长为 1,MN 是正方体内切球的直径,P 为正方体表面上的动点,则?的最大值为.【解答】解:连接 PO,可得? ==++=﹣,当获取最大值时,?获取最大值为=.故答案为:.14.已知点 P 是平行四边形 ABCD所在的平面外一点,若是=( 2,﹣ 1,﹣ 4),=(4,2,0),=(﹣ 1, 2,﹣ 1).对于结论:① AP⊥AB;② AP⊥ AD;③是平面 ABCD的法向量;④∥.其中正确的选项是①②③ .【解答】解:由 =(2,﹣ 1,﹣ 4),=( 4, 2, 0), =(﹣ 1,2,﹣ 1),知:在①中,=﹣2﹣2+4=0,∴⊥,∴ AP⊥AB,故①正确;在②中,? =﹣4+4+0=0,∴⊥,∴ AP⊥AD,故②正确;在③中,由 AP⊥AB, AP⊥ AD,AB∩AD=A,知是平面 ABCD的法向量,故③正确;在④中,=( 2, 3, 4),假设存在λ使得 =,则,无解,∴∥.故④不正确;综上可得:①②③正确.故答案为:①②③.15.设空间任意一点 O 和不共线三点 A,B,C,且点 P 满足向量关系,若 P,A,B,C 四点共面,则 x+y+z= 1 .【解答】若空间任意一点 O 和不共线的三点 A,B,C,满足向量关系式:,则 P,A,B,C 四点共面的充要条件是: x+y+z=1,故答案为: 1.16.已知平面α⊥平面β,且α∩β =l,在 l 上有两点 A,B,线段 AC? α,线段 BD? β,并且 AC ⊥l,BD⊥l, AB=6,BD=24, AC=8,则 CD= 26 .【解答】解:∵平面α⊥平面β,且α∩β=l,在 l 上有两点 A,B,线段 AC? α,线段 BD? β,AC⊥l, BD⊥ l,AB=6,BD=24,AC=8,∴=,∴=()2==64+36+576=676,∴CD=26.故答案为: 26.三.解答题(共12 小题)17.如图,在四棱锥P﹣ABCD中, PA丄平面 ABCD, AB 丄 BC,∠ BCA=45°,PA=AD=2,AC=1,DC=(Ⅰ)证明 PC丄 AD;(Ⅱ)求二面角 A﹣PC﹣ D 的正弦值;(Ⅲ)设 E 为棱 PA上的点,满足异面直线BE与 CD所成的角为 30°,求 AE的长.【解答】(本小分 13 分)明:(Ⅰ)∵在△ ADC中, AD=2,AC=1,DC=222∴ AC +AD =CD ,∴ AD⊥ AC,⋯(1 分)如,以点 A 原点建立空直角坐系,依意得 A(0,0,0), D( 2, 0, 0),C(0,1,0),B(,,0),P(0,0,2),得=(0,1, 2), =(2,0,0),∴=0,∴ PC⊥AD.⋯(4 分)解:(Ⅱ),,平面 PCD的一个法向量=( x, y, z),,不如令 z=1,得=(1,2,1),可取平面 PAC的一个法向量=(1,0,0),于是 cos<>==,从而 sin<>=,因此二面角 A PC D 的正弦.⋯(8分)(Ⅲ)点 E 的坐( 0, 0, h),其中 h∈[ 0,2] ,由此得=(),由=(2, 1,0),故,∵ 足异面直BE与 CD所成的角 30°,∴=cos30°=,解得h=,即AE=.⋯(13分)18.如,在四棱 P ABCD中,底面 ABCD直角梯形, AD∥BC,∠ ADC=90°,平面 PAD⊥底面ABCD, Q AD 的中点, M 是棱 PC上的点, PA=PD=2,BC= AD=1,CD= .(Ⅰ)求:平面 PQB⊥平面 PAD;(Ⅱ)若 M 棱 PC的中点,求异面直AP 与 BM 所成角的余弦.【解答】解:(Ⅰ)∵ AD∥ BC,BC= AD,Q AD 的中点,∴四形 BCDQ平行四形,可得CD∥BQ.∵∠ ADC=90°,∴∠ AQB=90°即QB⊥AD.又∵平面 PAD⊥平面 ABCD,平面 PAD∩平面 ABCD=AD,∴BQ⊥平面 PAD.∵ BQ? 平面 PQB,∴平面 PQB⊥平面 PAD.(Ⅱ)∵ PA=PD,Q 为 AD 的中点,∴ PQ⊥ AD.∵平面 PAD⊥平面 ABCD,且平面 PAD∩平面 ABCD=AD,∴ PQ⊥平面 ABCD.(注:不证明 PQ⊥平面 ABCD直接建系扣 1 分)因此,以 Q 为原点、 QA、QB、QP 分别为 x 轴、 y 轴、 z 轴建立空间直角坐标系,以以下图则 Q(0,0,0), A(1,0, 0),P(0,0,),B(0,,0), C(﹣ 1,, 0)∵ M 是 PC中点,∴ M (﹣,,)∴=(﹣ 1,0,),=(﹣,﹣,)设异面直线 AP 与 BM 所成角为θ,则 cosθ=|cos<,>| ==.∴异面直线 AP 与 BM 所成角的余弦值为.19.如图,在四棱锥S﹣ABCD中, SD⊥底面 ABCD,底面 ABCD是正方形,且 SD=AD,E 是 SA 的中点.(1)求证:直线 BA⊥平面 SAD;(2)求直线 SA与平面 BED的夹角的正弦值.【解答】(本分 12 分)解:( 1)明:∵ SD⊥平面 ABCD,∴ SD⊥AB,又 AD⊥AB,AD∩SD=D,∴ AB⊥平面 SAD,⋯(6 分)(2)以 D 原点,分以 DA、DC、 DS x,y, z 建立空直角坐系,如,AB=2, A( 2, 0,0),S(0,0,2),B(1,2,0),E(1,0,0),故=(2,0, 2),=(2, 2, 0),=(1,0, 1),⋯( 8 分)平面 BED的一个法向量=(x,y,z),由得,取=(1, 1, 1),⋯(10 分)直 SA与平面 BED所成角θ,因 cos==,因此 sin θ=,即直 SA与平面 BED所成角的正弦⋯( 12 分)20.如,四棱 P ABCD中,底面 ABCD是直角梯形,∠ DAB=90°AD∥BC, AD⊥ 面 PAB,△ PAB是等三角形, DA=AB=2, BC=,E是段AB的中点.(Ⅰ)求: PE⊥CD;(Ⅱ)求 PC与平面 PDE所成角的正弦.【解答】解:(Ⅰ)∵ AD⊥ 面 PAB,PE? 平面 PAB,∴ AD⊥EP.又∵△ PAB是等三角形, E 是段 AB 的中点,∴ AB⊥EP.∵AD∩ AB=A,∴ PE⊥平面 ABCD.∵CD? 平面 ABCD,∴ PE⊥ CD.⋯( 5 分)(Ⅱ)以 E 原点, EA、EP分 y、 z ,建立如所示的空直角坐系.E(0,0,0), C( 1, 1, 0),D( 2,1,0),P(0,0,).=(2, 1, 0),=(0,0,),=(1, 1,).=(x,y,z)平面 PDE的一个法向量.由,令 x=1,可得=( 1, 2,0).⋯( 9 分)PC与平面 PDE所成的角θ,得=因此 PC与平面 PDE所成角的正弦.⋯(12分)21.如,在四棱 P ABCD中,平面 PAD⊥平面 ABCD,E AD 的中点, PA⊥AD,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1.(Ⅰ)求:平面 PAD⊥平面 PCD;(Ⅱ)求二面角 C PB E 的余弦;(Ⅲ)在段 PE上可否存在点 M ,使得 DM∥平面 PBC?若存在,求出点 M 的地址;若不存在,明原由.【解答】解:(Ⅰ)明:由已知平面 PAD⊥平面 ABCD,PA⊥ AD,且平面PAD∩平面 ABCD=AD,因此 PA⊥平面 ABCD.因此 PA⊥CD.又因BE⊥AD,BE∥CD,因此 CD⊥AD.因此 CD⊥平面 PAD.因 CD? 平面PCD,因此平面 PAD⊥平面 PCD.⋯(4 分)(Ⅱ)作 Ez⊥AD,以 E 原点,以的方向分x,y的正方向,建立如所示的空直角坐系 E xyz,点 E(0,0,0), P( 0, 2,2), A(0, 2, 0),B(2,0,0), C( 1, 2, 0),D(0,2,0).因此,,.平面 PBC的法向量=( x,y,z),因此即令 y=1,解得=( 2, 1, 3).平面 PBE的法向量=(a,b,c),因此即令 b=1,解得=( 0, 1, 1).因此 cos<>=.由可知,二面角 C PB E 的余弦.⋯(10分)(Ⅲ)“ 段 PE上存在点 M,使得 DM∥平面 PBC”等价于“”.因,,λ∈(0,1),M (0,2λ 2,2 2λ),.由(Ⅱ)知平面 PBC的法向量=( 2, 1, 3),因此.解得.因此段 PE上存在点 M ,即 PE中点,使得 DM∥平面 PBC.⋯( 14 分)22.如,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直. AB∥CD,AB⊥BC,AB=2CD=2BC, EA⊥EB.(Ⅰ)求: AB⊥DE;(Ⅱ)求直 EC与平面 ABE所成角的正弦;(Ⅲ)段 EA 上可否存在点 F,使 EC∥平面 FBD?若存在,求出;若不存在,明原由.【解答】(Ⅰ )明:取 AB 中点 O,接 EO,DO.因 EB=EA,因此 EO⊥ AB.⋯(1 分)因四形 ABCD直角梯形, AB=2CD=2BC, AB⊥ BC,因此四形 OBCD正方形,因此 AB⊥OD.⋯(2 分)因 EO∩OD=O因此 AB⊥平面 EOD.⋯(3 分)因 ED? 平面 EOD因此 AB⊥ED.⋯(4 分)(Ⅱ)解:因平面 ABE⊥平面 ABCD,且 EO⊥AB,平面 ABE∩平面 ABCD=AB因此 EO⊥平面 ABCD,因 OD? 平面 ABCD,因此 EO⊥OD.由 OB,OD,OE两两垂直,建立如所示的空直角坐系O xyz.⋯(5 分)因△ EAB等腰直角三角形,因此 OA=OB=OD=OE, OB=1,因此 O(0,0,0), A( 1,0,0),B(1,0,0), C( 1, 1, 0),D(0,1,0),E( 0, 0, 1).因此,平面 ABE的一个法向量.⋯(7 分)直 EC与平面 ABE所成的角θ,因此,即直 EC与平面 ABE所成角的正弦.⋯( 9 分)(Ⅲ)解:存在点 F,且,有 EC∥平面 FBD.⋯(10 分)明以下:由,,因此.平面 FBD的法向量=(a,b,c),有因此取 a=1,得 =( 1,1,2).⋯( 12 分)因=(1,1, 1)?(1,1,2)=0,且 EC?平面 FBD,因此 EC∥平面 FBD.即点 F 足,有 EC∥平面 FBD.⋯( 14 分)23.如,三棱柱 ABC A1B1C1中,AB=AC=CC1,平面 BAC1⊥平面 ACC1A1,∠ACC1=∠BAC1=60°,AC1∩ A1C=O.(Ⅰ)求: BO⊥平面 AA1C1C;(Ⅱ)求二面角 A BC1B1的余弦.【解答】明:(Ⅰ )依意,四形 AA1C1C 菱形,且∠ AA1C1=60°∴△ AA1C1正三角形,又∠ BAC1=60°,∴△ BAC1正三角形,又 O AC1中点,∴BO⊥ AC1,∵平面 ABC1⊥平面 AA1C1C,平面 ABC1∩平面 AA1C1C=AC1,∵BO? 平面 AA1CC1,∴ BO⊥平面 AA1C1C.⋯(4 分)解:(Ⅱ)以 O 坐原点,建空直角坐系,如,令 AB=2,,C1(,,)010∴,平面 BB1 1的一个法向量,C由得,取 z=1,得⋯(9分)又面 ABC1的一个法向量∴⋯(11 分)故所求二面角的余弦⋯( 12 分)24.如,在四棱P ABCD中, PA⊥平面,四形ABCD正方形,点M, N 分段PB,PC上的点, MN⊥PB.(Ⅰ)求: MN⊥平面 PAB;(Ⅱ)当 PA=AB=2,二面角 C AN D 大小,求PN的.【解答】(Ⅰ )明:在正方形ABCD中, AB⊥BC,∵PA⊥平面 ABCD, BC? 平面 ABCD,∴ PA⊥ BC.∵AB∩PA=A,且 AB,PA? 平面 PAB,∴BC⊥平面 PAB, BC⊥PB,∵MN⊥PB,∴ MN∥BC,则 MN⊥平面 PAB;(Ⅱ)解:∵ PA⊥平面 ABCD,AB,AD? 平面 ABCD,∴ PA⊥AB,PA⊥ AD,又 AB⊥AD,如图,以 A 为原点, AB,AD,AP 所在直线为 x,y,z 轴,建立空间直角坐标系A﹣xyz,则C(2,2,0), D( 0, 2, 0),B(2,0,0),P(0,0,2).设平面 DAN 的一个法向量为 =(x,y,z),平面 CAN的一个法向量为 =(a,b,c),设 =λ,λ∈[ 0, 1] ,∵=(2,2,﹣2),∴=(2λ,2λ,2﹣2λ),又 =(0,2,0),∴,取 z=1,得=(,0,1),∵=(0,0,2), =(2,2,0),∴,取 a=1 得,到=(1,﹣ 1,0),∵二面 C﹣ AN﹣ D 大小为,∴ | cos<,>| =cos=,∴ | cos<,>| =|| =|| =,解得λ=,∴,则 PN=.25.如题图,三棱锥 P﹣ABC中,PC⊥平面 ABC,PC=3,∠ ACB=.D,E分别为线段AB,BC 上的点,且 CD=DE=,CE=2EB=2.(Ⅰ)证明: DE⊥平面 PCD(Ⅱ)求二面角 A﹣PD﹣ C 的余弦值.【解答】(Ⅰ )证明:∵ PC⊥平面 ABC,DE? 平面 ABC,∴ PC⊥DE,∵CE=2,CD=DE= ,∴△CDE为等腰直角三角形,∴ CD⊥DE,∵ PC∩CD=C,DE垂直于平面 PCD内的两条订交直线,∴DE⊥平面 PCD(Ⅱ)由(Ⅰ)知△ CDE为等腰直角三角形,∠ DCE=,过点 D 作 DF 垂直 CE于 F,易知 DF=FC=FE=1,又由已知 EB=1,故 FB=2,由∠ ACB=得DF∥AC,,故AC= DF=,以 C 为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,则C(0,0,0), P( 0, 0, 3),A(, 0, 0),E(0,2,0), D(1, 1,0),∴ =(1,﹣ 1,0), =(﹣ 1,﹣ 1,3), =(,﹣ 1, 0),设平面 PAD的法向量=( x, y, z),由,故可取=(2, 1, 1),由(Ⅰ)知 DE⊥平面 PCD,故平面 PCD的法向量可取=(1,﹣ 1,0),∴两法向量夹角的余弦值cos<,>==∴二面角 A﹣PD﹣ C 的余弦值为.26.如图,在几何体 ABCDE中,四边形 ABCD是矩形, AB⊥平面 BEC,BE⊥ EC,AB=BE=EC=2,G, F 分别是线段 BE,DC的中点.(1)求证: GF∥平面 ADE;(2)求平面 AEF与平面 BEC所成锐二面角的余弦值.【解答】解法一:( 1)如图,取 AE 的中点 H,连接 HG,HD,∵G 是 BE的中点,∴ GH∥ AB,且 GH= AB,又∵ F 是 CD中点,四边形ABCD是矩形,∴DF∥AB,且 DF= AB,即 GH∥DF,且 GH=DF,∴四边形 HGFD是平行四边形,∴ GF∥ DH,又∵ DH? 平面 ADE,GF?平面 ADE,∴ GF∥平面 ADE.( 2)如图,在平面BEG内,过点 B 作 BQ∥ CE,∵BE⊥EC,∴ BQ⊥BE,又∵ AB⊥平面 BEC,∴ AB⊥BE,AB⊥ BQ,以 B 为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则 A(0,0,2), B( 0, 0, 0),E(2,0,0), F( 2, 2, 1)∵ AB⊥平面 BEC,∴为平面BEC的法向量,设=(x,y,z)为平面 AEF的法向量.又=(2,0,﹣ 2),=(2,2,﹣ 1)由垂直关系可得,取 z=2 可得.∴ cos<,>==∴平面 AEF与平面 BEC所成锐二面角的余弦值为.解法二:(1)如图,取 AB 中点 M ,连接 MG,MF,又G 是 BE的中点,可知 GM∥AE,且 GM= AE又AE? 平面 ADE,GM?平面 ADE,∴GM∥平面 ADE.在矩形 ABCD中,由 M, F 分别是 AB, CD的中点可得 MF∥AD.又AD? 平面 ADE,MF?平面 ADE,∴ MF∥平面ADE.又∵ GM∩MF=M,GM? 平面 GMF,MF? 平面GMF∴平面 GMF∥平面 ADE,∵GF? 平面 GMF,∴ GF∥平面 ADE( 2)同解法一.第30页(共 40页)27.如,在四棱P ABCD中, PD⊥平面 ABCD,四形 ABCD是菱形, AC=2,BD=2,E 是 PB 上任意一点.(Ⅰ)求: AC⊥DE;(Ⅱ)已知二面角 A PB D 的余弦,若 E PB的中点,求 EC与平面 PAB所成角的正弦.【解答】(I)明:∵ PD⊥平面 ABCD,AC? 平面 ABCD∴PD⊥AC又∵ ABCD是菱形,∴ BD⊥ AC,BD∩PD=D∴AC⊥平面 PBD,∵ DE? 平面 PBD∴AC⊥DE⋯(6 分)( II)解:分以OA, OB, OE 方向x, y, z 建立空直角坐系,PD=t,由( I)知:平面 PBD的法向量,令平面PAB 的法向量,根据得∴因二面角 A PB D 的余弦,,即,∴⋯(9 分)∴EC与平面 PAB所成的角θ,∵,∴⋯(12 分)28.如,三棱柱 ABC A1B1C1中,面 BB1C1C 菱形, AB⊥B1C.(Ⅰ)明: AC=AB1;(Ⅱ)若 AC⊥ AB1,∠ CBB1=60°, AB=BC,求二面角 A A1B1C1的余弦.【解答】解:(1)连接 BC1,交 B1C 于点 O,连接 AO,∵侧面 BB1 C1C 为菱形,∴BC1⊥B1C,且 O 为 BC1和 B1C 的中点,又∵ AB⊥ B1 C,∴ B1C⊥平面 ABO,∵ AO? 平面 ABO,∴ B1C⊥ AO,又B10=CO,∴ AC=AB1,(2)∵ AC⊥ AB1,且 O 为 B1C 的中点,∴ AO=CO,又∵ AB=BC,∴△ BOA≌△ BOC,∴ OA⊥OB,∴ OA, OB,OB1两两垂直,以 O 为坐标原点,的方向为x轴的正方向,|| 为单位长度,的方向为 y 轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠ CBB1°,∴△ 1 为正三角形,又,=60CBB AB=BC∴ A( 0, 0,), B( 1, 0, 0,), B (,,),(,,)00 C 001∴=(0,,),= =(1,0,),==(﹣ 1,,0),设向量=(x,y,z)是平面 AA1B1的法向量,则,可取=(1,,),同理可得平面 A1 B1C1的一个法向量=(1,﹣,),∴ cos<,>== ,∴二面角 A﹣A1B1﹣ C1的余弦值为29. 已知四棱锥P— ABCD , PB⊥ AD,侧面PAD为边长等于 2 的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.( 1)求点P 到平面ABCD的距离;( 2)求面APB与面CPB所成二面角的大小.PCDBA(传统法)解( 1):以以下图,作 PO⊥平面 ABCD ,垂足为点 O. 连接 OB、 OA、OD , OB 与 AD 交于点 E,连接 PE.PDCEO BA∵AD ⊥ PB,∴ AD⊥ OB.∵P A=PD ,∴ OA=OD .于是 OB 均分 AD ,点 E 为 AD 的中点,∴ PE ⊥AD. 由此知∠ PEB 为面 PAD 与面 ABCD 所成二面角的平面角,∴∠ PEB=120°,∠ PEO=60°. 由已知可求得 PE= 3,33,即点 P 到平面 ABCD 的距离为3 .∴PO=PE·sin60°=3×=222(2)(空间向量法)解法一:以以下图建立直角坐标系,其中O 为坐标原点, x 轴平行于 DA .zPGCDOEyBAxP( 0,0,333, 0), PB 中点 G 的坐标为( 0,33,3),连接 AG.), B( 0,2244又知 A( 1,3,0), C(- 2,3 3,0) . 22由此获取 GA =(1,-3,-3),44PB =(0,3 3,-3), BC =(-2,0,0).22于是有 GA · PB =0, BC · PB =0,∴ GA ⊥ PB , BC ⊥ PB . GA , BC 的夹角 θ 等于所求二面角的平面角.于是 cos θ=GA BC|GA || BC |=-2 7,7由于题目中的二面角为钝角,因此所求二面角的大小为-2 7 。
高中向量题集(含答案)【强烈推荐】

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中向量题集(含答案)【强烈推荐】地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容平面向量测试题一、选择题(本题有10个小题,每小题5分,共50分)1.“两个非零向量共线”是这“两个非零向量方向相同”的()A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件2.如果向量与共线 ,且方向相反,则的值为(). . . .3.已知向量、的夹角为,,,若,则的值为(). . . .4.已知a=(1,-2),b=(1,x),若a⊥b,则x等于()A. B. C. 2 D. -25.下列各组向量中,可以作为基底的是()ABC.6.已知向量a,b的夹角为,且|a|=2,|b|=5,则(2a-b)·a= ()A.3 B. 9 C . 12 D. 137.已知点O为三角形ABC所在平面内一点,若,则点O是三角形ABC的( )A.重心 B. 内心 C. 垂心 D. 外心8.设a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.-3 B. 3 C. D.9.已知∥,则x+2y的值为()A.0 B. 2 C. D. -210.已知向量a+3b,a-4b分别与7a-5b,7a-2b垂直,且|a|≠0,|b|≠0,则a与b的夹角为()A. B. C. D.二、填空题(共4个小题,每题5分,共20分)11.在三角形ABC中,点D是AB的中点,且满足,则12.设是两个不共线的向量,则向量b=与向量a=共线的充要条件是_______________13.圆心为O,半径为4的圆上两弦AB与CD垂直相交于点P,若以PO为方向的单位向量为b,且|PO|=2,则=_______________14.已知O为原点,有点A(d,0)、B(0,d),其中d>0,点P在线段AB上,且(0≤t≤1),则的最大值为______________三、解答题15.(12分)设a,b是不共线的两个向量,已知若A、B、C三点共线,求k的值.16.(12分)设向量a,b满足|a|=|b|=1及|3a-2b|=3,求|3a+b|的值17.(14分)已知|a|=,|b|=3,a与b夹角为,求使向量a+b 与a+b的夹角是锐角时,的取值范围20.已知向量、、、及实数、满足,,若,且.⑴求关于的函数关系式及其定义域;⑵若时,不等式恒成立,求实数的取值范围.附加题(可不做)1.已知点P分所成的比为-3,那么点分所成比为()A. B. C. D.2.点(2,-1)按向量a平移后得(-2,1),它把点(-2,1)平移到()A.(2,-1) B. (-2,1) C. (6,-3) D. (-6,3))高中数学高考总复习平面向量的数量积及向量的应用习题及详解一、选择题1.(文)(2010·东北师大附中)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( ) A.-4 B.4C.-2 D.2[解析] a在b方向上的投影为eq \f(a·b,|b|) = eq \f(-12,3) =-4.(理)(2010·浙江绍兴调研)设a·b=4,若a在b方向上的投影为2,且b在a方向上的投影为1,则a与b的夹角等于( )A. eq \f(π,6)B. eq \f(π,3)C. eq \f(2π,3)D. eq \f(π,3) 或 eq \f(2π,3)[答案] B[解析] 由条件知, eq \f(a·b,|b|) =2, eq \f(a·b,|a|) =1,a·b=4,∴|a|=4,|b|=2,∴cos〈a,b〉= eq \f(a·b,|a|·|b|) = eq \f(4,4×2) = eq \f(1,2) ,∴〈a,b〉= eq \f(π,3) .2.(文)(2010·云南省统考)设e1,e2是相互垂直的单位向量,并且向量a=3e1+2e2,b=xe1+3e2,如果a⊥b,那么实数x等于( )A.- eq \f(9,2) B. eq \f(9,2)C.-2 D.2[解析] 由条件知|e1|=|e2|=1,e1·e2=0,∴a·b=3x+6=0,∴x=-2.(理)(2010·四川广元市质检)已知向量a=(2,1),b=(-1,2),且m=ta+b,n=a-kb(t、k∈R),则m⊥n的充要条件是( )A.t+k=1 B.t-k=1C.t·k=1 D.t-k=0[答案] D[解析] m=ta+b=(2t-1,t+2),n=a-kb=(2+k,1-2k),∵m⊥n,∴m·n=(2t-1)(2+k)+(t+2)(1-2k)=5t -5k=0,∴t-k=0.3.(文)(2010·湖南理)在Rt△ABC中,∠C=90°,AC=4,则 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) 等于( )A.-16 B.-8C.8 D.16[答案] D[解析] 因为∠C=90°,所以 eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =0,所以 eq\o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =( eq \o(AC,\s\up6(→)) + eq \o(CB,\s\up6(→)) )· eq\o(AC,\s\up6(→)) =| eq \o(AC,\s\up6(→)) |2+ eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =AC2=16.(理)(2010·天津文)如图,在△ABC中,AD⊥AB, eq \o(BC,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) ,| eq \o(AD,\s\up6(→)) |=1,则 eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( ) A.2 eq \r(3) B. eq \f(\r(3),2)C. eq \f(\r(3),3)D. eq \r(3)[答案] D[解析] ∵ eq \o(AC,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(BC,\s\up6(→)) = eq\o(AB,\s\up6(→)) + eq \r(3) eq \o(BD,\s\up6(→)) ,∴ eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( eq \o(AB,\s\up6(→)) + eq \r(3) eq\o(BD,\s\up6(→)) )· eq \o(AD,\s\up6(→)) = eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) + eq\r(3) eq \o(BD,\s\up6(→)) · eq \o(AD,\s\up6(→)) ,又∵AB⊥AD,∴ eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) =0,∴ eq \o(AC,\s\up6(→)) · e q \o(AD,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) · eq\o(AD,\s\up6(→)) = eq \r(3) | eq \o(BD,\s\up6(→)) |·| eq \o(AD,\s\up6(→)) |·cos∠ADB = eq \r(3) | eq \o(BD,\s\up6(→)) |·cos∠ADB= eq \r(3) ·| eq \o(AD,\s\up6(→)) |= eq \r(3) .4.(2010·湖南省湘潭市)设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=( )A.150° B.120°C.60° D.30°[答案] B[解析] ∵a+b=c,|a|=|b|=|c|≠0,∴|a+b|2=|c|2=|a|2,∴|b|2+2a·b=0,∴|b|2+2|a|·|b|·cos〈a,b〉=0,∴cos〈a,b〉=- eq \f(1,2) ,∵〈a,b〉∈[0°,180°],∴〈a,b〉=120°.5.(2010·四川双流县质检)已知点P在直线AB上,点O不在直线AB上,且存在实数t满足 eq \o(OP,\s\up6(→)) =2t eq \o(PA,\s\up6(→)) +t eq \o(OB,\s\up6(→)) ,则 eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) =( )A. eq \f(1,3)B. eq \f(1,2)C.2 D.3[答案] B[解析] ∵ eq \o(OP,\s\up6(→)) =2t( eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) )+t eq\o(OB,\s\up6(→)) ,∴ eq \o(OP,\s\up6(→)) = eq \f(2t,2t+1) eq \o(OA,\s\up6(→)) + eq \f(t,2t+1) eq\o(OB,\s\up6(→)) ,∵P在直线AB上,∴ eq \f(2t,2t+1) + eq \f(t,2t+1) =1,∴t=1,∴ eq \o(OP,\s\up6(→)) = eq \f(2,3) eq \o(OA,\s\up6(→)) + eq \f(1,3) eq \o(OB,\s\up6(→)) ,∴ eq \o(PA,\s\up6(→)) = eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(1,3) eq\o(OA,\s\up6(→)) - eq \f(1,3) eq \o(OB,\s\up6(→)) ,eq \o(PB,\s\up6(→)) = eq \o(OB,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(2,3) eq\o(OB,\s\up6(→)) - eq \f(2,3) eq \o(OA,\s\up6(→)) =-2 eq \o(PA,\s\up6(→)) ,∴ eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) = eq \f(1,2) .6.(文)平面上的向量 eq \o(MA,\s\up6(→)) 、 eq \o(MB,\s\up6(→)) 满足| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,且 eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,若向量 eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) ,则| eq \o(MC,\s\up6(→)) |的最大值是( )A. eq \f(1,2) B.1C.2 D. eq \f(4,3)[答案] D[解析] ∵ eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,∴ eq \o(MA,\s\up6(→)) ⊥ eq\o(MB,\s\up6(→)) ,又∵| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,∴|AB|=2,且M在以AB为直径的圆上,如图建立平面直角坐标系,则点A(-1,0),点B(1,0),设点M(x,y),则x2+y2=1,eq \o(MA,\s\up6(→)) =(-1-x,-y), eq \o(MB,\s\up6(→)) =(1-x,-y),∵ eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) = eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x,-y)) ,∴| eq \o(MC,\s\up6(→)) |2= eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x)) 2+y2= eq \f(10,9) - eq\f(2,3) x,∵-1≤x≤1,∴x=-1时,| eq \o(MC,\s\up6(→)) |2取得最大值为 eq \f(16,9) ,∴| eq \o(MC,\s\up6(→)) |的最大值是 eq \f(4,3) .(理)(2010·山东日照)点M是边长为2的正方形ABCD内或边界上一动点,N是边BC的中点,则 eq\o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为( )A.8 B.6C.5 D.4[答案] B[解析] 建立直角坐标系如图,∵正方形ABCD边长为2,∴A(0,0),N(2,-1), eq \o(AN,\s\up6(→)) =(2,-1),设M坐标为(x,y), eq \o(AM,\s\up6(→)) =(x,y)由坐标系可知eq \b\lc\{\rc\ (\a\vs4\al\co1(0≤x≤2①,-2≤y≤0 ②))∵ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) =2x-y,设2x-y=z,易知,当x=2,y=-2时,z取最大值6,∴ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为6,故选B.7.如图,△ABC的外接圆的圆心为O,AB=2,AC=3,BC= eq \r(7) ,则 eq \o(AO,\s\up6(→)) · eq\o(BC,\s\up6(→)) 等于( )A. eq \f(3,2)B. eq \f(5,2)C.2 D.3[答案] B[解析] eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \o(AO,\s\up6(→)) ·( eq\o(AC,\s\up6(→)) - eq \o(AB,\s\up6(→)) )= eq \o(AO,\s\up6(→)) · eq \o(AC,\s\up6(→)) - eq\o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) ,因为OA=OB.所以 eq \o(AO,\s\up6(→)) 在 eq \o(AB,\s\up6(→)) 上的投影为 eq \f(1,2) | eq \o(AB,\s\up6(→)) |,所以 eq \o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) = eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq \o(AB,\s\up6(→)) |=2,同理 eq \o(AO,\s\up6(→)) · eq\o(AC,\s\up6(→)) = eq \f(1,2) | eq \o(AC,\s\up6(→)) |·| eq \o(AC,\s\up6(→)) |= eq \f(9,2) ,故 eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \f(9,2) -2= eq \f(5,2) .8.(文)已知向量a、b满足|a|=2,|b|=3,a·(b-a)=-1,则向量a与向量b的夹角为( )A. eq \f(π,6)B. eq \f(π,4)C. eq \f(π,3)D. eq \f(π,2)[答案] C[解析] 根据向量夹角公式“cos〈a,b〉= eq \f(a·b,|a||b|) 求解”.由条件得a·b-a2=-1,即a·b=-3,设向量a,b的夹角为α,则cosα= eq \f(a·b,|a||b|) = eq\f(3,2×3) = eq \f(1,2) ,所以α= eq \f(π,3) .9.(理)(2010·黑龙江哈三中)在△ABC中, eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) ∈ eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3,8),\f(3\r(3),8))) ,其面积S= eq \f(3,16) ,则 eq \o(AB,\s\up6(→)) 与 eq \o(BC,\s\up6(→)) 夹角的取值范围是( )A. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,4)))B. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,3)))C. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,4),\f(π,3)))D. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(3π,4)))[答案] A[解析] 设〈 eq \o(AB,\s\up6(→)) , eq \o(BC,\s\up6(→)) 〉=α,∵ eq \o(AB,\s\up6(→)) · eq\o(BC,\s\up6(→)) =| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |cosα,S= eq \f(1,2) | eq\o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |·sin(π-α)= eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq\o(BC,\s\up6(→)) |·sinα= eq \f(3,16) ,∴| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |= eq\f(3,8sinα) ,∴ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→))= eq \f(3cosα,8sinα) = eq \f(3,8) cotα,由条件知 eq \f(3,8) ≤ eq \f(3,8) cotα≤ eq \f(3\r(3),8) ,∴1≤cotα≤ eq \r(3) ,∵ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) >0,∴α为锐角,∴ eq \f(π,6) ≤α≤ eq \f(π,4) .10.(理)(2010·南昌市模考)如图,BC是单位圆A的一条直径,F是线段AB上的点,且 eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,若DE是圆A中绕圆心A运动的一条直径,则 eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) 的值是( )A.- eq \f(3,4) B.- eq \f(8,9)C.- eq \f(1,4) D.不确定[答案] B[解析] ∵ eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,∴ eq \o(FA,\s\up6(→)) = eq \f(1,3) eq \o(BA,\s\up6(→)) ,∴| eq \o(FA,\s\up6(→)) |= eq \f(1,3) | eq \o(BA,\s\up6(→)) |= eq \f(1,3) ,eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) =( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) + eq \o(AE,\s\up6(→)) )=( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) - eq \o(AD,\s\up6(→)) )=| eq \o(FA,\s\up6(→)) |2-| eq \o(AD,\s\up6(→)) |2= eq \f(1,9) -1=- eq \f(8,9) .二、填空题11.(2010·苏北四市)如图,在平面四边形ABCD中,若AC=3,BD=2,则( eq \o(AB,\s\up6(→)) + eq\o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=______.[答案] 5[解析] 设AC与BD相交于点O,则( eq \o(AB,\s\up6(→)) + eq \o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OA,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OD,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OD,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OA,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=( eq \o(DB,\s\up6(→)) + eq \o(AC,\s\up6(→)) )( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=| eq \o(AC,\s\up6(→)) |2-| eq \o(BD,\s\up6(→)) |2=5.12.(文)(2010·江苏洪泽中学月考)已知O、A、B是平面上不共线三点,设P为线段AB垂直平分线上任意一点,若| eq \o(OA,\s\up6(→)) |=7,| eq \o(OB,\s\up6(→)) |=5,则 eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) -eq \o(OB,\s\up6(→)) )的值为________.[答案] 12[解析] eq \o(PA,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) , eq \o(PB,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OB,\s\up6(→)) ,由条件知,| eq \o(OA,\s\up6(→)) |2=49,| eq \o(OB,\s\up6(→)) |2=25,| eq \o(PA,\s\up6(→)) |=| eq \o(PB,\s\up6(→)) |,∴| eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) |2=| eq \o(PO,\s\up6(→)) + eq\o(OB,\s\up6(→)) |2,即| eq \o(PO,\s\up6(→)) |2+| eq \o(OA,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OA,\s\up6(→)) =| eq \o(PO,\s\up6(→)) |2+| eq \o(OB,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OB,\s\up6(→)) ,∴ eq \o(PO,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=-12,∴ eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=12.13.(理)(2010·广东茂名市)O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足 eq\o(OP,\s\up6(→)) = eq \o(OA,\s\up6(→)) +λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),则λ= eq \f(1,2) 时, eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )的值为______.[答案] 0[解析] 由已知得 eq \o(OP,\s\up6(→)) - eq \o(OA,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),即 eq \o(AP,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),当λ= eq \f(1,2) 时,得 eq \o(AP,\s\up6(→)) = eq \f(1,2) ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),∴2 eq \o(AP,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ,即 eq \o(AP,\s\up6(→)) - eq \o(AB,\s\up6(→)) = eq \o(AC,\s\up6(→)) - eq \o(AP,\s\up6(→)) ,∴ eq \o(BP,\s\up6(→)) = eq \o(PC,\s\up6(→)) ,∴ eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) =eq \o(PB,\s\up6(→)) + eq \o(BP,\s\up6(→)) =0,∴ eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )= eq \o(PA,\s\up6(→)) ·0=0,故填0.三、解答题16.(文)(延边州质检)如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°且 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50.(1)求sin∠BAD的值;(2)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求 eq \f(S△ABD,S△BCD) 的值.[解析] (1)在Rt△ADC中,AD=8,CD=6,则AC=10,cos∠CAD= eq \f(4,5) ,sin∠CAD= eq \f(3,5) ,又∵ eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50,AB=13,∴cos∠BAC= eq \f(\o(AB,\s\up6(→))·\o(AC,\s\up6(→)),|\o(AB,\s\up6(→))|·|\o(AC,\s\up6(→))|) = eq \f(5,13) ,∵0<∠BAC∠180°,∴sin∠BAC= eq \f(12,13) ,∴sin∠BAD=sin(∠BAC+∠CAD)= eq \f(63,65) .(2)S△BAD= eq \f(1,2) AB·ADsin∠BAD= eq \f(252,5) ,S△BAC= eq \f(1,2) AB·ACsin∠BAC=60,S△ACD=24,则S△BCD=S△ABC+S△ACD-S△BAD= eq \f(168,5) ,∴ eq \f(S△ABD,S△BCD) = eq \f(3,2) .(理)点D是三角形ABC内一点,并且满足AB2+CD2=AC2+BD2,求证:AD⊥BC.[分析] 要证明AD⊥BC,则只需要证明 eq \o(AD,\s\up6(→)) · eq \o(BC,\s\up6(→)) =0,可设 eq\o(AD,\s\up6(→)) =m, eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b,将 eq \o(BC,\s\up6(→)) 用m,b,c线性表示,然后通过向量的运算解决.证明:设 eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b, eq \o(AD,\s\up6(→)) =m,则 eq \o(BD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AB,\s\up6(→)) =m-c, eq \o(CD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AC,\s\up6(→)) =m-b.∵AB2+CD2=AC2+BD2,∴c2+(m-b)2=b2+(m-c)2,即c2+m2-2m·b+b2=b2+m2-2m·c+c2,∴m·(c-b)=0,即 eq \o(AD,\s\up6(→)) ·( eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) )=0,∴ eq \o(AD,\s\u p6(→)) · eq \o(CB,\s\up6(→)) =0,∴AD⊥BC.17.(文)(2010·江苏)在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0,求t的值.[解析] (1)由题设知 eq \o(AB,\s\up6(→)) =(3,5), eq \o(AC,\s\up6(→)) =(-1,1),则 eq\o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) =(2,6), eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) =(4,4).所以| eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) |=2 eq \r(10) ,| eq \o(AB,\s\up6(→)) - eq\o(AC,\s\up6(→)) |=4 eq \r(2) .故所求的两条对角线长分别为4 eq \r(2) ,2 eq \r(10) .(2)由题设知 eq \o(OC,\s\up6(→)) =(-2,-1), eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) =(3+2t,5+t).由( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0得,(3+2t,5+t)·(-2,-1)=0,所以t=- eq \f(11,5) .(理)(安徽巢湖质检)已知A(- eq \r(3) ,0),B( eq \r(3) ,0),动点P满足| eq \o(PA,\s\up6(→)) |+| eq \o(PB,\s\up6(→)) |=4.(1)求动点P的轨迹C的方程;(2)过点(1,0)作直线l与曲线C交于M、N两点,求 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围.[解析] (1)动点P的轨迹C的方程为 eq \f(x2,4) +y2=1;(2)解法一:①当直线l的斜率不存在时,M(1, eq \f(\r(3),2) ),N(1,- eq \f(\r(3),2) ), eq\o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) = eq \f(1,4) ;②当直线l的斜率存在时,设过(1,0)的直线l:y=k(x-1),代入曲线C的方程得(1+4k2)x2-8k2x+4(k2-1)=0.设M(x1,y1)、N(x2,y2),则x1+x2= eq \f(8k2,1+4k2) ,x1x2= eq \f(4k2-1,1+4k2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=x1x2+k2(x1-1)(x2-1)=(1+k2)x1x2-k2(x1+x2)+k2= eq \f(k2-4,1+4k2) = eq \f(1,4) - eq \f(\f(17,4),1+4k2) < eq \f(1,4) .又当k=0时, eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 取最小值-4,∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) < eq \f(1,4) .根据①、②得 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].解法二:当直线l为x轴时,M(-2,0),N(2,0), eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =-4. 当直线l不为x轴时,设过(1,0)的直线l:x=λy+1,代入曲线C的方程得(4+λ2)y2+2λy-3=0.设M(x1,y1)、N(x2,y2),则y1+y2= eq \f(-2λ,4+λ2) ,y1y2= eq \f(-3,4+λ2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=(λ2+1)y1y2+λ(y1+y2)+1= eq \f(-4λ2+1,4+λ2) =-4+ eq \f(17,4+λ2) ∈(-4, eq \f(1,4) ].∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) ≤ eq \f(1,4) .∴ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].高中数学平面向量章末复习题(二)【提高篇】一、选择题1、下面给出的关系式中正确的个数是( C )① ②③④⑤(A) 0 (B) 1 (C) 2 (D) 32. 已知ABCD为矩形,E是DC的中点,且=,=,则=( B )(A) + (B)-(C)+(D)-3.已知ABCDEF是正六边形,且=,=,则=( D )(A)(B)(C)+(D)4. 设a,b为不共线向量,=a+2b,=-4 a-b,=-5 a-3 b,则下列关系式中正确的是(B )(A)=(B)=2 (C)=-(D)=-25. 设与是不共线的非零向量,且k+与+k共线,则k的值是( C )(A) 1 (B)-1 (C)(D)任意不为零的实数6. 在中,M是BC的中点,AM=1,点P在AM上且满足-,则等于 ( A )A. B. C. D.7.已知a、b均为单位向量,它们的夹角为60°,那么丨a+3b丨=( C )A.B.C. D.48.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于( D )。
高中数学必修二第六章平面向量及其应用专项训练题(带答案)

高中数学必修二第六章平面向量及其应用专项训练题单选题1、定义空间两个向量的一种运算a⃑⊗b⃑⃑=|a⃑|⋅|b⃑⃑|sin⟨a⃑,b⃑⃑⟩,则关于空间向量上述运算的以下结论中恒成立的有()A.λ(a⃑⊗b⃑⃑)=(λa⃑)⊗b⃑⃑B.(a⃑⊗b⃑⃑)⊗c⃑=a⃑⊗(b⃑⃑⊗c⃑)C.(a⃑+b⃑⃑)⊗c⃑=(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则a⃑⊗b⃑⃑=|x1y2−x2y1|答案:D分析:A.按λ的正负分类讨论可得,B.由新定义的意义判断,C.可举反例说明进行判断,D.与平面向量的数量积进行联系,用数量积求出两向量夹角的余弦值,转化为正弦值,代入计算可判断.A.(λa⃑)⊗b⃑⃑=|λa⃑||b⃑⃑|sin<λa⃑,b⃑⃑>,λ>0时,<λa⃑,b⃑⃑>=<a⃑,b⃑⃑>,(λa⃑)⊗b⃑⃑=λ|a⃑||b⃑⃑|sin<a⃑,b⃑⃑>=λ(a⃑⊗b⃑⃑),λ=0时,λ(a⃑⊗b⃑⃑)=0,(λa⃑)⊗b⃑⃑=0,成立,λ<0时,<λa⃑,b⃑⃑>=π−<a⃑,b⃑⃑>,sin<λa⃑,b⃑⃑>=sin(π−<a⃑,b⃑⃑>)=sin<a⃑,b⃑⃑>(λa⃑)⊗b⃑⃑=−λ|a⃑||b⃑⃑|sin< a⃑,b⃑⃑>=−λ(a⃑⊗b⃑⃑),综上,A不恒成立;B.a⃑⊗b⃑⃑是一个实数,(a⃑⊗b⃑⃑)⊗c⃑无意义,B不成立;C.若a⃑=(0,1),b⃑⃑=(1,0),c⃑=(1,1),则a⃑+b⃑⃑=(1,1),<a⃑+b⃑⃑,c⃑>=0,(a⃑+b⃑⃑)⊗c⃑=|a⃑+b⃑⃑||c⃑|sin0=√2×√2×0=0,<a⃑,c⃑>=π4,<b⃑⃑,c⃑>=π4,(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)=1×√2×sinπ4+1×√2×sinπ4=2,(a⃑+b⃑⃑)⊗c⃑≠(a⃑⊗c⃑)+(b⃑⃑⊗c⃑),C错误;D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则|a⃑|=√x12+y12,|b⃑⃑|=√x22+y22,cos <a ⃑,b ⃑⃑>=1212√x 12+y 12×√x 22+y 22,sin <a ⃑,b ⃑⃑>=√1−cos 2<a ⃑,b ⃑⃑>=√1−(x 1x 2+y 1y 2)2(x 12+y 12)(x 22+y 22)=1221√(x 1+y 1)(x 2+y 2), 所以a ⃑⊗b ⃑⃑=|a ⃑||b ⃑⃑|sin <a ⃑,b⃑⃑>=|x 1y 2−x 2y 1|,成立. 故选:D .小提示:本题考查向量的新定义运算,解题关键是理解新定义,并能运用新定义求解.解题方法一种方法是直接利用新定义的意义判断求解,另一种方法是把新定义与向量的数量积进行联系,把新定义中的sin <a ⃑,b ⃑⃑>用cos <a ⃑,b⃑⃑>,而余弦可由数量积进行计算. 2、若|AB⃑⃑⃑⃑⃑⃑|=5,|AC ⃑⃑⃑⃑⃑⃑|=8,则|BC ⃑⃑⃑⃑⃑⃑|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑⃑|的取值范围. 因为|BC⃑⃑⃑⃑⃑⃑|=|AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑|,所以,||AC ⃑⃑⃑⃑⃑⃑|−|AB ⃑⃑⃑⃑⃑⃑||≤|BC ⃑⃑⃑⃑⃑⃑|≤|AC ⃑⃑⃑⃑⃑⃑|+|AB ⃑⃑⃑⃑⃑⃑|,即3≤|BC ⃑⃑⃑⃑⃑⃑|≤13. 故选:C.3、已知非零平面向量a ⃗,b ⃑⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则a ⃗=b ⃑⃗;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗//b⃑⃗ (3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则a ⃗⊥b ⃑⃗(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则a ⃗=b ⃑⃗或a ⃗=−b⃑⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃑⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则(a ⃗−b ⃑⃗)⋅c ⃗=0,所以a ⃗=b ⃑⃗或(a ⃗−b ⃑⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗与b ⃑⃗同向,所以a ⃗//b⃑⃗,即(2)正确;(3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则|a ⃗|2+|b ⃑⃗|2+2a ⃗⋅b ⃑⃗=|a ⃗|2+|b ⃑⃗|2−2a ⃗⋅b ⃑⃗,所以2a ⃗⋅b ⃑⃗=0,则a ⃗⊥b⃑⃗;即(3)正确;(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则|a ⃗|2−|b ⃑⃗|2=0,所以|a ⃗|=|b⃑⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.4、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b⃑⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b ⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0,解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A. 5、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a +b )2−c 2=4,C =120°,则△ABC 的面积为( )A .√33B .2√33C .√3D .2√3 答案:C解析:利用余弦定理可求ab 的值,从而可求三角形的面积.因为C =120°,故c 2=a 2+b 2−2abcos120°=a 2+b 2+ab ,而(a +b )2−c 2=4,故c 2=a 2+b 2+2ab −4=a 2+b 2+ab ,故ab =4,故三角形的面积为12×ab ×sin120°=√34×4=√3,故选:C.6、△ABC 内角A,B,C 的对边分别为a,b,c ,已知b 2+c 2−a 2=bc ,则A =( )A .π6B .5π6C .π3D .2π3答案:C分析:利用余弦定理求出cosA ,再求出A 即可.∵b 2+c 2−a 2=bc ,∴cosA =b 2+c 2−a 22bc =bc 2bc =12,∵0<A <π,∴A =π3. 故选:C7、已知向量a ⃑=(−1,m ),b ⃑⃑=(m +1,2),且a ⃑⊥b⃑⃑,则m =( ) A .2B .−2C .1D .−1答案:C分析:由向量垂直的坐标表示计算.由题意得a ⃑⋅b⃑⃑=−m −1+2m =0,解得m =1 故选:C .8、已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB⃑⃑⃑⃑⃑⃑⋅PC ⃑⃑⃑⃑⃑⃑的最大值为( )A .16+16√55B .16+8√55C .165D .565答案:D分析:建立如图所示的坐标系,根据PB ⃑⃑⃑⃑⃑⃑·PC⃑⃑⃑⃑⃑⃑=|PD ⃑⃑⃑⃑⃑⃑|2−5可求其最大值. 以A 为原点建系,B (0,2),C (4,0),BC:x 4+y 2=1,即x +2y −4=0,故圆的半径为r =√5 ∴圆A:x 2+y 2=165,设BC 中点为D (2,1),PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑=PD ⃑⃑⃑⃑⃑⃑2−14BC ⃑⃑⃑⃑⃑⃑2=|PD ⃑⃑⃑⃑⃑⃑|2−14×20=|PD ⃑⃑⃑⃑⃑⃑|2−5, |PD |max =|AD |+r =√5+√5=√5,∴(PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑)max =815−5=565, 故选:D.多选题9、下列说法正确的有( )A .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑B .若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑C .若a ⃑//b ⃑⃑,则a ⃑与b⃑⃑的方向相同或相反D .若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线,则A 、B 、C 三点共线 答案:BD分析:取b⃑⃑=0⃑⃑可判断AC 选项的正误;利用向量相等的定义可判断B 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,若b ⃑⃑=0⃑⃑,a ⃑、c ⃑均为非零向量,则a ⃑//b ⃑⃑,b ⃑⃑//c ⃑成立,但a ⃑//c ⃑不一定成立,A 错;对于B 选项,若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑,B 对;对于C 选项,若b ⃑⃑=0⃑⃑,a ⃑≠0⃑⃑,则b⃑⃑的方向任意,C 错; 对于D 选项,若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线且AB 、BC 共点B ,则A 、B 、C 三点共线,D 对.故选:BD.10、下列说法正确的是( )A .向量不能比较大小,但向量的模能比较大小B .|a ⃑|与|b ⃑⃑|是否相等与a ⃑与b⃑⃑的方向无关 C .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑D .若向量AB ⃑⃑⃑⃑⃑⃑与向量CD⃑⃑⃑⃑⃑⃑是共线向量,则A ,B ,C ,D 四点在一条直线上 答案:AB分析:根据向量的定义以及向量模的定义可判断A ,B ;举反例b⃑⃑=0⃑⃑时可判断C ;由共线向量的定义可判断D ,进而可得正确选项.对于A :向量即有大小又有方向不能比较大小,向量的模可以比较大小,故选项A 正确;对于B :|a ⃑|与|b ⃑⃑|分别表示向量a ⃑与b ⃑⃑的大小,与a ⃑,b⃑⃑的方向无关,故选项B 正确; 对于C :当b ⃑⃑=0⃑⃑时,向量a ⃑与c ⃑可以是任意向量都满足a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,故选项C 不正确;对于D :若向量AB⃑⃑⃑⃑⃑⃑与向量CD ⃑⃑⃑⃑⃑⃑是共线向量,表示AB ⃑⃑⃑⃑⃑⃑与CD ⃑⃑⃑⃑⃑⃑方向相同或相反,得不出A ,B ,C ,D 四点在一条直线上,故选项D 不正确;故选:AB.11、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2cosAsinB =b 2sinAcosB ,则△ABC 的形状为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形答案:AC分析:根据正弦定理和二倍角公式进行求解.∵a 2cosAsinB =b 2sinAcosB∴由正弦定理得sin 2AcosAsinB =sin 2BsinAcosB ,∵sinAcosA ≠0∴sinAcosA =sinBcosB ,即sin2A =sin2B∴2A =2B 或2A +2B =π,即该三角形为等腰三角形或直角三角形.故选:AC.填空题12、已知a ⃗,b ⃑⃑是空间两个向量,若|a ⃗|=2,|b ⃑⃗|=2,|a ⃗−b ⃑⃗|=√7,则cos 〈a ⃗,b⃑⃑〉=________. 答案:18 分析:根据向量几何法的模长公式,可得向量数量积的值,根据向量夹角余弦值的公式,可得答案.由|a ⃑−b ⃑⃑|=√7,可知(a ⃑−b ⃑⃑)2=7,则|a ⃑|2−2a ⃑⋅b⃑⃑+|b ⃑⃑|2=7, ∵|a ⃑|=2,|b ⃑⃑|=2,∴a ⃑⋅b ⃑⃑=12,则cos⟨a ⃑⋅b ⃑⃑⟩=a ⃑⃑⋅b ⃑⃑|a ⃑⃑|⋅|b ⃑⃑|=18. 所以答案是:18. 13、如图,在矩形ABCD 中,AB =3,AD =2,DE =2EC ,M 为BC 的中点,若点P 在线段BD 上运动,则PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗的最小值为______.答案:2352 分析:构建直角坐标系,令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗求P 的坐标,进而可得PE ⃑⃑⃑⃑⃑⃗,PM ⃑⃑⃑⃑⃑⃑⃗,由向量数量积的坐标表示及二次函数的性质求最值即可.以A 为坐标原点,AB ,AD 分别为x ,y 建系,则E(2,2),M(3,1),又AB ⃑⃑⃑⃑⃑⃗=(3,0),AD ⃑⃑⃑⃑⃑⃗=(0,2),令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗=(3λ,2−2λ),0≤λ≤1, 故P(3λ,2−2λ),则PE⃑⃑⃑⃑⃑⃗=(2−3λ,2λ),PM ⃑⃑⃑⃑⃑⃑⃗=(3−3λ,2λ−1), PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗=(2−3λ)(3−3λ)+2λ(2λ−1) =13λ2−17λ+6, 所以λ=1726时,PE ⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗取最小值2352. 所以答案是:2352.14、海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =45m ,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则AB 两点的距离为______m .答案:45√5分析:先将实际问题转化为解三角形的问题,再利用正、余弦定理求解。
向量高考经典试题(附详细答案)

向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。
2、(文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学向量专项练习一、选择题1.已知向量(1,),(1,),a x b x ==-若(2).a b b -⊥则a =( ) A .2 B .3 C .2 D .4 2.化简+++的结果是( )A .B .C .D .3.已知向量(1,2),(4,)a b m ==-,若2a b +与a 垂直,则m =( ) A .-3 B .3 C .-8 D .84.已知向量(1,1)a =-,(1,)b m =,若(2)4a b a -⋅=,则m =() A .1- B .0 C .1 D .25.设向量(12)a =-,,(1)b m =,,若向量a 与b 平行,则a b ⋅= A .27-B .21-C .23D .256.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ⋅=( ) A .8 B .10 C .12 D .14 7.在△ABC 中,若点D 满足2BD DC =,则AD =( ) A .1233AC AB + B .5233AB AC - C .2133AC AB - D .2133AC AB + 8.在ABC ∆中,已知90BAC ∠=,6AB =,若D 点在斜边BC 上,2CD DB =,则AB AD ⋅的值为 ( ).A .6B .12C .24D .489.已知向量(1,1),(2,2),m n λλ→→=+=+若()()m n m n →→→→+⊥-,则=λ( ) A .4- B .3- C .2- D .1-10.已知向量(12)=,a ,(4)x =,b ,若向量//a b ,则实数的x 值为 A .2 B .2- C .8 D .8- 11.已知向量()()2,1,3,4==-a b ,则2+=a bA .()1,5-B .()1,5C .()1,6-D .()1,6 12.已知向量()()2,1,3,4==-a b ,则+=a bA .()1,5-B .()1,5C .()1,3--D .()1,313.ABC ∆的外接圆圆心为O ,半径为2,0OA AB AC ++=,且OA AB =,则CB 在CA 方向上的投影为A .1B .2C .3D .314.已知向量(1,2)a =,向量(,2)b x =-,且()a a b ⊥-,则实数x 等于( ) A 、4- B 、4 C 、0 D 、915.已知平面向量(1,2),(2,)a b m ==-,且//a b ,则实数m 的值为 ( ) A .1 B .4 C .1- D .4-16.C ∆AB 是边长为2的等边三角形,已知向量a 、b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )A 、1b =B 、a b ⊥C 、1a b ⋅=D 、()4C a b +⊥B 17.已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅= ( ) A 、232a -B 、234a -C 、234aD 、232a 18.已知向量a ,b 满足(5,10)=-a +b ,(3,6)-=a b ,则a,b 夹角的余弦值为( )A .1313-B .1313C .21313-D .2131319.已知向量a =(1,3),b =(-2,-6),|c |=,若(a +b )·c =5,则a 与c 的夹角为( )A .30°B .45°C .60°D .120° 20.已知向量(2,1),(5,3)a b →→==-,则a b →→⋅的值为A .-1B .7C .13D .1121.如图,平行四边形ABCD 中,)2,3(),0,2(-==AD AB ,则=⋅AC BD ( )A .6-B .4C .9D .13 22.若向量(2,4)AB =,(1,3)AC =,则BC =( ) A .(1,1) B .(1,1)-- C .(3,7) D .(3,7)--的取值范围为 (A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424.已知平面向量AB ()1,2=,AC ()3,4=,则向量CB =( ) A .(4,6)-- B .(4,6) C .(2,2)-- D .(2,2) 25.已知向量(2,4)a =,(1,1)b =-,则2a b -=A . (5,7)B . (5,9)C . (3,7)D . (3,9) 26.已知向量(,2),(1,1)m a n a =-=-,且//m n ,则实数a =( ) A .-1 B .2或-1 C .2 D .-227.在ABC ∆中,,AB c =AC b =若 点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b - C .2133c b - D .2233b c + 28.已知点(5,6)M -和向量(1,2)a =-,若3MN a =-,则点N 的坐标为( ) A .(3,6)- B .(2,0) C .(6,2) D .(2,0)- 29.在矩形ABCD 中,4,2,AB AD ==则BA BD BC ++=( ) A .12 B.6 C ..30.已知向量(1,2)a = ,(3,1)b = ,则b a -=( ). A .(2,1)- B .(2,1)- C .(2,0) D .(4,3)31.若向量)1 , ( n a =与) , 4( n b =共线且方向相同,则=n ( ) A .21B .1C .2D .2± 32.设,,a b c 是单位向量,且0,a b ⋅=则()()a c b c -⋅-的最小值是() A .1B1 C .1133.如图所示,D 是ABC 的边AB 上的中点,记,BC a BA c ==,,则向量DC ( )ACBA .12a c --B .12a c -+C .12a c - D .12a c + 34.如图,在4,30,ABC AB BC ABC AD ∆==∠=中,是边BC 上的高,则AD AC ⋅的值等于 ( )A .0B .4C .8D .4- 35.已知平面向量b a 与的夹角为3π,1,223,b a b a =+==且则( ) A .1 B .3 C .2 D .336.已知向量()()3,4,sin ,cos ,a b αα==且a 与b 共线,则tan α=( )A .34 B .34- C .43 D .43- 二、填空题37.在△ABC 中,AB =2,AC =1,D 为BC 的中点,则AD BC ⋅=_____________. 38.设(1,2)a =,(2,)b k =,若(2)a b a +⊥,则实数k 的值为( ) A .2- B .4- C .6- D .8-39.空间四边形OABC 中,OB OC =,60AOB AOC ∠=∠=︒,则cos ,OA BC <>=( ) A .21 B .22 C .12- D .040.已知向量a ,b ,c 满足||=2a ,||3b a b =⋅=,若(2)(23)0c a b c -⋅-=,则||b c -的最大值是 . 41.化简:= .42.在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 3cos cos b C a B c B =-,2BA BC ⋅=,则ABC ∆的面积为 .43.已知向量=(1,2),•=10,|+|=5,则||= .44.如图,在ABCD 中,E 是CD 中点,BE x AB y AD =+,则x y += .EDCB45.若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则a 与b 的夹角为________。
46.向量22(,22m =-),(sin ,cos ),(0,)n x x x π=∈,①若//m n ,则tan x = ; ②若m 与n 的夹角为3π,则x = . 47.已知平面向量a ()1,2-=,则 a =_________.48.已知|a |=2,|b |=4,a ⊥(a +b ),则a 与b 夹角的度数为 . 49.已知向量(1,2),(,2)x ==a b ,且⊥a b ,则实数x 的值为 . 50.已知向量()2,1,1a =-,(),1,1b t =-,R t ∈,若//a b ,则t = . 51.已知向量()1,3a =,向量,a c 的夹角是3π,2a c ⋅=,则||c 等于_______. 52.已知1,3a b ==,它们的夹角为120,那么a b -= .53.已知向量a 与b 的夹角为45︒,且||1a =,||32b =;则|2|a b -= .54.已知平面向量(2,1)=-a ,向量(1,1)=b ,向量(5,1)=-c . 若()//k +a b c ,则实数k 的值为 . 55.若等腰梯形ABCD 中,//AB CD ,3AB =,2BC =45ABC ∠=,则AC BD ⋅的值为 .56.已知(1,3)a =-,(1,)b t =,若(2)a b a -⊥,则||b = . 57. 已知2a = ,3b =,,a b 的夹角为60°,则2a b -=_____. 58.在ABC ∆中,已知4,1AB AC ==,且ABC ∆的面积3S =AB AC ⋅的值为 .三、解答题59.(本小题满分12分)已知向量(4,3),(1,2)a b . (1)求a 与b 的夹角的余弦值;(2)若向量λ-a b 与2+a b 平行,求λ的值.60.设向量(2,sin )a θ=,(1,cos )b θ=,θ为锐角. (Ⅰ)若136a b ⋅=,求sin cos θθ+的值; (Ⅱ)若//a b ,求sin(2)3πθ+的值.1.C 【解析】试题分析:由已知2(3,)a b x -=,因为(2).a b b -⊥,所以2(2)3(1)0a b b x -⋅=⨯-+=,3x =±,所以21132a x =+=+=.故选C . 考点:向量垂直的坐标运算,向量的模. 2.A 【解析】 试题分析:由于=,=,即可得出.解:∵=,=,∴+++=, 故选:A .考点:向量的三角形法则. 3.A 【解析】试题分析:因为22(1,2)(4,)(2,4)a b m m +=+-=-+,又2a b +与a 垂直,所以(1,2)(2,4)m ⋅-+=22(4)0m -++=,解得3m =-,故选A .考点:1、平面向量的坐标运算;2、向量垂直的充要条件. 4.C . 【解析】试题分析:由已知得2(2,2)(1,)(3,2)a b m m -=--=--, 又∵(1,1)a =-,∴(2)324a b a m -⋅=+-=,∴1m =,故选C . 考点:平面向量数量积. 5.D 【解析】试题分析:()()()()()()21,22,221,4,22,4,12,3a b m m a b m m +=-+=--=--=-- 由两向量平行得()()1213422m m m -⨯=⨯--∴=-522a b m ∴⋅=-+= 考点:向量平行的判定及向量的坐标运算 6.C 【解析】试题分析:特殊化处理,用正方形代替菱形,边长为22,以A 为原点,建立如图所示坐标系,则A (0,0),),(),,(2222222E C ,所以)22,2(),22,22(==AE AC ,所以222222212AC AE ⋅==,故选C .考点:平面向量的数量积运算. 7.A 【解析】试题分析:由于BC AC AB b c =-=-,因此()22213333AD AB BD c BC c b c b c =+=+=+-=+. 考点:向量的加法法则. 8.C 【解析】试题分析:因为,2CD DB =,90BAC ∠=,所以1()()3AB AD AB AB BD AB AB BC ⋅=+=+=1[()]3AB AB AC AB +-=223AB +13AB AC ⋅=223AB =226243⨯=,故选C .考点:1、平面向量的加减运算;2、平面向量的数量积运算. 9.B 【解析】 试题分析:由题(23,3),(1,1)m n m n λ→→→→+=+-=--,()()()()0(23,3)(1,1)03m n m n m n m n λλ→→→→→→→→+⊥-∴+⋅-=⇒+⋅--=∴=-考点:向量的运算,向量垂直的充要条件 10.A 【解析】试题分析:因为两向量平行,所以可得1422x x ⨯=⨯⇒=,故选择A 考点:向量共线的坐标表示 11.D 【解析】试题分析:由向量的坐标运算可得:()21,6a b += ,故选择D 考点:向量的坐标运算 12.A 【解析】试题分析:根据向量的加法运算法则,可知(23,14)(1,5)a b +=-+=-,故选A . 考点:向量的加法运算.试题分析:由0=+=++OC AB AB AC OA ,并且邻边相等,所以四边形OABC 是菱形,那么CB 在CA方向上的投影是3233230cos 0=⨯=BC . 考点:向量与平面几何的关系 14.D 【解析】试题分析:由已知得,0=-⋅)(b a a ,所以(1,2)⋅(1-x ,4)=0,即1-x+8=0,所以x=9.故选D . 考点:向量垂直及数量积的坐标运算. 15.D 【解析】试题分析:因为//a b ,所以4022-=∴=-⨯-⋅m m )(1.故选D . 考点:向量平行的充要条件. 16.D 【解析】 试题分析:2,2AB a AC a b ==+,AC AB b ∴=+,b AC AB BC ∴=-=.由题意知12,cos1201212b a b a b ⎛⎫=⋅=⋅=⨯⨯-=- ⎪⎝⎭. ()()2422a b BC AB BC BC AB BC BC∴+⋅=+⋅=⋅+212cos1202222402AB BC ⎛⎫=⋅+=⨯⨯⨯-+= ⎪⎝⎭.()4a b BC ∴+⊥.故D 正确.考点:1向量的加减法;2向量的数量积;3向量垂直. 17.D 【解析】试题分析:()2222213cos6022BD CD BC CD CD BC CD CD BC CD a a a a ⋅=+⋅=⋅+=⋅+=+=.故D 正确.考点:1向量的加减法;2向量的数量积. 18.D 【解析】 试题分析:()()(4,2)2a b a b a ++-==-,()()(1,8)2a b a b b +--==-,则,a b 的夹角余弦值为20213cos 13||||2065a b a b θ⋅===⋅⨯.故选D. 考点:向量的基本运算.试题分析:根据题意得2b a =-,从而有5a c ⋅=-,所以51cos ,210a c a c a c⋅-<>===-⋅⋅,所以a 与c 的夹角为120,故选D .考点:向量的数量积,向量夹角余弦公式.20.B 【解析】试题分析:因为(2,1)(5,3)1037a b →→⋅=⋅-=-=,所以应选B . 考点:1、平面向量的数量积; 21.C 【解析】 试题分析:由图可知:)2,5()0,2()2,3(-=--=-=AB AD BD ;)2,1()0,2()2,3(-=+-=+=AB AD AC .则922)1()5()2,1()2,5(=⨯+-⨯-=-⋅-=⋅AC BD .考点:向量的运算. 22.B 【解析】试题分析:因为向量(2,4)AB =,(1,3)AC =,所以)1,1()4,2()3,1(A B C --=-=-=AB C .故选B . 考点:向量减法的坐标的运算. 23.A 【解析】试题分析:当角A 趋近于直角时,按照平面向量基本定理则此时,向量AD 在向量AB 上的分量趋近于最大值,,又相似比求得此时x=910,排除C ,D ,同理,若角A 趋近于平角,则此时x= 34,结合选项得A 是正确的.考点:平面向量基本定理,极限的思想. 24.C 【解析】试题分析:由向量的减法法则()2,2--=-=AC AB CB ,所以选C ; 考点:1.向量的减法; 25.A 【解析】试题分析:根据向量的坐标运算可得:()()()24,81,15,7a b -=--=,故选择A 考点:向量的坐标运算 26.B 【解析】试题分析:因为//m n ,所以2)1(-=-a a ,解得022=--a a ,故21=-=a a 或,故选B .27.A 【解析】试题分析:由2BD DC=,可得23BD BC =,()221212333333AD AB BD AB BC AB AC AB AB AC c b=+=+=+-=+=+,故选择A考点:平面向量基本定理28.B 【解析】试题分析:设点N 的坐标为(),x y ,由3MN a =-可得:()()5,63,6x y -+=-,解得20x y =⎧⎨=⎩,故选择B考点:平面向量的坐标表示 29.C 【解析】试题分析:由平行四边形法则可知BA BC BD +=,原式即为2BD ,而BD为矩形对角线,所以24BD==考点:向量的加法 30.A 【解析】试题分析:向量减法的定义,对应坐标分别相减,即(31,12)(2,1)b a -=--=- 考点:向量的减法 31.C 【解析】试题分析:两向量共线,坐标满足21442,2n n n =⨯=∴=±=时,两向量共线,所以2n =- 考点:向量共线的判定 32.A 【解析】 试题分析:设c与a b+的夹角为θ,()()22()()0cos 1011a c b c a b c a b c c a b a b a b θ-⋅-=⋅-++=-++≥-++=-++2211a b =++=-考点:(1)平面向量数量积的运算(2)平面向量数量积的性质及其运算律 33.C 【解析】试题分析:因为D 是ABC 的边AB 上的中点,所以11DB BA c =-=-,在BCD 中,由向量的三角形法则可得12DC DB BC a c =+=-,故选C . 考点:向量加减混合运算及其几何意义 34.B 【解析】试题分析:221()||4,4AD AC AD AD DC AD AB ⋅=⋅+===选B . 考点:向量数量积 35.C 【解析】试题分析:223a b +=()2221224122a b a a a ∴+=∴++=∴=考点:向量的数量积与向量的模 36.C 【解析】试题分析:a b ,共线可知4sin 3cos αα∴=3tan 4α∴= 考点:向量共线37.32- 【解析】试题分析:22113()()()222AD BC AB AC AC AB AC AB ⋅=+⋅-=-=-考点:向量数量积38.C 【解析】试题分析:因为)4,4(2k b a +=+,60212)4(214)2(-=⇒=+=++⨯⇒⊥+k k k a b a 考点:1.平面向量的坐标运算;2.非零向量0=⋅⇔⊥b a b a ;3.数量积公式的坐标形式; 39.D 【解析】试题分析:法一:如图,取BC 的中点D ,由OB OC =,可知OD BC ⊥,另一方面由60OB OCAOB AOC OAC OAB AC AB OA OA =⎫⎪∠=∠=︒⇒∆∆⇒=⎬⎪=⎭≌,而D 是BC 的中点,所以AD BC ⊥,进而可得BC ⊥面OAD ,所以OA BC ⊥,所以cos ,0OA BC <>=,故选D.法二:因为()||||cos 60||||cos 60OA BC OA OC OB OA OC OA OB OA OC OA OB ⋅=⋅-=⋅-⋅=︒-︒,因为,OA OA OB OC ==,所以0OA BC ⋅=,所以,90OA BC <>=︒,所以cos ,cos900OA BC <>=︒=,故选D.考点:1.空间中的垂直关系;2.空间向量的基本运算. 40.12+. 【解析】试题分析:分析题意可知,设(1,1)A ,(3,0)B ,则a OA =,b OB =,设(,)C x y , ∴(,)c OC x y ==,又∵(2)(23)0c a b c -⋅-=,∴(2)(63)(2)(03)0x x y y --+--=, 而22(2)(1)1x y -+-=,即点C 在以(2,1)为圆心,1为半径的圆上, ∴22||(32)(01)112b c -≤-+-+=+,故填:12+. 考点:平面向量数量积及其运用. 41..【解析】试题分析:利用向量加法的三角形法则即可求得答案. 解:=()﹣(+)=﹣=,故答案为:.考点:向量加减混合运算及其几何意义. 42.22【解析】试题分析:由cos 3cos cos b C a B c B =-得sin cos 3sin cos sin cos B C A B C B =-()1sin 3sin cos cos 3B C A B B ∴+=∴=,由2BA BC ⋅=,得cos 26ac B ac =∴=1122sin 622223S ac B ∴==⨯⨯=考点:1.正弦定理;2.向量数量积运算 43.5 【解析】试题分析:先求出||,再求出|+|2,问题得以解决. 解:∵向量=(1,2), ∴||=,∵•=10,∴|+|2=||2+||2+2•=(5)2,∴||2=25, ∴||=5故答案为:5.考点:平面向量数量积的运算. 44.12【解析】试题分析:连接BD ,又E 为CD 的中点 所以1122BE BD BC =+ 又BD AD AB =-,BC AD = 所以111()222BE AD AB AD AD AB =-+=- 又BE x AB y AD =+ 所以1x =,12y =- 所以12x y +=考点:向量的线性运算.45.120 【解析】试题分析:c ⊥a ,所以()1001cos 2a b c a a b a a b a bθ-=∴+=∴=-∴==120θ∴= 考点:向量夹角 46.1-,512π. 【解析】试题分析:①:∵//m nsin )0tan 1x x x -=⇒=-;②:显然||||1m n ==, ∴111cos 32m n π⋅=⋅⋅=,即1sin 222x x -=,∴1sin()42x π-=,又∵(0,)x π∈, ∴54612x x πππ-=⇒=. 考点:1.平面向量共线的坐标表示;2.平面向量数量积;3.三角恒等变形. 47.5 【解析】试题分析:由向量的模的公式可得:(22a =+=考点:求向量的模 48. 1200 【解析】试题分析:设a 与b 夹角为θ.由a ⊥(a +b )得,042402=⨯+∴=⋅+θcos ,b a a ,解得,21-=θcos 所以︒=120θ.考点:向量的数量积及其运算律并求向量的夹角. 49.-4 【解析】试题分析:因为向量(1,2),(,2)x ==a b ,且⊥a b ,所以12204x x ⨯+⨯=⇒=- 考点:平面向量数量积证明垂直 50.-2 【解析】 试题分析:11//,2211t a b t -∴==∴=-- .考点:向量共线. 51.2 【解析】试题分析:因为2a =,根据向量的数量积可知:221cos232a c c aπ⋅===⨯.考点:1.向量的数量积; 52【解析】 试题分析:()2222222cos a b a ab b a a b bθ-=-+=-+1,3,120a b θ===︒,所以13a b -=考点:向量的模53【解析】试题分析:222244418414510a b a b a b -=+-⋅=+-⨯⨯=,所以210ab -=. 考点:1向量的数量积;2向量的模.54.12【解析】试题分析:()//k +a b c 考点:向量平行的坐标表示 55.-3 【解析】 试题分析:由题意可知,1135CD BCD =∠=︒,,所以()()2AC BD ABBC BC CD AB BC AB CD BC BC CD⋅=+⋅+=⋅+⋅++⋅33121cos 453=︒-⨯++⨯︒=-.考点:平面向量数量积的运算. 56【解析】试题分析:∵(1,3)a =-,(1,)b t =,∴2(3,32)a b t -=--,∵(2)a b a -⊥, ∴(2)0a b a -⋅=,即(1)(3)3(32)0t -⨯-+-=,即2t =,∴(1,2)b =,∴2||12b =+=考点:向量的坐标、向量的垂直的充要条件、向量的模. 57【解析】试题分析:因为2a =,3b =,,a b 的夹角为60°,所以22224413a b a a b b -=-⋅+=.所以2a b -=考点:1.向量的数量积.2.向量的模. 58.2±【解析】由三角形的面积公式,得11sin 41sin 22AB AC A A ⋅=⨯⨯=即23sin =A ,21cos ±=A ;则1cos 41()22AB AC AB AC A ⋅=⋅=⨯⨯±=±. 考点:三角形的面积公式、平面向量的数量积.59.(1)25(2)12λ=- 【解析】试题分析:(1)本题考察的是两向量的夹角的余弦值,一般我们采用向量的数量积公式进行求解.根据题目中所给条件可以求出a 与b 的数量积,然后通过模长公式分别求出a 与b 的模长,最后把求出的量代入数量积公式即可求得a 与b 的夹角的余弦值.(2)本题考察的是两向量的平行(共线)问题,根据平行向量基本定理,把相应的数值代入公式,即可求出所求参数的值. 试题解析(1)(4,3),(1,2)a b()()222241322,435,12a b a b ∴⋅=⨯-+⨯==+==-+=∴cos ,⋅<>===a b a b a b (2) ∵(4,3),(1,2).ab∴(4,32)2(7,8)λλλ-=+-+=,a b a b ∵向量λ-a b 与2+a b 平行,∴43278λλ+-=解得:12λ=-考点:(1)向量数量积(2)平面向量的坐标表示 60.(Ⅰ)332;(Ⅱ)10334-. 【解析】试题分析:(Ⅰ)本题以向量为背景,实际考察三角函数及三角恒等变换,将向量数量积用坐标表示,求出θθcos sin ⋅的值,然后根据θθθθcos sin 21)cos (sin 2⋅+=+,求出2)cos (sin θθ+的值,从而根据θ为锐角求出sin cos θθ+的值;(Ⅱ)根据//a b 的坐标表示,可以求出tan 2θ=,可以根据同角三角函数基本关系式求出θθcos ,sin 的值,再利用二倍角公式,求出θθ2cos ,2sin 的值,再将)32sin(πθ+按两角和正弦公式展开,即可而求sin(2)3πθ+的值.另外,也可以根据齐次式求出θθ2cos ,2sin 的值,再将)32sin(πθ+按两角和正弦公式展开,从而求sin(2)3πθ+的值.注意公式的准确使用.试题解析:(Ⅰ)∵132sin cos 6a b θθ⋅=+=,∴1sin cos 6θθ=. ∴24(sin cos )12sin cos 3θθθθ+=+=又∵θ为锐角,∴sin cos θθ+=(Ⅱ)法一:∵//a b ,∴tan 2θ=. ∴222224sin 22sin cos 15sin cos tan sin cos tan θθθθθθθθθ====++, 2222222213cos 2cos sin 15cos sin tan sin cos tan θθθθθθθθθ--=-===-++.∴11434sin 2sin 2322252510πθθθ-⎛⎫⎛⎫+⨯⨯ ⎪⎪⎝⎭⎝⎭==+-= 法二 ∵//a b ,∴sin 2cos θθ=.易得sin θ=, cos θ=. ∴4sin 22sin cos 5θθθ==,223cos 2cos sin 5θθθ=-=-.∴11434sin 2sin 2322252510πθθθ-⎛⎫⎛⎫+⨯⨯ ⎪⎪⎝⎭⎝⎭==+-= 考点:1.向量平行垂直的坐标表示;2.同角三角函数基本关系式;3.三角恒等变换公式的应用.。